Monads and More: Part 4

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007



Coeffectful computation and comonads

For coeffectful notions of computation, we have a comonad
(D, e,0) on the base category C of pure functions such that
the category of impure functions is CoKI(D), i.e.,

@ an impure function between object A and B of C can be
viewed as a map A —P B of CoKI(D), i.e., a map
DA — B of C,

@ the identity impure functions are id® =4 ¢,

@ and the composition of impure functions is
KODk:deOkT.

Pure functions are a special case of impure functions via the
inclusion J : C — CoKI(D), given by Jf =4 f o .

Intuition: DA — values from A in a context.

Simplest example: DA =4 A x E for dependency on
environment, but CoKI(D) = KI(T) for TA =4 E = A.



Dataflow computations

Dataflow computation = discrete-time signal transformations
= stream functions.

The output value at a time instant (stream position) is
determined by the input value at the same instant (position)
plus further input values.

Example dataflow programs

pos = 0 fby (pos+ 1)

sum x = x+ (0 fby (sum x))
fact = 1 fby (fact * (pos + 1))
fibo = 0 fby (fibo + (1 fby fibo))

pos 0 1 2 3 4 5 6
sum pos | O 1 3 6 10 15 21
fact 1 1 2 6 24 120 720
fibo 0 1 1 2 3 5 8




We want to consider functions Str A — Str B as impure
functions from A to B.

Streams are naturally isomorphic to functions from natural
numbers: StrA =4 vX.A x X = Nat = A.

General stream functions StrA — StrB are thus in natural
bijection with maps StrA x Nat — B.



Comonad for general stream functions

@ Functor:
DA =4 (Nat = A) x Nat = ListA x StrA

@ Input streams with past/present/future:

do,d1, .-, 3,,,1,, dpi1,dnt2, - - -

o Counit:

ea : (Nat=A)xNat — A
(a, n) = a(n)

@ Co-Kleisli extension:

k : (Nat = A) x Nat — B

k* : (Nat= A) x Nat — (Nat= B) x Nat
(a, n) — (Amk(a, m), n)



Comonad for causal stream functions
@ Functor: DA =4¢ NEList = ListA x A

@ Input streams with past and present but no future

o Counit:
Ea - NEListA — A

[ao, .. .,an] — a,
@ Co-Kleisli extension:

k : NEListA — B

k* : NEListA — NEListB
[a0, .. .,an] — [k[ao], k[a0, a1], - - -, ka0,

Comonad for anticausal stream functions
@ Input streams with present and future but no past

@ Functor: DA =4 StrA= A x StrA

ooy an]]



Relabelling tree transformations

Let F:C — C. Define TreeA =4¢ uX.A x FX. We are
interested in functions TreeA — TreeB.

(Alt. we can define Tree™A =4 vX.A x FX and interest
ourselves in functions Tree™A — Tree™B.)

Comonad for general relabelling functions:
DA =4; PathA x TreeA

(Huet's zipper) where PathA =4 uX.1+ A x F'(TreeA) x X.

Comonad for bottom-up relabelling functions:

DA =4 TreeA



Co-Kleisli categories and Cartesian closed structure

Let D be a comonad on a Cartesian closed cat. C.

Since J is right adjoint and preserves limits, CoKI(D) has
products. Explicitly, we can define

AXDB =df Ax B

7T6) =gt fstoe
7T1D =df sndoe

<k07k1>D —df <k07k1>



If D is strong/lax symmetric semimonoidal wrt. (1, x), i.e.,
comes with a nat. iso./transf. m: DA x DB — D(A x B),
then we can also define

A=PB =4 DA=B
evP =4 evo (o Dfst, Dsnd)
/\D(k) =df /\(k e} m)

(eoDfst,Dsnd)

D((DA = B) x A)

(DA = B) x DA—=>B

DC x DA—">D(C x A)—~B

(kom
DC4>)DA = B




Using a strength (if available) is not a good idea: We have no
multiplication

DC x DA—== D(C x DA) 2=~ DD(C x A) —= D(C x A)

and applying € or De gives a solution where the order of
arguments of a function is important and coeffects do not
combine:

idxe

DC x DA~ DC x A—2>D(C x A)

or
DC x DA% C x DA—>D(C x A)



If D is strong semimonoidal (in which case it is automatically

strong symmetric semimonoidal), then A =0 — is right
adjoint to — x? A and hence =P is an exponent functor:

D(C x A) — B
DC x DA— B
DC — DA= B

This is the case, e.g., if DA =4 vX.A x (K = X) for some K
(e.g., DA =4 StrA).



More typically, D is only lax symmetric semimonoidal.

Then it suffices to have m satisfying mo A = D A, where

A = (id,id) : A— A x Ais part of the comonoid structure on
the objects of C, to get that m o (Dfst, Dsnd) = id and that
=D is a weak exponent operation on objects. It is not
functorial (not even in each argument separately).



Partial uniform parameterized fixpoint operator
Let F:C — C. Define DA=4 vZ.AX FZ.

Call a coKleisli map k : A x B —P B guarded if for some k'
we have

D(A x B) k

B

: .
fstxid

(Ax B) x FD(A x B)

A x FD(A x B)

For any guarded k : A x B —P B, there is a unique map
fix(k) : A —P B satisfying




fix is a partial Conway operator defined on guarded maps, i.e.,
besides the fixpoint property, for any guarded
k:AxP B =P B,

fix(k) = k oP (id®, fix(k))P

it satisfies naturality in A, dinaturality in B, and the diagonal
property: for any guarded k : AxP B xP B —P B,

fix(k oP (idD x P AD)) = fix(fix(k))

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in
B instead of dinatural), i.e., for any guarded
k:AxPB-SPB (:AxPB =P B andh:B— B

JhoP k=100P (id° xP Jh) = JhoP fix(k) = fix(¢)



Comonadic semantics

As in the case of monadic semantics, we interpret the
lambda-calculus into CoKI(D) in the standard way, getting

[A x B]P
[A= B]P
[(x) xi]°

[(x) fst(£)]P
[(x) snd(£)]°
[(x) (to, )]P
[(x) Axt]P
[(x)tu]”?

[(x) rec xt]P

=df
=df
=df
=df
=df
=df
=df
=df
=df

[AI° x© [B]°
[A]° =° [B]°
70 o [(x) £1°
7D oD [(x) £]°

([(x) 1], [(x) 2] °)°

AP ([(x, x) t]°)

P 0P ([(x) £1°, [(x) ul®)P

ev~ o

fix® ([(x, ) £]°)

[A]P x [B]P

DIA]® = [B]°

Tio¢g

fst o [(x) t]P

snd o [(x) t]P

(I(x) ] ®, [(x) t1]°)
A([(x, x) t]° o m)

= evo ([(x) t]°, ([(x) u]°)T)

for (x, x) t syntactically guarded

Coeffect-specific constructs are interpreted specifically.

Again, x : CF t: Aimplies [(x)t]? : [C]P —P [A]P, but not
all equations of the lambda-calculus are validated.



Closed terms: Soundness of typing for - t : A says that
[t]P : 1 =P [A]P, ie., D1 — [A]P, so closed terms are
evaluated relative to a coeffect over 1.

In case of general or causal stream functions, this is a list over
1 (i.e., a natural number), the time elapsed.

If D is properly symmetric monoidal (e.g., Str), we have a
canonical choice e : 1 = D1.



Comonadic dataflow language semantics: The first-order
language agrees perfectly with Lucid and Lustre by its
semantics.

The meaning of higher-order dataflow computation has been
unclear. We get a neat semantics from mathematical
considerations (cf. Colago, Pouzet's design with two flavors of
function spaces).



Related linear/modal logic work

Strong symmetric monoidal comonads are central in the
semantics of intuitionistic linear logic and modal logic to
interpret the ! and O operators.

Linear logic: Benton, Bierman, de Paiva, Hyland; Bierman;
Benton; Mellies; Maneggia; etc.

Modal logic: Bierman, da Paiva.

Applications to staged computation and semantics of names:
Pfenning, Davies, Nanevski.



