66 CHAPTER 4. DEPENDENT TYPES

Just using were elementary reasoning we can show that
elRR <+ (elRR) — 0

And it follows from propositional logic that —=(P < —P) from simple reasoning
in propositional logic. But this means that the empty type in inhabited.
Where did we actually use Type : Type? We didn’t explicitly but implicitly
when we introduced a constructor makeTree whose argument is a type again.
So, if Type : Type doesn’t work what is now the type of Type? To avoid
the problem we introduce not one namely infinitely many universes.

Type, : Type, : Type, : ...

Hence the answer depends on the level, if we ask about the first universe Type,
then its type is Type; and what is the type of Type;? Right is is Type,. And
SO on.

The numbers 0,1,2,... which as the index of types are not our natural
numbers (even though the look very much like them) because otherwise we
would have to make our mind up was is the type of a function that assigns to a
number a type and what is the type of this function?

All our usual garden variety types like N, Bool, List N, N — Bool, InfTree, . ..
are elements of Type,, but they are also elements of all higher universes - this
is called cummulativity. The thing that is new in Type, is Type, itself. We
say that Type, is larger then all the types in Type, because if there would be a
type in Typey which is equivalent to Type, we can derive the paradox. There
are more new types in Type,; for example List Type, or Type, — N. This
story continues: the new types in Type, are Type; and all the types which
can be built from it:

While this solves the problem with Type : Type it does introduce a lot of
bureaucracy: for example we have many copies of List namely Listo : Type, —
Type, and List; : Type; — Type; etc. This is not covered by cummulativity
which only tells us that Listo N : Type;. What is the best way to deal with
this problem is a research question: while there are a number of candidates and
implementations there is no general agreement what is the best way. On paper
we can be lazy and adopt the convention that we just pretend that we had
Type : Type but then check that there is a consistent assignment of indices
to each occurence of Type. This is close to what the Coq system is doing but
there are cases where the inference algorithm is too weak.

4.4 Propositions as Types: Predicate logic

I am now going to deliver on the promise to extend the propositions as types
explanation to predicate logic using dependent types. Actually it is rather
straightforward and I couldn’t avoid giving away the secret in the last section
- maybe you noticed. We translate V with II-types. That is for example the



4.4. PROPOSITIONS AS TYPES: PREDICATE LOGIC 67

statement 3 that
Vr:Nzx+0=x
is translated into a type
Iz :Nz+0==z

That is a reason is a function that assigns to any natural number n : N a reason
that x +0 = x. I haven’t yet explained what equality is as a type but I will do
this soon for the moment I will appeal on some basic intuition about equality.
How would an element of this type look like? I am defining f : Iz N.aa+0 ==z
using primitive recursion:

f0:=reflO
f (sucn) :=respsuc (fn)

Some explanation is required I am using refl : IIn : N.n = n as the proof of
reflexivity and

resp : 4 prypellf : A= Bllggaa=a — fa— fd
as a proof that any function respects equality. That is in particular
respsuc : [Im,n : Nom =n — sucm = sucn

What does this function actually do? What is for example f57 Now that is
easy f5 = refl5 since 54+ 0 = 5 and hence refl5: 5+ 0 = 5. So f is just a
constant function returning refl! Could we not have just written

fn:=refin?

No, because n + 0 is not by definition the same as n, and hence this definition
of the function doesn’t obviously typecheck. The more complicated version
above does, but this requires some thought: the result of respsuc(fn) has
the type suc (n 4+ 0) = sucn but we needed an element of (sucn + 0 = sucn)
In this case however, we can exploit the definition of + which tells us that
(sucn) + m = suc(n +m). The definition of f uses primitive recursion for
dependent types which generalized iter, but really this is a proof by induction.
We will look into this relationship soon.
Similarly we translate 3 with X-type. For example we translate

dr:Nz=x+z
into

Yr:Nzx=zx+z

3To be consistent I am using here predicate logic with types whereas previously we assumed
that there always is only one type we talk about.



68 CHAPTER 4. DEPENDENT TYPES

That is a reason for an existential statement is a pair: the first component is the
actual element we use (sometimes called the witness) and the 2nd component
is the reason that this element satisfies the predicate. In this case it is easy to
write down a proof:

(0,refl0) : Xz :Nax=z+z

Here I am using that refl0 : 0 = 0 4 0 since 0 + n = n because that is the way
we have defined +.

What is a predicate? Predicates are properties, since we now work with
types we can only define properties of elements of a given type. For example
Even is the property of a natural number to be even. So given a natural number
n : N we can construct Evenn which is a proposition, that is using propositions
as types, a type. Hence even is a function from natural numbers to types:

Even : N — Type

That s using the terminology from the previoussections: Even is a dependent
type. Indeed, we need depndent types to extend propositions as types to pred-
icate logic, we use dependent types to interpret predicates. This also works for
relations using currying for any given type A : Type we have — =4 — : A —
A — Type the equality relation. Or more generally — = — : [I4.ryped =+ A —
Type since equality works polymorphically for any type.

Using Y-types we can make sense of the comprehension notation of set the-
ory. If we have atype A : Type and a predicate P over A thatis P: A — Type
we can represent {z : A | Pz} as ¥z : A.Px so an element is an element of A
together with a proof that it satsifies the predicate. For example

{z:N|Evenz} =Xz : NEvenz

represents the type of even numbers as pairs of a number and a proof that this
number is even. However, there can be a mismatch here: if we have two ways
to prove that for example 2 is even then there are two different versions of 2 in
{z : N | Evenx}. This is undesirable and we should demand that there is at
most one proof that a certain number is even - in this particular instance this
is not difficult to achieve.

Earlier T promised that we can make sense of N and N and other operations
from set theory. As explained earlier they are not operation on types but they
can be understood as operations on predicates. That is given a type A : Type
this is often called a universe in set theory but should not be confused with type
theoretic universes. Now given two predicates P,Q : A — Type we can define
new predicates:

PNQ,PNQ:A— Type

PNQ:=Xe.PzANQz
PUQ: =M. PxVvQx



4.4. PROPOSITIONS AS TYPES: PREDICATE LOGIC 69

We can also make sense of P C () which is a proposition interpreted as a type:
PCQ:=Ilz: APz —Qx

This interpretation of the operations covers most of matehmatical practice where
U, N, C are applied to subsets, i.e. predicates, of a given set.

We can use the interpretation of V and 3 to verify tautologies of predicate
logic. Maybe you remember the slightly surprising tautology

(Vz.®(z) = p) & (Fz.®(x) = p)

from section 2.4 which I illustrated using student performance and lecturer
happiness. Instead of this sketch of a logical justification we can now construct
functions which show us that the reasons can be translated both ways. Let’s fix
a type A : Type the statement becomes:

(Vz:AQzr=P) e (Fr.Qz = P)

where (@) is a predicate over A that is @ : A — Type and P is a proposition
which we represent as a type P : Type. Propositions as types here means we
replace the symbols:

(Ilz: AQe = P) < (Xx: A.Qz) = P)
that means we need to construct 2 functions:

fiMz:AQzr=P)— ((Zx: AQx)= P)
fh:=Xyh(moy, my)

and for the other direction:

g:((22:AQz)=P)— (llx: AQx = P)
gk = xyq.k (z,q)

If you have a dejavu when looking at this definitions you are right. In section
3.2 we defined the functions curry and uncurry:

curry : (Ax B —C)— (A— B — ()
uncurry : (A - B —C) = (Ax B — ()

and their definitions exactly match g and f. This should be no surprise: all
we have done is to replace the product x by a X-type and the function — by
a Il-type. That is we replaced the non-dependent version of an operation on
types by the dependent one. And now we can use this to justify a tautology
from predicate logic.

We can use propositions as types to extend simple Type Theory from the
previous chapter by reasoning using predicate logic. Indeed, this is the way the
Coq system is often used in practice. It seems to me that it is a shame using



70 CHAPTER 4. DEPENDENT TYPES

dependent types only in this fashion but indeed a much tighter integration is
often possible and desirable. As an example let’s verify that the equality of
natural numbers is decidable. As a first step we could implement a decision
function eq : N = N — Bool which can be defined as follows:

eq00 := true
eq0 (sucn) := false
eq (sucm) 0 := false

eq (sucm) (sucn) :=eqmn

The strategy is that we look at all combinations of successor and zero that
are possible: if both are 0 then there are equal; if one is zero and the other
is a successor then they are obviously not equal and if both are successor we
recursively compare the predeccessors. While this is obviously correct we should
be paranoid and demand a proof anyway, which could be given by proving

Vm,n:Negqmn&m=n

using the propositions as types translation. However, there is a nicer way using
dependent types directly. The type of eq above wasn’t very informative: it
only told us that we have a function from two natural numbers to bool. Using
dependent types we can be more explicit and replace bool by a more informative
type. That is for any natural numbers m,n : N we want to prove (m = n) V
—(m = n). [Indeed, this is an instance of the law of excluded middle, which
doesn’t hold in general but it does in this case, witnessing decidability. That is
replacing V with 4+ and — with —0 we get

eq:IIm,n:N.(m=n)+ (m=n) =0

If we can prove an instance of the law of the exclude middle we say that the
coresponding proposition has beed decided, that is we have established wether
it is true or false. If we have a predicate we say that this predicate is decidable
if we can decide all its instances, and similar for relations. To avoid writing long

and unreadable formulas below it is useful to define

Dec : Type — Type
DecP:=P+ (P —0)

where we read Dec as decided. Then the type of eq becomes
eq: IIm,n : N.Dec (m = n)

Now let me sketch the definition of the depdnently typed eq only leaving out
the bits where I need to use equality reasoning which I haven’t yet introduced.



4.4. PROPOSITIONS AS TYPES: PREDICATE LOGIC 71

The general structure resembles the previous definition with Bool:

eq 00 := inl (refl 0)

eq 0 (sucn) := inr noConf n

eq (sucm) 0 := inr (Ap.noConf m (sym p))

eq (sucm) (sucn) : eqAux (eqmn)
where we use

noConf : Iln : N.(0 = sucn) — 0
sym : Il a.7ypellapaa =b—b=a

eqAux : IT,;, ,.nDec (m = n) — Dec (sucm) (sucn)

noConf stands for no confusion and corresponds to the principle in Peano Arith-
metic that 0 is not equal to any successor. In the second case I need the same
inequality but the other way around which can be derived using a proof sym
that equality is symmetric. Here is the definition of eqAux using yet another
auxilliary function:

eqAux (inl p) := inl (resp suc p)

eqAux (inr h) := inr (Ag.h (injSuc q)

What is happening? eqAux preserves the injection becuase clearly the equality
of m and n is the same as the equality of suc m and suc, n which is why we didn’t
need to do anything in the boolean version. However, we have to massage
the reason: if m = n then sucm = sucn we have seen this before we can
prove it using respsuc. In the onther direction we have to show that m # n
implies sucm # sucn. That means from assuming h : m = n — 0 we have
to derive sucm = sucn — 0, that is given p : sucm = sucn we need to derive
a hypothetical element of the empty type. Are only chance is to use h and to
close the gap we need

injSuc : I, p.nsUCM = sucn — m=n

injSuc thans for injectivity of successor and is another principle from Peano
Arithmetic if the successors of two numbers are equal then the numbers are
equal. Unlike resp this doesn’t hold for all functions but it does hold for suc-
Cessor.

I am not sure I have convinced you that this is a nicer way to define this
function. The nice thing is that this version of the function gives us both the
computation and the correctness proofs. As Conor McBride expressed it: It
says on the tin what is inside the tin. That is the type tells us everything we
want to know about the function: it decides equality. Certainly this refined
version of the function is technically more work but then I didn’t actually spell
out the details of the correctness proof of the boolean version of eq.



