3.2. PRODUCTS WITHOUT MULTIPLICATION 29

I am not saying that g o f is the same as g o f, first of all this doesn’t type-
check because if g : B — C and f: A — C with all three types being different
then only go f : A — C makes sense but go f doesn’t. For this equality to make
sense we need to assume that f,g : A — A and in this case we can compare
fogand go f because both have the type A — A. However, it is easy to find
a counterexample: let f: N —->Nbe fr=z+2andg: N—-Nbegr=2xx
then fog=Azr.f(gz) = x.(2xz)+2 whilego f=Az.g(fz) =2 x (x+2).
These functions are different, since for example (fog)1 =4 while (go f)1 =6.

A structure satisfying the three laws foid = f,ido f = f and fo(goh) =
(f og)oh is called a category. Category theory grew out of very abstract
algebra and was established since the 1940ies by Saunders MacLane and others.
There is a very good fit between category theory and Type Theory but they
have different purposes. Type theory is based on some intuitive insight what
laws should hold, while category theory has some very effective mechanisms to
classify laws and support abstract reasoning.

3.2 Products without multiplication

Products in simple type theory are very easy, given a : A and b : B we can
form (a,b) : A x B. How do we construct a function out of a product, that is
f:Ax B — C? We just need to say what it does on tuples, e.g. we can define
the alternative version of

plus: Nx N — N
by defining
plus(z,y) :=x+y

This induces a definitional equality plus(3,4) := 3 + 4.

We can define two generic functions, which are called projections to extract
the components of a tuple: 79 : AX B — A and m; : A x B — B which are
defined:

xT

WO(may) :
7T1(.’L',y) =Y

Using only projection there is a different way to define plus:

plus p := (mo p) + (71 p)

Indeed all functions on x can be defined using only projections. Hence the
defining equations for the projections are the f-equality for products.

Given a tuple p : A x B with p := (a,b) what happens if we take it’s
projections and then put it back together? That is (7o p, 71 p) : A x B. Exactly
we end up where we started (mgp, ™1 p) = (a,b). Generalising this to any term
gives us the n-rule for products:

(mop,mp) =p

30 CHAPTER 3. SIMPLE TYPES

As for functions you may wonder why we add this law because can’t we derive
it. Indeed if p is of the form (a,b) (or equal = to it) then it follows from the -
rule. The 7 rule extends this to expressions which are not of this form, e.g. the
identity function on a products id : A x B — A x B with Az.z is judgementally
equal to \x.(mp z, 71).

I have now presented two versions of plus, one had the type N x N — N and
the other N - N — N. In functional programming we prefer the 2nd version,
which is called a curried function. Indeed, we can derive some generic operations
to curry and uncurry a function and hence to move between the two ways to
represent functions with two arguments: A x B — C and A - B — C. We can
define two operations which translate between the two representations:

curry : (AxB—C)— (A—B—C)
uncurry : (A — B = C) - (Ax B—C)

They are not hard to define:

curry f = Az \y.f (z,y)
uncurry g := Az.g (7o 2)) (71 2)

What happens if we curry and then uncurry? If we just expand the definitions
of curry and uncurry in !:

uncurry (curry f)

we get

Nz (e M f (3y)) (mo2) (Ri2)

and we can use the g-law for functions to reduce this to
Az.f (mo 2,1 2)

now we have a wonderful opportunity to use the n-law for products to obtain
Az.fz and by the n-law for functions this is judgementally equal to f - hence
we get back to where we started.

Vice versa what happes if we uncurry and then curry? Expanding

curry (uncurry g)
we obtain
Az Ay. (Az.g (mo 2)) (71 2)) (2, y)

as before we use the g-rule for functions to reduce this to

Az Ny.g (mo (z,y))) (71 (z,y)))

L Actually we apply the -rule for functions

3.3. COPRODUCTS : PRODUCTS IN THE MIRROR 31

and now applying the definition of the projections, that is the S-law for products
we can simplify this to Ax.\y.g x y and now after applying the n-law for functions
twice we are left with g, hence again where we started.

We say that the operations curry and uncurry are inverse to each other. After
all this shouldn’t come as a surprise because I was saying that the two repre-
sentations of functions with two arguments are equivalent and this equivalence
is witnessed by these two inverse operations between the two representations.
In the language of category this equivalence is used to express the relationship
between x and —.

3.3 Coproducts : Products in the mirror

So what is the mirror image of products? They are called coproducts and the
co- is the categorical terminology for mirror. Given types A and B we construct
a new type A + B whose elements are inla : A+ B for a : A and intb: A+ B
for b : B. These operations are called injections, inl stands for inject left and
inr for inject right. In set-theory this operation is called disjoint union and it
is defined using the U operation, that is

z+y={0} xzU{l} xy

assuming now that x,y are sets and using the representations of 0,1, X intro-
duced in the previous section.

+ is different from U in that it labels the arguments and hence makes them
disjoint. To see the difference, consider the type of booleans with true, false :
Bool corresponding to the set Bool = {true, false}. Now in set theory Bool U
Bool = Bool since multiplicity of elements doesn’t matter. On the other hand
in Type Theory Bool 4+ Bool hasfour elements, namely

inl false, inl trueyinr false, inr true : Bool 4+ Bool

It should also be no surprise that this type has exactly 4 = 2+ 2 elements, since
the coproduct of two finite types has the sum of numer of elements of the two
types. Hence the use of the +-symbol, using the same analogy as for x.

+ is a sensible operation in Type Theory while U isn’t. U exposes the
internal encoding used, e.g consider N U Bool in set theory: if we represent
Bool = {0,1} then N U Bool C N. However, if we use a different encoding,
lets say Bool = {(0,0),(1,1)} then this is not the case. This is bad because
it exposes the internal implementation of Bool, and this hinders abstraction.
On the other hand there is not problem with +, N + Bool is always the same
type upto equivalence, independent of the choice of representation of Bool and
N. This is the basic intuition behind the univalence principle which will discuss
later.

To summarize: U is not a type-theoretic operation because it is too inten-
sional. On the other hand + is an extensional operation but it is not defined via
U as in set theory. Hence I think that the name disjoint union is misleading and
I prefer the term coproduct which expresses the categorical duality to products.

32 CHAPTER 3. SIMPLE TYPES

How to define a function out of a coproduct? As an example consider f :
Nat 4+ Nat — Nat which is defined by saying how it behaves for left and how for
right injections:
f(@nln):=2xn
f(inrn):=2xn+1
This function maps the left injections to the even numbers and the right injec-
tions to the odd numbers. Indeed it is part of an equivalence between N + N
and N but we don’t yet have the means to express let alone prove it.

We can also devise a generic operations to define functions out of coproducts
which we call case because it performs a form of case analysis. Given types
A, B,C we define caseg pc : (A—C)— (B—C)— (A+B— C) by
case f g (inla) := fa
case f g (inrd) :=gb

As an example we could have defined the function f above using case:
f:=case(An.2 xn) (An.2 x n+ 1)

The defining equations for case are the S-laws for coproducts. What about the
n-rule? We may think that

caseinlinrz =z

is enough but it turns out that thisisn’t strong enough to prove many equalities
on coproducts. As a example consider swap : A+ B — B + A:

swap (inla) :=inra

swap (inr b) := inlb
Now we would like to show that swapping twice doesn’t do anything:
swap (swapz) =

However, the g and n-rules for products are not strong enough to do this. It
is possible to add additional equations to fix this and we have shown that the
resulting theory is decidable, that is can be checked by a computer, but this
wasn’t so easy. Even worse the algorithm is quite inefficient and not really
useful in practice.

In what sense are coproducts the mirror image of products? From the per-
spective of Category Theory products are characterized by an equivalence of
(C — A) x (C — B) and C — A x B given by the following functions:

pair: ((C - A)x (C—-B))-C —+AxB
pair fge = (fe,ge)
unpair : (C - A x B) —» (C — A) x (C — B))
unpair b := (Ae.mg (he),m (he))

3.3. COPRODUCTS : PRODUCTS IN THE MIRROR 33

Just using the 8 and n-laws for products and functions we can show that
these two functions re inverse to each other, i.e. unpair (pairz) = z and
pair (unpair z) = z).

Now for coproducts we have another equivalence which can be obtained by
turning all the arrows around. That is (A - C) x (B —» C) and A+ B — C
are equivalent. From left to right this is just a curried version of case and other
one uncase : (A+ B — C) — (A — C) x (B — C) which is defined using the
injections:

uncase f := (Aa.f (inla), f (Ab.inr b))

We can show that case (uncase x) = z but the other equality uncase (casez) = &
corresponds exactly to the strong theory which we have discussed previously.
However, once we introduce the equality type we can show that this equality
holds upto provable equality case (uncasex) = x which is sufficient. Indeed as
soon as we move on to natural numbers in the next section the strong theory is
undecidable, i.e. it cannot be implemented on a computer.

So, indeed the mirror we are using is a bit broken. If we want to be prin-
cipled we really should reject all n-laws. The n-laws are not really definitional
equalities, they are extensional equalities which we can implement on a com-
puter. The coproducts are a borderline case which is implementable but not
practically. Hence should we just get rid of all the n-laws. Maybe but they are
actally convenient to havein implementations of Type Theory. We will get back
to this question later.

I had briefly discussed the laws of a monoid, maybe you remember that 1 is
the neutral element for multiplication and 0 is the neural element for addition.
Indeed we have types corresponding to 1 and 0 and they are called unit and
empty type. We have an element of unit () : 1. This notation should remind
you in an empty tuple because 1 is in a way the extreme case of a product. The
empty type has; as the name says, no element. To define a function out of the
empty type like f: 0 — A we have to give no defining equation because this
function will never be applied to an argument. Hence there is no work involved
defining functions out of the empty type.

Getting back to n-laws the n-rule for the empty type has the particular
wierd consequence that any two terms are equal as soon as we can construct
an element of the empty type. This is maybe ok for simple types but it is
impossible to decide (on a computer) wether the empty tye is inhabited as soon
as we have got dependent types. Hence while we could possibly have n-laws for
binary coproduct, we can’t implement them for the 0-ary coproduct that is the
empty type.

Using 1 and + we can define Bool := 1 + 1 with false := inl() and true :=
inr().

34 CHAPTER 3. SIMPLE TYPES

3.4 Propositions as types: propositional logic

In the introduction I said that in Type Theory we explain the meaning of propo-
sitions by assigning to each proposition the type of reasons or proofs that we
accept this proposition. This idea is associated with Haskell Curry (after whom
the programming language Haskell is named) and William A. Howard and hence
is called the Curry-Howard correspondence. We will look at this idea first for
propositional logic which is the part of predicate logic which corresponds to sim-
ple types. That is what we get looking only at A (and), V.(or), = (negation), —
(if-then) and so on but ignoring for the moment predicates and relations and V
(for all) and 3 (exists). Propositional logic is a bit strange while on the one hand
it is simpler than predicate logic on the other hand it is a bit useless because
we can’t say anything interesting in Mathematics just using propositional logic.
Instead we talk about arbitrary propositions similar as I talked about arbitrary
types in the previous sections. Hence while propositional logic is a bit easier
than predicate logic it always is a bit abstract. To overcome this I find it always
useful to think about specific examples from everyday life, like the sun shines
and we go to the zoo and so on but you shouldn’t think that propositional logic
is mainly about everyday reasoning.

What is the type of reasons to believe that the sun shines and we go to
the zoo? We better have reasons to believe both. Writing P, @ for arbitrary
propositions (but think about the two I just gave) we say that the reasons to
believe in P A @) are pairs of reasons that is P x @), we identifying a proposition
with the reasons to believe in it means also that we say PAQ = P x Q. If you say
the sun shines or we go to the zoo you either have a reason to believe in one or
the other proposition and this corresponds to using coproducts: PVQ = P+Q.
I think most interesting is the translation of =: The reason to believe P = @
is a function that transforms reasons for P in reasons for (). Once I have such
afunction and you give me a reason for @ I just apply it and have a reason for
Q. Hence we identify P = Q =P — Q.

How do we translate =P? —P means that there is no reason to believe P,
hence we can translate —P as If P then False, that is =P = P — false. We don’t
really say false to mean impossible in natural language. Hence I suggest to read
P — false as If P then pigs have wings. We translate false with the empty type,
because there is no reason to believe that pigs have wings: false = 0. Imagine
a man asking a woman to marry her and she replies: If I marry you then pigs
have wings. 1 would take this as a no.

There are many possible choices for true because any type with an element
would do. The simplest choice is 1 the type with one element: true = 1.
Finally we translate logical equivalence P < (@ as implications in both directions
PesQQ=(P=Q) N(Q=P).

How can we use this translation to see wether a proposition is a tautology?
For example P A (Q V R) is logically equivalent to (P A Q) V (P A R), this is
similar to the law of distributivity in arithmetic z X (y +2) =z X y + z X 2).

3.4. PROPOSITIONS AS TYPES: PROPOSITIONAL LOGIC 35

true :=1
PANQ=PxQ
false := 0
PVQ:=P+Q

P=Q=P—Q
—-P := P = false
=P—=0
PeQ=P=Q)NQ=Q)
=(P-Q)x(Q—P)

Figure 3.1: Propositions as types for propositional logic

We derive both directions separately:

Ir:PXx(Q@+R)—= (PxQ)+ (PxR)
Ir (z,inly) := inl (z,y)

Ir (x,inr z) := inr (z, 2)

rl1: (Px Q)+ (PXR)— Px(Q+R)
rl (inl(z,y)) := (z,inly)
1l (inr(z, 2)) := (x,inry)

distr: P x (Q +R) (P x Q)+ (P x R)
distr = (Ir, 1)

To avoid repeating formulas in the translation of <, I write P < @ for (P —
Q) x (Q — P).

The reason to accept that PA(QVR) < (PAQ)V(PAR) is a tautology using
propositions as types is quite different from the classical explanation which uses
a truthtable:

P Q R |PANQVR)| (PNQ)V(PAR) | PN(QVR)< (PANQ)V(PAR)
false | false | false false false true
false | false | true false false true
false | true | false false false true
false | true | true false false true
true | false | false false false true
true | false | true true true true
true | true | false true true true
true | true | true true true true

36 CHAPTER 3. SIMPLE TYPES

It is clear that either side is true if P and either @) or R are true. The truthtable
for < is very simple, it is true if both inputs agree., false otherwise. Hence we
always obtain true, no matter what the inputs are: this is the definition of a
tautology.

Here we have two different ways to observe that

PAQVR)& (PAQ)V (PAR)

is a tautology: either by writing a program which shows us that we will believe
it no matter what is the input and the other that it is true no matter what is
the truth of the inputs.

However, this is not always the case. In section 2.4 I showed how in classical
logic connectives can be defined from each other, so for example P A) can be
defined as =(—=PV—=Q). One ingredient was the de Morgan formula ~(PAQ) <
- PV Q). However, in propositions as types only one direction is valid, namely
-PV -Q = —(P A Q) which translates to

demorgan: (P -0+ Q — 0) = (P x Q) = 0)

The idea is to use reasoning by cases on the assumption P — 0+ @ — 0: in
either case we can derive a contradiction if we assume P x). As a program
this looks like this:

demorgan (inl f) (z,y) := fx
demorgan (inr g)(z,y) = gy

However, there is no program for_the other direction ((P x Q) — 0) — (P —
0+ @ — 0). To define such a function we assume as input z : (P x Q) — 0
we need to construct an element of P — 0 4+ Q — 0, in particular we have to
decide wether to use inl or inr. However, there is no information available to
make that choice: all we know is that having both P and @ is inconsistent but
not that one of them is-and then which one?

However, when we draw the truthtable it is clear that -(PAQ) < - PV Q)
is a tautology:

Pl Q |-(PAQ)|-PV-Q|~(PAQ) & -PV-Q

false | false true true true
false | true true true true
true | false true true true
true | true false false true

In this case the propositions as types view and the classical truth based view
diverges. It is interesting to note that other de Morgan formula =(P V Q) &
—P A —Q is valid in propositions as types and in the classical view. The reason
is that both formulas —=(P Vv @) and =P A Q) are negative, that is they contain
no information. hence the problem where we had to make our mind up for the
de Morgan rule =(P A Q) = =P V —Q) doesn’t arise.

3.4. PROPOSITIONS AS TYPES: PROPOSITIONAL LOGIC 37

The difference between the intuitionistic (just a another word for the propo-
sitions as types view) and the classical view can be brought down to a basic
principle: the law of excluded middle which expresses that every proposition is
either true or false, which can be translated to PV —P. The truth table for this
one should be obvious:

P | =P | PV-P
false | true true
true | false true

On the other hand how would we prove P + (P — 0)? Again we have to make
up our mind wether to use inl or inr, but which one? P may in general be a
proposition for which w simply don’t know wether it is true or false. But even
worse: we would expect a uniform solution which doesn’t depend on P and this
means we have to make up our mind in advance wether all propositions are true
or not.

The principle of the excluded middle describes exactly the difference between
classical and intuitionistic logic: once we assume it we can derive all classical
tautologies. Maybe the following question comes to your mind: we cannot prove
P VvV =P maybe we can find a particular proposition) for which we can prove
—(Q VvV —Q)? This turns out is impossible and we can even do better and show
that the negation holds for all propositions =—(PV=P), that is we can show the
that it is for any proposition P it is not the case that the excluded middle doesn’t
hold. This clearly implies that we cannot have a counterexample because if we
had one we can put it together with the proof I am just about to present and
derive a contradiction.

To convince you: applying our translation we need to come up with nnem :
((P+4+ P — 0) = 0) — 0. Let’s do'this step by step: we assume f: (P + P —
0) — 0 and we want to derive an element ?5": 0. The only way to construct
an element of the empty type is by using our assumption 79 = f7; : 0 where
?1: P+ P —0. But now we have to make a choice we have to go left or right.
How can we decide? Going left we would be stuck immediately hence let’s see
what happens if we go right: 71 := inr 75 where 75 : P — 0. Now there is only
one way to implement 75 we introduce a function using A\: 75 := Az.73. Now
73 : 0 — are we running in a circle? But note that we have a new assumption
2 : P which we can use to define 73. Again the only thing we can use is f, that
is 73 := f 74 with 74 : P+ P — 0. We went right last time, this time we go left:
74 :=inl?5 with 75 : P. But this is easy because we can just set 75 := x and
voila, we are done. To summarize:

nnem f := f (inr (Az.f (inlz)))

This proof can be illustrated by the following story which is a slight modification
on one that I have heard from Peter Selinger. The story shows that double
negation is the same as time travel:

Once upon a time there was a poor king who had no gold. At this
time it was unknown wether ipads existed and the King was keen

38 CHAPTER 3. SIMPLE TYPES

to find out. He offered the hand of this daughter to anybody who
could answer this question. Then a magician arrived in the court
who seemed to have an answer: he promised the king that he would
either get him an ipad or a machine that would turn an ipad into
gold. In truth the magician didn’t have an ipad and he certainly
had no gold but he had a time machine. So once the King agreed,
the magician said that he had indeed a machine which turns an
ipad into gold which was the time machine with his friend sitting
inside. Now the King was satisfied and the magician married the
daughter. However, te next day an ipad appeared at court. As
soon as the greedy King put the ipad into the machine, his friend
took it and travelled back in time. Now the magician was able to
fullfil his promise by presenting the ipad and he could still marry
the daughter.

I leave it to you to figure out the relationship between the fairy tale and the
proof of nnem.

There is an alternative to excluded middle when we want to add classical
reasoning to propositions as types. This is based on the double negation operator
we have just encountered: the principle of indirect proof says that to show P
is is enough to show that P cannot be false, that is == P — P Indeed, this is a
very common situation in a classical proof where to prove P you assume —P and
try tp derive a contradiction. =—P — P as not provable using propositions as
types which reflects the intuition that indirect evidence is not as good as direct
evidence. E.g. to know that the key cannot be outside the house is not as good
as actally having it. However, we can derive -——P — P from assuming excluded
middle h P+ P — 0 we assume f : (P — 0) — 0 now to show ? : P we do
case analysis over h: either h = inlx with : P and in this case we are done
with ? = z or we have h = inrg with g : P — 0 and in this case we can derive
f g+ 0 and now using that we can prove everything form false efq : 0 = P we
have ? = efq(f g) To summarize we define em2ip : (P+ P — 0) — (P — 0) —
0) — P as follows

em2ip f h := case (Az.z) (A\g.efq(fg))

This also works the other way around but not if we keep the proposition P
the same. To prove PV =P from indirect proof we use the fact that we have just
shown nnem : =—(—=P V P) for any P and hence we only have to apply indirect
proof for =P V P to derive it. Hence the two principles: excluded middle and
indirect proof are equivalent and both of them enable us to prove all classical
tautologies. However, we don’t really want to assume either of them globally
but sometimes we may be able to prove them in specific instances.

3.5 Counting for dummies

The natural numbers are based on the basic intuition of counting. As a computer
scientist I prefer to start counting with 0 this is also useful as the answer to the

