
Monads and More: Part 4

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007



Coeffectful computation and comonads

For coeffectful notions of computation, we have a comonad
(D, ε, δ) on the base category C of pure functions such that
the category of impure functions is CoKl(D), i.e.,

an impure function between object A and B of C can be
viewed as a map A →D B of CoKl(D), i.e., a map
DA → B of C,

the identity impure functions are idD =df ε,

and the composition of impure functions is
` ◦D k =df ` ◦ k†.

Pure functions are a special case of impure functions via the
inclusion J : C → CoKl(D), given by Jf =df f ◦ ε.

Intuition: DA – values from A in a context.

Simplest example: DA =df A× E for dependency on
environment, but CoKl(D) ∼= Kl(T ) for TA =df E ⇒ A.



Dataflow computations

Dataflow computation = discrete-time signal transformations
= stream functions.

The output value at a time instant (stream position) is
determined by the input value at the same instant (position)
plus further input values.

Example dataflow programs

pos = 0 fby (pos + 1)
sum x = x + (0 fby (sum x))

fact = 1 fby (fact ∗ (pos + 1))
fibo = 0 fby (fibo + (1 fby fibo))

pos 0 1 2 3 4 5 6 . . .

sum pos 0 1 3 6 10 15 21 . . .

fact 1 1 2 6 24 120 720 . . .

fibo 0 1 1 2 3 5 8 . . .



We want to consider functions Str A → Str B as impure
functions from A to B .

Streams are naturally isomorphic to functions from natural
numbers: StrA =df νX .A× X ∼= Nat ⇒ A.

General stream functions StrA → StrB are thus in natural
bijection with maps StrA× Nat → B .



Comonad for general stream functions
Functor:

DA =df (Nat ⇒ A)× Nat ∼= ListA× StrA

Input streams with past/present/future:

a0, a1, . . . , an−1, an , an+1, an+2, . . .

Counit:

εA : (Nat ⇒ A)× Nat → A
(a, n) 7→ a(n)

Co-Kleisli extension:

k : (Nat ⇒ A)× Nat → B

k? : (Nat ⇒ A)× Nat → (Nat ⇒ B)× Nat
(a, n) 7→ (λm k(a, m), n)



Comonad for causal stream functions
Functor: DA =df NEList ∼= ListA× A

Input streams with past and present but no future

Counit:
εA : NEListA → A

[a0, . . . , an] 7→ an

Co-Kleisli extension:

k : NEListA → B
k? : NEListA → NEListB

[a0, . . . , an] 7→ [k[a0], k[a0, a1], . . . , k[a0, . . . , an]]

Comonad for anticausal stream functions
Input streams with present and future but no past

Functor: DA =df StrA ∼= A× StrA



Relabelling tree transformations

Let F : C → C. Define TreeA =df µX .A× FX . We are
interested in functions TreeA → TreeB .

(Alt. we can define Tree∞A =df νX .A× FX and interest
ourselves in functions Tree∞A → Tree∞B .)

Comonad for general relabelling functions:

DA =df PathA× TreeA

(Huet’s zipper) where PathA =df µX .1 + A× F ′(TreeA)× X .

Comonad for bottom-up relabelling functions:

DA =df TreeA



Co-Kleisli categories and Cartesian closed structure

Let D be a comonad on a Cartesian closed cat. C.

Since J is right adjoint and preserves limits, CoKl(D) has
products. Explicitly, we can define

A×D B =df A× B
πD

0 =df fst ◦ ε
πD

1 =df snd ◦ ε
〈k0, k1〉D =df 〈k0, k1〉



If D is strong/lax symmetric semimonoidal wrt. (1,×), i.e.,
comes with a nat. iso./transf. m : DA× DB → D(A× B),
then we can also define

A ⇒D B =df DA ⇒ B
evD =df ev ◦ 〈ε ◦ Dfst, Dsnd〉

ΛD(k) =df Λ(k ◦m)

D((DA ⇒ B)× A)
〈ε◦Dfst,Dsnd〉 // (DA ⇒ B)× DA ev // B

DC × DA
m // D(C × A) k // B

DC
Λ(k◦m)// DA ⇒ B



Using a strength (if available) is not a good idea: We have no
multiplication

DC × DA
sl // D(C × DA) Dsr // DD(C × A) ? // D(C × A)

and applying ε or Dε gives a solution where the order of
arguments of a function is important and coeffects do not
combine:

DC × DA
id×ε // DC × A

sl // D(C × A)

or

DC × DA
ε×id // C × DA

sr // D(C × A)



If D is strong semimonoidal (in which case it is automatically

strong symmetric semimonoidal), then A ⇒D − is right
adjoint to −×D A and hence ⇒D is an exponent functor:

D(C × A) → B

DC × DA → B
DC → DA ⇒ B

This is the case, e.g., if DA =df νX .A× (K ⇒ X ) for some K
(e.g., DA =df StrA).



More typically, D is only lax symmetric semimonoidal.

Then it suffices to have m satisfying m ◦∆ = D ∆, where
∆ = 〈id, id〉 : A → A× A is part of the comonoid structure on
the objects of C, to get that m ◦ 〈Dfst, Dsnd〉 = id and that
⇒D is a weak exponent operation on objects. It is not
functorial (not even in each argument separately).



Partial uniform parameterized fixpoint operator

Let F : C → C. Define DA =df νZ .A× FZ .

Call a coKleisli map k : A× B →D B guarded if for some k ′

we have

D(A× B) k //

∼=
��

B

(A× B)× FD(A× B)
fst×id // A× FD(A× B)

k ′

OO

For any guarded k : A× B →D B , there is a unique map
fix(k) : A →D B satisfying

A
fix(k) //

〈idD ,fix(k)〉D ""FF
FF

FF
FF

F B

A× B
k

;;xxxxxxxxx



fix is a partial Conway operator defined on guarded maps, i.e.,
besides the fixpoint property, for any guarded
k : A×D B →D B ,

fix(k) = k ◦D 〈idD , fix(k)〉D

it satisfies naturality in A, dinaturality in B , and the diagonal
property: for any guarded k : A×D B ×D B →D B ,

fix(k ◦D (idD ×D ∆D)) = fix(fix(k))

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in
B instead of dinatural), i.e., for any guarded
k : A×D B →D B , ` : A×D B ′ →D B ′ and h : B → B ′

Jh ◦D k = ` ◦D (idD ×D Jh) =⇒ Jh ◦D fix(k) = fix(`)



Comonadic semantics
As in the case of monadic semantics, we interpret the
lambda-calculus into CoKl(D) in the standard way, getting

JA× BKD =df JAKD ×D JBKD = JAKD × JBKD

JA ⇒ BKD =df JAKD ⇒D JBKD = DJAKD ⇒ JBKD

J(x) xi KD =df πD
i = πi ◦ ε

J(x) fst(t)KD =df πD
0 ◦D J(x) tKD = fst ◦ J(x) tKD

J(x) snd(t)KD =df πD
1 ◦D J(x) tKD = snd ◦ J(x) tKD

J(x) (t0, t1)KD =df 〈J(x) t0KD , J(x) t1KD〉D = 〈J(x) t0KD , J(x) t1KD〉
J(x) λxtKD =df ΛD(J(x , x) tKD) = Λ(J(x , x) tKD ◦m)
J(x) t uKD =df evD ◦D 〈J(x) tKD , J(x) uKD〉D = ev ◦ 〈J(x) tKD , (J(x) uKD)†〉

J(x) rec xtKD =df fixD(J(x , x) tKD) for (x , x) t syntactically guarded

Coeffect-specific constructs are interpreted specifically.

Again, x : C ` t : A implies J(x)tKD : JCKD →D JAKD , but not
all equations of the lambda-calculus are validated.



Closed terms: Soundness of typing for ` t : A says that
JtKD : 1 →D JAKD , i.e., D1 → JAKD , so closed terms are
evaluated relative to a coeffect over 1.

In case of general or causal stream functions, this is a list over
1 (i.e., a natural number), the time elapsed.

If D is properly symmetric monoidal (e.g., Str), we have a
canonical choice e : 1

∼→ D1.



Comonadic dataflow language semantics: The first-order
language agrees perfectly with Lucid and Lustre by its
semantics.

The meaning of higher-order dataflow computation has been
unclear. We get a neat semantics from mathematical
considerations (cf. Colaço, Pouzet’s design with two flavors of
function spaces).



Related linear/modal logic work

Strong symmetric monoidal comonads are central in the
semantics of intuitionistic linear logic and modal logic to
interpret the ! and 2 operators.

Linear logic: Benton, Bierman, de Paiva, Hyland; Bierman;
Benton; Mellies; Maneggia; etc.

Modal logic: Bierman, da Paiva.

Applications to staged computation and semantics of names:
Pfenning, Davies, Nanevski.


