Chapter 4

Dependent types

Now we come to the heart of the matter: dependent types. This was the main
insight of Per Martin-Lof when he started to develop Type Theory in 1972. Per
knew about the propositions as type equivalence or Curry-Howard equivalence
and indeed just before he published his first paper on Type Theory he had visited
Howard in Chicago. This type-theoretic interpretation of logic turned out to be
more than just a curiosity, it is possible to do all mathematical constructions in
Type Theory once one adds this essential ingredient: dependent types.

4.1 The power of Il and X

The basic idea of dependent types is quite easy: we have seen lists in the last
chapter as sequences of arbitrary length. Now we want to refine this and in-
stead consider sequences of a fixed length: we write Vec An for the type of
sequence of elements of the type A of length n : N which we call vectors. So
for example 1,2, 3] : VecN3. This is a dependent type because Vec An depends
on an a natural number n : N. Once we have dependent types we need to look
at dependent versions of function types and products: What is the type of a
function that has a natural number n : N as the input and which produces a
vector of numbers of this length as output? We write IIn : N.VecNn, the II is
the capital greek letter pi-and we call them II-types. An example is the function
zeros : IIn : N.Vec Nn which produces a sequence of zeros of a given length, e.g.
zeros 3 = [0,0,0]. Here is the primitive recursive definition of zeros:

zeros 0 := ||

zeros (1 +n) :=0:: (zerosn)

Another example would be the type of pairs where the first component is a
natural number n : N and the second component is a vector of natural numbers
of of that length v : VecNn. This we express as ¥n : N.VecNn, the ¥ is the
capital greek letter sigma and such a type is called a X-type. For example
[1,2,3] : ¥n : N.VecNn. It is interesting to notice that ¥n : N.Vec An is

57

58 CHAPTER 4. DEPENDENT TYPES

actually equivalent to List A because we can represent sequences of arbitrary
length.

While dependent types were originally invented for mathematical construc-
tions and they enable us to extend the propositions as types equivalence to
predicate logic, they are also extremely useful in programming. As an example
consider the problem of accessing an arbitrary element of a sequence that is
given [: List A and a number n : N we want to extract the nth element of the
list nthin, e.g. nth[l,2,3]2 = 3 (we start counting at 0). I hope that you
immediately realize that there is a problem because it could be that n is out of
range as in nth [1, 2, 3] 3, moreover it could be that A is empty hence we cannot
return a default element which would be bad programming style anyway. As
before for the predecessor we have to adjust the type of nth to allow for an
error:

nth:N - ListA—1+A4

The idea is that nth[1,2,3]2 = inr3 while nth[l,2,3]3 = inr() indicating a
runtime error. Here is the definition of nth:

nth{]n := inl ()
nth(a::1)0:=inra
nth (a 1) (1+n) :=nthin

I leave it to the concerned reader to translate this program into one only using
fold and iter.

The introduction of the explicit runtime-error may appear invonvenient but
using a well-known technique this can be hidden - I already mentioned Haskell’s
notation for monadic programs which can be applied in this case. However,
we may have a carefully constructed program which we know will only use
nth safely. - We still have to handle the impossible error at some point the
programmer will write a comment impossible at this bit of code and maybe
interrupt the excution .assuming that this will never happen. However, if she
made a mistake very bad things can happen form crashing planes to exploding
nuclear power stations.

Dependent types offer a more satisfying solution to this problem: we use a
dependent type Finn where n : N, which contains exactly n-elements, which we
write 0,1,...,7n — 1 : Finn. Now we can give a more precise type

nth : II,.xVecAn — Finn — A

The need for an error disappears because the elements of Finn correspond
exactly to the positions in Vec An. Before examining the construction of the
dependently typed nth in detail I need to explain some notational conventions:
I have put the n : N in II,,.y . . . in subscript because it can be inferred from the
context and I will usually not write it. That is I will just write nth[1,2,3]2 as I
orginally intended which is short for nths [1,2,3]2, where [1,2,3] : VecN3 and
2 : Fin 3. If I want to make a hidden argument explicit I write at as a subscript

4.1. THE POWER OF II AND % 59

as in nths. I do this to avoid clutter wich very quickly makes dependently typed
programs unreadable. Note that there is no problem with nth [1,2, 3] 3 because
it cannot be well typed. Either we choose nths [1,2, 3] 3 which is not well typed
because 3 is not an element of Fin3 or nthy [1,2,3]3 which is not well typed
because [1,2, 3] is not an element of Vec N4.

How do we define the dependently typed nth? Let’s start with Fin: as we
have constructed N from 0 and suc we can only construct Fin this way using

0:1II,.nFinl 4+ n
suc : IT,,,yFinn — Fin (1 +n)

Maybe the following table helps to understand the definition of Fin:

n | Finn

0

1| 0g

2 01, Sucqy 00

3 | 02, suce 01, sucs (sucy Op)

That is Fin (1 + n) constains a new element 0,, and all the elements i : Finn
with a suc,, in front of them : suc, i. But this is exactly what the types of the
constructor express, isn’t it?

So far I have relied on an intuitive understanding of Vec but we can do better
and play a similar game as we have just played with changing N into Fin be
coming up with dependent types for the constructors 0 and suc. We can do the
same with [] and — :: —‘and declare:

[]: VecAO
—u—:II,,NA > VecAn — Vec A(1+n)

As an example we can construct 1::92::9 39 [] : Vec A3.
We now have all the ingredients in place to define the dependently typed

nth : IT,.xVecAn — Finn — A

nth(a::v)0:=a
nth (a::v) (1+n) :=nthon
We haven'’t given a definition for nthy [] because this case is impossible - there

is no element of Fin0. In an actual implementation of Type Theory like Agda
this is explicitly indicated by writing

nth [] ()

I am going to introduce the dependent version of fold later and then we will
revisit this definition to see that I am not cheating and we can actually construct
nth using dependent primitive recursion.

60 CHAPTER 4. DEPENDENT TYPES

The idea behind definitions like nth is that we can avoid run-time errors by
introducing more precise types for our programs. Thus replacing the simply
typed nth which used the error monad with the dependently typed one enables
us to guarantee that there is no error when accessing a list statically. However,
this benefit doesn’t come for free: in general we have to work harder to construct
a dependently typed program.

The name of this section is inspired by a nice paper by Wouter Swierstra and
Nicolas Oury [?] where they give some interesting programming applications of
dependent types. !

4.2 Type Arithmetic

Function types are a special case of II-types and cartesian products are a special
case of X-types. To be be precise, given types A, B we have

A— B=Ilx: AB
AxB=Yx:ADB

Why do we use II and %7 In' Mathematics ¥ is used for sums. For example the

sum of the numbers from 1 until 5 we can write as £2_; 4 which just stands for

1+243+44+5=15

IT is used for products, for example the product of the numbers from 1 unil 5
(that is 5!, the number of ways to place 5 people on 5 chairs) can be written as
I2_, i which just stands for

1x2x3x4x5=120

In the previous chapter we have already observed that for finite sets the type-
theoretic operations coincide with the arithmetical ones, we can express this
more succinctly use Fin : N — Type:

Finm + Finn = Fin (m + n)

Finm x Finn = Fin (m x n)

The = here stands for equivalence of types, that means here having the same
number of elements. This notation is actually justified in Homotopy Type The-
ory where equality of types is equivalence - we will discuss this in more detail
in the next chapter.

This can be extended to function types using exponentation:

Finm — Finn = Fin (n™)

T am not impartial: Wouter was my PhD student, and Nicolas was a Marie-Curie fellow
in my group when they wrote this paper.

4.2. TYPE ARITHMETIC 61

For example how many functions of type Fin3 — Fin4 are there? For each of
the 3 inputs we have a choice of 4 answers, hence there are 4 x 4 x 4 = 4% = 64.
In Mathematics people often use exponetial notation to write function types,
that is instead of N — Bool they write Bool".

This analogy extends to IT and ¥. We can translate the expression X9, i
into a type

Y4 : Fin4.Fin (14 1)

Hang on this doesn’t type check because Fin expects a natural number but
1+ : Fin4. However, there is a function fin2nat : Il,,.xFinn — N which maps
every element of a finite type to a corresponding natural number. Hence the
correct version is

¥ : Fin4.Fin (fin2nat (1 + 1))

These coercions are very common and I often prefer not to write them. 2

As the arithmetical ¥ corresponds to iterated addition, the type-theoretic X
corresponds to iterated coproduct

i : Fin4.Fin (1 + 1)
=Finl + (Fin2 + (Fin3 + (Fin4 + (Fin 5))))
=Fin1b5

Here I write = instead of = because this is not the definition of X. This seems to
be add odds with my explanation of ¥ as the type of dependent pairs, namely
an element of i : Fin4.Fin (1 + ¢) is of the form (4, j) where ¢ : Fin10 and
J : Fin (i +1). Luckily this matches the iterated sum interpretation because the
i selects the summand and the j the element of the summand. So for example
(2,1) is translated to inr, (inr (inl 1))).

The same analogy applies to II: As the arithmetical II corresponds to iter-
ated multiplication, the type-theoretic II corresponds to iterated products

I : Fin4.Fin (1 + %)
=Finl x (Fin2 x (Fin3 x (Fin4 x (Fin5))))
= Fin120

And again this fits with the view of II-types as dependent functions, applying
a function f : ITi : Fin4.Fin (1 + ¢) to an input 2 : Fin4 leading to f2 : Fin3
correspnds to applying as many second projections to the nested tuple view of

f, e mo (m (m f)).
We can recover the binary products and coproducts from IT and ¥ by using
Bool as indexing type:
A+ B =Xb: Bool.if bthen Aelse B
A x B =1Ib: Bool.if b then Aelse B

2This sort of convention is supported in Coq using canonical structures.

62 CHAPTER 4. DEPENDENT TYPES

Did you notice that x actually appears twice: we can either view A X B as
a non-dependent X-type (¥z : B.B) or as a Bool-indixed II-type. This dual
nature of products indeed leads to slightly different approaches to products:
either based on tupling or based on projections.

To summarize these observations we can say that we can classify the operaors
in 2 different ways: either along depdnent / non-dpendent or along binary or
iterated:

non-dep. | dep. binary | iterated
X b + by
— 11 X 11

This can lead to some linguistic confusions: what is a dependent product
type? Hence I prefer just to say II-type and X-type.

4.3 One Universe is not enough

So far we have avoided to consider types as explicit objects but instead they
were part of our prose. Remember, I was saying: given a type A we define
the type of lists List A. But what is List if not a function on types, that is
List : Type — Type. Here we introduce Type as a type of types and this
sort of thing is called a universe in Type Theory. So for example N : Type
but also 3 : N hence N can appear on either'side of the colon. A universe is a
type whose elements are types again. This also works for Fin : N — Type and
Vec : N — Type — Type. We call Fin and Vec families of types or dependent
types and‘we should also call List a dependent type but the terminology is a bit
vague here and some people would call it a type indexed type.

The reason is that functional programming languages support types like
List but not properly dependent types like Fin or Vec. This has mainly to do
with pragmatic reasons, namely that programming language implementers don’t
want to evaluate programs at compile time but they would have to do check
that applying a function f : Fin7 — N to i : Fin (3+4) as in f i is well typed. In
this case this is easy and just involves checking that 7 = 3 4+ 4 but there are no
limits what functions we could use here. In the case of a language like Haskell
this could even involve a function that loops which would send the compiler
into a loop. However, implementations of Type Theory like Agda or Coq aren’t
really so much better, at least from a pragmatic point of view, since we may
use the Ackermann function here which may mean that while the function will
eventually terminate this may only happen after the heat death of the universe.

The obvious question is what is the type of Type? Is it Type : Type. Hang
on wasn’t this the sort of thing where Frege got in trouble’? Does Russell’s
paradox applies here? The type of all type which does not contain itself? Not
immediately because : isn’t a proposition hence we cannot play this sort of trick
here. Maybe this was what Per Martin-Lof was thinking when he wrote his
first paper about Type Theory which did include Type : Type. This time it

