Chapter 1

What this book is about

The Tao Te Ching is a classical book by Laotse which is about the way humans
should follow in their life. I am borrowing the word Tao which means the way
to talk about an alternative way to do Mathematics, namely using Intuitionistic
Type Theory instead of Classical Set Theory.

Most Mathematicians nowadays accept Set Theory as the foundations of
Mathematics. To be precise most Mathematicians don’t really care very much
about foundations, they just do Mathematics using sets because that’s what
they were taught do it. And it works. To a degree.

I am not a Mathematician but my education took place in Computer Sci-
ence. Hence maybe I lack some of the skills of a good Mathematician but also
some of the biases which go along with it. Having said this since I work in
theoretical Computer Science most people would describe the papers I publish
as Mathematics.

What is Set Theory? I will give a more detailed historic overview in chapter
2. Mathematicians organize mathematical objects in sets like the set of natural
numbers N which are the numbers you use for counting N = {0,1,2,...} !
Another example is the set of real numbers R which corresponds to the points
on a line and for example the number 7 = 3.1415... is a real number, we write
meR.

One of the nice things with set theory is the fact that you only need sets to
construct mathematical objects. How does this work? We start with the empty
set which can be written as {} and now we can construct a new set, namely the
set containing the empty set {{}}. Now we have these two different sets we can
put them together {{},{{}}} to make a new set. Yes if you think of russian
dolls that’s the right idea. I don’t want to write it down but continuing with
this russian doll idea we can combine all the sets we have made to make a set
with 3 elements and so on and thus we can create natural numbers as sets.

Ok this is the basic idea. They are some precise rules how to construct sets
and how to reason about them. This is called Zermelo-Fraenkel set theory and

IThat I start with 0 shows that I am a computer scientist. Real mathematicians start with
1.



2 CHAPTER 1. WHAT THIS BOOK IS ABOUT

it is a list of 8 axioms which are written in the language of predicate logic and
which only use the symbol € in addition to the basic language of predicate logic.
Actually there are a few extra axioms which are usually assumed such as the
axiom of choice or you can also omit some axioms and work in a weaker system.
So there is actually more than one set theory. I will explain the axioms and
predicate logic in more detail in the next chapter.

Now what is Type Theory and how is it different? First of all when I say Type
Theory with capital letters I mean an alternative foundation of Mathematics
which is often associated with the Swedish Mathematician and Philosopher Per
Martin-Lof. T say associated because while it is fair to say that he started it
there are now lots of ideas in contemporary Type Theory which go beyond his
original conception. People also use the term type theory (without capitals)
as the theory of types in programming languages and there are some university
courses with this title. The uncaptialized type theory is related to the capitalized
Type Theory but it is not the same topic.

The basic idea of Type Theory is to organize mathematical objects into types
instead of sets. So for example we have a type of natural numbers N and a type
of real numbers R and to say that 7 is a real number we write 7 : R.

Ok, I see what you are thinking: I have just replaced the word set by type
and the symbol € by : and that’s all. Not so. In Type Theory we can only make
objects of a certain type, that is the type is first and then we can construct the
element. In Set Theory we think of all the objects (which are in turn sets) are
there already and then we can organize them into different sets. Hence in set
theory you can just have an arbitrary object x (which is a set again because
everything is a set) and then you can ask yourself wether this object is is a
natural number x € N or a real number z € R. In Type Theory if I have z : N
then this object is a natural number by birth and we can even ask the question
wether it is a real number. We say that = : N is a judgement while z € N is a
proposition.

That sounds rather restrictive and so it is. Type Theory is a more disciplined
approach to Mathematics but this pays off in the end. There are things we
cannot do in Type Theory and we are better off because of it because Type
Theory allows us to view mathematical objects more abstractly. What do I
mean? In set theory there is actually more than one way to define natural
numbers in some of them the empty set is include {} € N in others it is not, we
write {} ¢ N to express that the empty set is not a natural number. However,
this question hasn’t much to do with natural numbers it is about our encoding of
natural numbers. And because we can talk about the details of the encoding we
cannot just replace one definition of natural numbers with another equivalent
one because somewhere in our reasoning we may have used properties of the
encoding. In Computer Science we would say there is a lack of information
hiding.

In Type Theory we cannot ask these silly questions we cannot talk about the
encoding of natural numbers. Either something is a natural number or it isn’t.
The empty type certainly isn’t a natural number it is a type! We may compare
this difference to static and dynamic typing in programming languages. For



example Python is a dynamically typed language, we get an object and it may
be a number. We can query this at runtime but we can also have runtime errors
because we assume something is a number but then it turned out to be a string.
So in a way Python is a bit like set theory. In contrast in a statically typed
language like Haskell we know at compile time what is the type of an object. As
a consequence we cannot have runtime errors caused by trying to add a number
and a string. So Haskell is more like Type Theory.

In Programming the statically typed approach pays off because we can catch
more errors earlier. In Mathematics we have to prove things so we shouldn’t
make errors. However, the advantage of Type Theory is that we cannot talk
about the encoding of objects and as a consequence we can replace one type
by another which is equivalent. 1 am going to make this precise later but in
the moment you can think of equivalent as meaning that there is a one-to-one
correspondence of objects in two types. This is the essence of the univalence
axiom which was introduced by Vladimir Voevodsky and which basically says
that two types which are equivalent are actually equal. You couldn’t do this in
set theory because in set theory we can actually distinguish equivalent sets by
talking about details of their encodings (e.g. wether the empty set is a natural
number).

It is interesting that Voevodsky came up with the univalence axiom by think-
ing about an abstract version of geometry which is called Homotopy Theory. To
oversimplify things: Homotopy Theory classifies geometric objects by the paths
you can follow on their surface. That is a ball is different from a bicycle tube
because on the tube you can walk from one point to itself by going through
around the inside. You can also walk around a ball but you can transform this
path by many little steps into the empty path i.e.” where you just stand still.
Hence upto deformation of paths there is only one path on a ball. The bicycle
tube is different because we cannot deform every path to the empty path be-
cause we are only allowed to deform paths on the surface we are not allowed to
go through the middle.

Hence this new version of Type Theory is often called Homotopy Type Theory
and there is a nice book (ok I was involved in writing it) about this topic but
this requires a bit of mathematical background [?].

There is another important difference between Type Theory and Set Theory
which T would like to explain. As I said above set theory uses predicate logic
which codifies the rules of reasoning. It also introduces a formalism how to write
logical statements (these are called propositions), e.g. using A for and and V to
say for all. The rules are justified by an explanation when a proposition is true.
Now this makes sense if we talk about the real world because hopefully we can
just check wether a statement is true. Ok, this can also be difficult but this is a
different story. However, the sets do not exist in the real world they only exist
in our heads. Now what does it really mean for a statement about sets to be
true?

At this point we are getting philosophical and refer to the greek philosopher
Plato. Plato had the view that the world of ideas is as real as the real world
and that the things we see are mere shadows of ideal objects. That is a real



4 CHAPTER 1. WHAT THIS BOOK IS ABOUT

table is just a shadow of the ideal table. In this Platonic universe mathematical
objects like sets are real and hence we can talk about.

Ok that doesn’t sound very convincing. Maybe the reason is that I am not
a Platonist. But Mathematicians would say that it just makes sense to pretend
that we can talk about mathematical objects as if the were real and who cares
about philosophy anyway.

The nice thing about Type Theory is that we don’t need to refer to any
Platonic universe or even to have the notion of truth precise. Instead of truth
we should rather think of evidence. We can explain what is the evidence for a
proposition by associating a type with every proposition which is the type of
evidence for this proposition. This is called the proposition-as-types principle
or the Curry-Howard-Equivalence.

How does this work? If A and B are propositions and we know what is
evidence for A and for B but what is evidence for A A B that is A and B?
We say evidence for A A B is a pair (a,b) where a : A and b : B. We can also
write AA B = A x B where A X B is the type of pairs or tuples made from A
and B. An interesting example is the explanation of if-then that is If A then
B which we write as A = B. Now evidence for'A = B is a function from A to
B. T write the type of functions from A to B as A — B and we can now say
A = B = A — B that is the reasons that A imples B are the functions from
the reasons for A to the reaosns for B.

I should say what I mean by a function. Unlike in set theory functions in
Type Theory are a primitive concept. The functions in Type Theory are the
same as functions in functional programming languages like Haskell but with
the proviso that they have to terminate, that is they can’t run forever. And
indeed Type Theory is a programming language and you can execute your type-
theoretic programs. This is not true in Set Theory where there a things which
are called functions which you cannot implement on a computer. I always say
that this is a bad name because a function which doesn’t function shouldn’t be
called a function.

The logic of evidence we get from Type Theory is different from the logic of
truth we get in predicate logic. The culprit is the principle of excluded middle
which says that every proposition is either true or false. We write AV —~A where
V means or and — means not and A is just any proposition. We can prove this
by constructing a truth table and going through the possibilities that A is either
true or false. In the evidence based semantics of Type Theory we cannot justify
this principle because it basically says that for any proposition we have either
to give evidence that is true or we have to give evidence that it is not true. But
we cannot in general do this because there are certainly propositions of which
we don’t know wether it is true or false. Actually it is even worse: because
propositions are given by types and we cannot look into a type any proof of
the principle of excluded middle would either to have to prove or disprove all
propositions, which makes no sense at all.

The logic we get is called Intuitionistic Logic for which the Dutch Mathe-
matician Brouwer was famous. It is called intuitionistic because the basic idea
are based on intuitive justification and not the platonic universe. Hence there



is also a version of predicate logic which does not include the principle of the
excluded middle and this is called Intuitionistic Predicate Logic, while the one
with excluded middle is called Classical Predicate Logic. 1 think Type Theory is
much nicer because we don’t need any predicate logic on top. We just have to
explain the translation of propositions to types (which is straightforward) and
then there is no need for a logical system on top. I think this is really cool:
Type Theory is a programming language and you get logic for free.

The restriction to intuitionistic logic is not only nice philosophically (and we
can always be a bit blaze about philosophy) but it is also important practically.
This follows from what I said already: because our language is a programming
langauge we can compute with it. So if we prove that there is a number with
some property Jx : N.P(z) then we can actually compute the number from
the proof. That is not the case in classical logic because we cannot execute our
functions. Also in an intuitionistic system you can make some useful differences:
while the principle of excluded middle doesn’t always hold it may hold in some
particular case. For example we may have a property P of the natural numbers
so that for each instance we can prove the particular instance of the excluded
middle. We write Va : N.P(z) V =P(x) that is for each natural number either
P holds or it doesn’t. In Computer Science terms this means that the property
P is decidable. As we know thanks to Turing not every property is decidable.
Many are, so for example we can decide wether a number is a prime number that
is greater than 1 and only divisible by 1 and itself. But we cannot decide that
if we view the number as the bit pattern of a program on a computer wether
this program will stop or run forever. Hence in an intuitionistic system we can
express this and other properties useful in Computer Science internally.

Ok, I realize that I am trying to sell Type Theory here. Not everybody
would agree and we can have long discussions about it. Also for the clarity of
presentations I have avoided to-hum and err too much but as we know there
are two sides to everything. Mathematicians are no fools and many of them
think that using intuitionistic logic would complicate things too much and that
classical reasoning is easier. I don’t agree but I leave it to them to make their
case.



