76 CHAPTER 4. DEPENDENT TYPES

What has really happened is that from the lie that we can recover information
we have just hidden we can extract information as long as we hide the function
doing the extraction. And this has nothing to do with X-types and existentials
but with the behaviour of the hiding operation, or inhabitance || — ||. Hence we
can formulate a simpler version of the axiom of choice in Type Theory:

(Ilz : A.||Bz||) — ||z : A.Bx||

This implies the revised translation of the axiom. 4 It is interesting that the
reverse direction

|z : A.Bz|| — (Ilz : A.||Bz||)

is actually provable - for the details we need a better understanding of || — ||.
However, it should be intuitively clear that from- a hidden function we can
generate hidden information but not vice versa.

4.6 Induction is recursion

In section 3.7 we analysed primitive recursion for simple types. That is we
explained that for example to define a function from the natural numbers to
another type let’s say f : N — A, we need to say what the function is doing for
0 hence we need an z : A and we need to say what the function is doing for the
successor assuming we already know the result for the previous number, that
menas we need a function s : A — A and we can define f by primitive recursion
as:

f0:=z
flsucn):=s(fn)

We also discovered that we can turn this principle into a higher order function
which T called iter which for any type A has the type

itera:A—-(A—A) - N—- A

actually now that we know about universes we can get rid of the ad hoc treat-
ment of the type and just say

iter : HgrypeAd = (A - A) > N A
which is defined as

iteraa f0:=a
iterg a f (sucn) := f (itera f n)

41t is actually equivalent if we drop the restriction that R is propositional.

4.6. INDUCTION IS RECURSION 7

We can define f just using iter:
f:=iterzs

Now let’s switch tack and say we want to define a dependent function f :
IIn : N.An where A : N — Type is a dependent type. As before we need to say
what f does for 0 hence we need z : A0 and we need to say how to compute
f(sucn) from fn and that means we need s : IIn : NNAn — A (sucn). Given
these ingredients we can define f by dependent primitive recursion:

fOo:=z
f(sucn):=sn(fn)
Indeed, this is almost the same as before: the only difference is that we need
to communicate the natural number which we use to s, which if you remember
makes it more like prec. I often hide the first argument to s in which case the
definition looks exactly the same.

We have already seen some examples. In the beginning of the chapter we

defined zeros : IIn : N.Vec Nn using dependent primitive recursion:

zeros 0 := ||
zeros (1 +n) :=0:: (zerosn)
In this case z =[] and snz := 0::, 2. Another example using propositions as

types I need to define a dependent function to'show IIn : N.on = n + 0. We
defined f :IIn : N.n =n 4 Q.as:

f0:=reflO

f (sucn) :=respsuc (f n)

So here z = refl0-and s n = := resp suc z.

And again as before we can define one define one higher order function which
implements dependent primitive recursion: this is called elim which is short for
eliminator:

elim: I[TA: N — Type.A0 — (IlIn : N.An — A(sucn)) - IIn: N.An
which is defined in a way very similar to iter:

elimAzs0:=z

elimAzs(sucn) := sn(elim Az sn)

We can put elim to work to derive the previous examples, in the case of zeros :
IIn : N.VecNn we use

zeros := elim (VecN) [] (An, 2.0 iz,)
and in the case of f : IIn : Non =n+0:

f:=elim (An.n =n+0) (refl0) (An, x.respsucz)

78 CHAPTER 4. DEPENDENT TYPES

It is worthwhile to look at the type of elim and notice that it exactly corresponds
to the principle of induction for natural numbers using the propositions as types
view. Or using our refined version we could say that induction is the special
case of dependent primitive recursion in the case of a propositional family A :
N — Prop, which is what we used in the 2nd case.

While this is not a hard theorem it is an important observation that the
proposition as types views shows us that induction is just a special case of
dependent primitive recursion. This hopefully correspond to our naive under-
standing of induction, which is true because we can use recursion to repeat the
inductive step as many times as needed before resorting to the base case.

As we were able to extend primitive recursion to ether datatypes we can do
the same in the for the other datatypes we looked at. To define a function out
of a datatype we only need to say what it is doing for the constructors. We can
condense this into an eliminator which is a higher order function implementing
this reduction.

What is the point of an eliminator? Using eliminators we can reduce the
definability of a function to a formal criterion, the same way as we reduced
primitive recursion to just using one constant, iter. In practice we don’t want to
use eliminators all the time but come up with nice and readable definitions which
can be reduced to eliminators. But if in doubt we better provide a translation
into the use of basic eliminators to make sure that we are not cheating.

As an example let’s derive the eliminator for lists, which with our proposi-
tions as types glasses will correspond to an induction principle for lists. On the
other hand it should generalize the fold we have already seen. But let’s just go
through the basic motions. To define a dependent function f : Ilz : List A.Bx
where B : List A — Type we need to say what f is doing for the constructors
of List A that is we have to complete the lines

fl:="
fla=l) =N

Clearly ?o : B[] so lets just assume we have 7o = n : B[]. To complete ?; :
B (a::1) we can use the result of the recursive call f1: Bl and we can also use
a : A, that is we need a function ¢ : Ila : A, 11l : List A Bl — B (a:: 1) and we
set 71 =cal (f1). To put it all together we arrive at the following definition of

f0=n
flazl):=cal(fl)
given

n: Bl

c:Ma: Al : List ABl— B(a::1)

Now to condense everything into an eliminator we make all the parameters

4.6. INDUCTION IS RECURSION 79

explicit which includes the type parameters:

elim™st ITa:Typell B : List A — Type.B]
— (Tla: A,l:List ABl — B(a::1))
— III : List A.B1

elim™* Bn¢|] n

elim™* Bn¢(a::1) = cal (elim™™* Bnecl)

There is one more example I would like to cover and that is to show an
eleminator for an inductively defined family like Fin : N — Type. To remind
us: Fin is inductively generated by:

0:1L,nyFinl+n
suc : IT,,yFinn — Fin (1 +n)
Now how to define a function out of Fin. Such a‘function will need to inputs:
the index n : N and the element i : Finn. That is we want to define a function
f i I,.nIi : Finn.Ani where A : II,,.yFini — Type. The idea is the same
as before: we have to say what f is returning for 0,, and we have to say what

it returns for suc, ¢ assuming we know the result of f,i. That is we have to
complete

f1+,n On ZE?O
f1+n(sucn Z) =0
Before we fill in the ?s.= do you note something? The hidden parameter, that
is the index n : N is always 1 +mn! That is because the constructors of Fin
always produce elements in Fin'(1 + n) and never any in Fin0 - which is only
right because Fin 0 is intentionally left empty. And indeed we are analyzing the
constructors of Fin not the indizes.

Now back to the 7s. ?g : Aj41n 0, hence we need z : II,.yA14, 0, and
71 Api1 (suey, 7) but here we can use the recursive result of f,, i : A, i. Hence
we stipulate a function s : IT,.NA, ¢ — Aj4, (Suc, i) and we can fill in

fienOn =2
fiaen(sucy 1) == s, (f ni)
Now we package this all into one complicated looking eliminator:

elim™™ : TIA : (IT,,.,nFinn — Type).(IIn : N.A, 11 0,)
— (IL.n1Ti : Finn. A, i — A14p (Sucy, i)
— IL,.nITi : Finn — A, 4

Let us use the eliminator to fullfill an earlier promise, namely to give a justifi-
cation why

nth : II,,.xVec An — Finn — A

80 CHAPTER 4. DEPENDENT TYPES
nth(a:v)0:=a
nth (a::v) (14 n) :=nthovn

is a reasonable definition, even though it doesn’t seem to cover the index zero.
To translate this we need head and tail for vectors which are inverting the cons
operation for vectors. They are defined as follows:

hd : II,,yVecA (1 +n) — A

hd(a::v):=a
tl: II,,.,xVec A (1 +mn) — Vec An
tl(a:v) :=v

I leave it as an exercise to derive the eliminator for Vec and then show that
hd and tl can be defined using it. To make it work we need to commute the
arguments, because we will need to make sure that the index of the vector is
determined by the index of the element of Fin. That is we define

nth’ : IL,,.xFinn — VecAn — A
This way we can use Vec An — A depending on n as the motive:
nth’ := elim™ (An.Vec An — A) (An.hdy) 70 71

The type of 7¢ is IIn : N.Vec A (1 +n) — A, the 14 here has the origin in the
1+ in the type of 0,,. This fits perfectly with the type of hd which is what we
want to do here, hence ?g = An.hd,,. In the other case we have

71 2 IL,nILi : Finn.(Vec An — A) — (VecA(1 +n)) — A)

which perfectly fits with calling the recursively computed result with the tail of
the input vector:

71 = A, i, hoAv.h (t,v0)

We notice that we aren’t actually using the ¢ parameter to the motive, which
means that we don’t use the eliminator in its full generality here. Indeed, the
result type only depnds on the index not on the element of Fin itself. Putting
everything together we can define nth also inlining the parameter swap:

nthvi =elim™ (A\n.Vec An — A)
(An.hd,,)
(An, i, h.Av.h (tl,v))
(X
OK, this is maybe more principled then the first version of nth but hardly

readable. This is a common tension: if we try to justify a construction from
first principles we loose readability but on the other hand it is clear that we are

4.6. INDUCTION IS RECURSION 81

not cheating. To navigate in this space we usually present the readable version
but when in doubt make sure that it is actually derivable using the spartan world
of eliminators. Also implementations of Type Theory should work like this and
should translate elegant presentations into type-theoretic assembly language.
Alas very few do and it is often considered easier to directly interpret a fairly
high level language. This also leads to unintended consequences in form of
unsoundness (we can prove False) which diminish the trustworthiness of the
system. We will get back to this in the last chapter.

Also you may remark that while I have presented the idea how to derive
eliminators from the constructor type, this can hardly be called systematic.
What exactly are the restrictions on constructor types (see our-discussion in
3.7)?7 And shouldn’t we present the derivation of the eliminator in a more
systematic way

There are a number of possible answers here. Both the restrictions and the
derivation of the eliminators can be presented in the form of schematic syntax
rules. They are precise but do get quite complicated and it .is hard to design
them so that we call cover all the cases. And if the instances of the eliminators
look complicated they are nothing compared to the rules. While there is a
point to represent a system based on some precise rules, these rules are hardly
readable and they don’t give us much insight.

More insight can be obtained by using the language of category theory. As we
have seen in the section on simple types data types can be described by functors
and the actual type is the initial algebra of a functor. Actually not completely,
because we couldn’t really capture the n-rules for more interesting datatypes like
the natural numbers or lists. This is in a way fixed once we add the dependent
eliminator because we can prove the n-rules using the equality type which I will
introduce in full gory detail in the next section.” What about dependent types
like Fin? Here we have to change the category we live in and move from the
category of types-and functions, to the category of families of types and families
of functions. That is types are replaced by families A : N — Type and given
A, B : N — Type a family of functions is given by f : IIn : N.An — Bn. Now
Fin can‘be also specified by a functor that is on type families:

F: (N — Type) — (N — Type)
FA:=M.(Em:Nm=14n)+Em:Nm=14+nx Am)

I leave it as an exercise (which does involve a better understanding of the yet
unspecified equality type) to show that this operation comes with a well behaved
map operation on family of functions. And indeed, Fin arises as an initial
algebra of this functor with the same asymmetry between definitional S-rules
and provable n-rules.

The fact that datatypes and even dependent datatypes can be understood
as initial algebras is certainly a nice fit between category theory and Type
Theory. However, category theory doesn’t answer the question what datatypes
are acceptable. Already earlier, in section 3.7 I argued that some functors do
not correspond to reasonable datatypes, e.g. the functor given by F' : Type —

82 CHAPTER 4. DEPENDENT TYPES

Type with F X := (X — 2) — 2 seems problematic. We want to restrict
ourselves to strictly positive datatypes but what does this mean exactly?

The answer is that we only want to consider functors which correspond to
containers, where a container is given by a type of shapes S : Type and a family
of positions P : N — Type which gives rise to a functor °

T :Type — Type
TX =%¥s:SPs—X

The intuition is that an instance of a container T' A is given by a choice of
shape s : S, and an assignment of a payload, that is-an element of A to each
position, i.e. a function P s — A. An intuitive example is given by the container
representation of the list functor: the shape of a list is its length hence S := N
and the positions is the finite set with n elements because this is how much
payload a list of length n can take, hence P := Fin : § — Type. Indeed, we
can show that any sytactically strict positive datatype can be represented as a
container.

Ever container gives rise to a datatype, that is the type of trees whose nodes
are labelled by elements of S and the subtrees of a node labelled by s : S is
indexed by P s. This datatype is called a W-type and given a container that
is § : Type and P : S — Type and now W : Type is generated by the
constructor

node:Ills: S — (Ps—>W)—->W

As we have already observed the natural numbers are generated by the functor
TX = 1+ X which is a container given by S = 2 and P false := 0 and
Ptrue := 1. The trees generated by W S P correspond to the natural numbers
where node false : (0 — W) — W represents the number 0 all we need to do is
to add the function efq : 0 — W (which does need no definition) as a parameter
0 = nodefalseefq. Successors are represented using nodes of the other shape
nodetrue : (1 = W) — W hence we define sucn := noe true (Az.n).

We can do this with other datatypes we have encountered so far, for example
lists over A : Type are generated by the W-type specified by

S: =144
P(inl()):=0
P(inra) =1

To better understand the general idea let’s anaylze the expression trees which
were given by

const : N — Expr
plusOp : Expr — Expr — Expr
timesOp : Expr — Expr — Expr

5As an exercise try to derive the map part of this functor.

4.6. INDUCTION IS RECURSION 83

Here we hace 3 constructors the first one parametrised by N. Hence we choose
S =N+2

How many recursive occurences of Expr can we count for each of the three
constructors: none for the first and 2 for the 2nd and the 3rd. Hence we define
P as follows:

P (inln) :=

0
P (inrd) :=2
We can also represent InfTree which was given by

leaf : InfTree
node(N — InfTree) — InfTree

here we have a situation where P can be infinite. That is we define

S:=2
Pfalse :=0
Ptrue:=N

What about dependent datatypes like Fin and Vec? With some more work
and excessive use of equality they can be done as well. What about coinductive
types like streams? It turns out that they can be represented as well by viewing
same as a limit of approximations of trees of finite depth. There are some issues
here which have to do with the nature of equality which I will cover in the next
section.

Ok, we can represent datatypes using W-types. What is the point? The
point is that we now only need to specify one datatype namely the W-type.
To be precise W is a parametrised type because S and P are really parameters
hence

W . 11S : Type.(S — Type) — Type

it comes with an eliminator (to make it readable lets fix S and P again) that is
W=WwWSP.
elim“ : TIM W — Type.

(s : SIf:Ps— W(llp: Ps.A(fp) — W (nodes f)))

—Mw: W.As

elim" M m (node s f) := m s f (Ap.elim" M m (f p))

Ok, this is ugly enough but since we can reduce all other datatypes to this one,
this is the only eliminator we have to write down to specify what we mean by
dependent primitive recursion for any datatype.

84 CHAPTER 4. DEPENDENT TYPES

Ok, this is not completely true: we also need to specify eliminators some
more basic types: the finite types 0, 1,2, X-types and the mysterious equality
type which I have saved for the next section. This way Type Theory can be
turned into a closed system like set theory and everything we need can be derived
which maybe quite hard work. Hopefully we can rely on the help of computers
here. ©

4.7 The mystery of equality

I am keeping the equality type to the end because there are some issues with it
which is a good preparation for the next chapter. The basic idea is quite easy:
for any type A : Type equality is a dependent type — =4 —: A — A — Type
whose only constructor is reflexivity:

refl : II,.4A — A — Type

After having seen many examples of dependent primitive recursion it shouldn’t
be hard to derive the eliminator for this type. Even though the word recursion
is certainly misapplied here because there is no recursion going on. Let’s go
through the motions: How do we define a function out of an equality type? As
before for Fin we also have to abstract over the indices, that is the question is
how do we define a function

fillpyallp:z =y Mxyp

where M : Il; .4z = y — Type. Since the only constructor is equality we only
need to prescribe what is the result for

foo (reflz =7

and ? has the type M za (reflz). That is to define f we need
m: Iz : AM za(refl 2)

and given m we define

foo (reflz =m

We can condense this into one of the horrible eliminators
elim™ : TIM : (Il y.az =y — Type).

(TTp A My, refl,) — Iy yallp:x=yMazxyp

elim= M mrefl, :=m,

6 Just in case my clever colleagues read this and shake their heads: This is not completely
true if we want to get the same definitional equalities as we get from the naive definition. I
will discuss this particular can of worms in the final chapter.

