Chapter 3
Simple types

The set theory in the last chapter was getting quite technical. So let’s go
for something easier, let’s move on to simple types. One important difference
between Set Theory and Type Theory that instead of encoding the constructs
we need in terms of sets they just become basic constructs. As a consequence
Type Theory has more primitive concepts which you may think is not so good.
However, I think that some of the coding tricks in set theory are quite artificial
and actually they are a number of basic constructs which shouldn’t be encoded
in terms of each other.

The first central construction of Type Theory is the function type which we
also write —. I will in general use the same symbols in set theory and type
theory which are based on the same intuitive ideas. The same applies to the
type of natural numbers N, cartesian product X etc. In this chapter we will
look at simple types as opposed to dependent types which have to wait until the
next chapter. This is also historically correct because simple types where first
introduced by Alonzo Church in the 1940ies also with the intention to use it
for foundation of Mathematics but with a slightly different slant then the Type
Theory which we will be looking at. This theory which is also called simply
typed A-calculus is at the base of type systems of typed functional programming
languages, examples are SML, CAML and Haskell.

Before we start to look at the definition of functions and other basic con-
structs I would like to expand on what I have already said in chapter ??. There
is a fundamental difference between 3 € N and 3 : N. The first one is a propo-
sition, that is something we may want to prove, while the 2nd is a judgement
which is something which just holds by looking at it. In Type Theory there is
another important judgement namely definitional equality which we denote =.
Definitional equalities are not something we want to prove but something that
should follow from the definitions, e.g. that 3 + 3 = 6 should follow from the
definition of +. We also have = in Type Theory and it plays a similar role as
= in predicate logic, even though things are going to be a bit more subtle once
we look at Homotopy Type Theory. In any case we won’t introduce = before
we introduce dependent types in the next chapter.

25



26 CHAPTER 3. SIMPLE TYPES

3.1 Functions that function

A function to me is not a set of pairs but a machine where you can put something
in and get something out. And this is an important basic construct irreducible
to anything else. As an example consider the function f : N — N which is
defined as f(x) := z + 2. Note that we use = because this is the definition
of f. Now if we apply the function to an argument like f(3) we can calculate
f(38) =3+ 2 =5. The first step is the interesting one: if we apply a function
to an argument we can compute the answer by replacing the parameter with
the actual argument in the definition of the function. The 2nd step uses the
definition of 4+ which I haven’t given but I thought youknow + already. Actually
I am going to define it explicitly later in this chapter. The equality we obtain
by substituting the parameter in the definition of a function is called S-equality
and it is the core to computing with functions in. Type Theory.

However, functions should be mathematical objects on their own, whereas
here we combine the idea of defining a name f and the idea of a function.
We should be able to separate the two and just write down a function without
assigning it to a name at the same time. This is achieved by the A-notation which
was introduced by Church. The A-notation enables us to write the function
without giving it a name: Az.z+3 : N — N. We can read the previous definition
of f as f(z) := x + 2 as a shorthand for f := Az.x + 2. And the S-rule states
that (A\z.z +2)(3) =3+ 2.

A allows us to define a function with one argument. How can we capture
functions with several arguments like + itself? One approach would be to
introduce cartesian products (which we are going to do soon anyway) and then
consider plus : N x N — N with plus((z,y)) = « + y However, in Type Theory
as in functional programming we adopt a different approach following an idea
of Haskell Curry which is called currying. We define plus : N — (N — N)
as plus := Az.\y.x + y. plus is a function which applied to a natural number
returns a function. That is plus(3) = (A\x.\y.2z + y)(3) = A\y.3 + y, the result is
the function that adds 3. We can further apply this function as in plus(3)(5) =
(M\y3+y)(5) =3+5=38.

There are some notational conventions which I should mention: since we
always use currying to define functions with several parameters we avoid the
proliferation of brackets in the type of a function with several parameters by
reading N = N — N as N — (N — N). Also when we define a function with
several parameters we do not repeat the A but write Az, y.z +y (as we have al-
ready done for V in the previous chapter). Finally, an expression like plus(3)(4)
looks a bit strange and hence to avoid having to write brackets each time when
applying a function we adopt the convention from functional programming and
write function application just as empty space that is plus34. Here another
convention comes into play namely that we don’t have to write this as (plus3) 4
but can omit these brackets. In computer science slang we say the — associates
to the right while application associates to the left. This combination of con-
ventions achieves that when we define curried functions we don’t need to write
brackets in the types and when we apply them we don’t need to write brackets



3.1. FUNCTIONS THAT FUNCTION 27

to group the arguments.

On the other hand it does make sense to consider a function g : (N - N) - N
which is a function that gets a function as input and returns a number. An
example would be ¢ := Ak.(k 2) + (k 3) or we may just write g k := (k2) + (k 3).
So what is g f where f : N — N was defined earlier as fz = z + 2?7 We can
calculate this just using the S-law and our knowledge of +.

gf=(f2)+(f3)
(2+42)+ (2+3)
9

A function like g is called a higher order function because it accepts functions
as input.

The particular names of variables we choose doesn’t really matter, all what
a variable is doing is to create an invisible link between the place where it is
introduced via A and the place where it is used. Thisis echoed by the rule that
functions which only differ in the choice of variable names are considered to be
definitionally equal. That is for example Az.x + 3 = Ay.y + 3 - this is called
a-equality.

When calculating with functions we have to be careful that the link between
the introduction and the use of a variable is not destroyed. Consider again
plus := Az.A\y.x + y and now define h := Ay.plusy. It seems that we can
calculate that plusy = (Az.\y.x + y) y = \y.y + y 'and hence h = A\y.\y.y + y.
This is confusing because one of the ys should refer to the inner and one to the
outer y. Actually there is a convention that a variable always refers to the latest
introduction and hence both ys should refer to the inner y. But this is wrong
because we have destroyed the connection between the introduction of y and
the its use. Indeed, this phenomenon is called variable capture and it has to be
avoided. But then what is (Az.Ay.z + y) y? A way out is to use a-equality to
rename the bound variable before f-reducing (A\x.A\y.x+y)y = (A z.x+2)y =
Az.y + z and hence h = A\y.A\z.y + 2.

Actually you may have observed that the result of reducing h is a-equivalent
to plus. Because all we have done is transformed a function f into Ax.f x which
is just the same function. This rule is often considered to hold in general and
is called n-equality. In the case of the example above n-equality doesn’t tell us
anything new but we ean also apply this to functions which are just variables
as in Af Ax.fx which is n-equal to Af.f. In this case we really need to use 7.
However, we should not call this a definitional equality, if 1 is included we say
it is judgemental equality.

There are many important functions that work for all types - this is called
polymorphism. I think to properly understand polymorphism we need depen-
dent types, hence we will get back to this in the next chapter. However, we can
fake it by just assuming we have some types in prose. Here are two important
functions like this:

the identity function This is a function which just echoes its input. Let A
be a type then we can define idy : A — A as ids := Az.x,



28 CHAPTER 3. SIMPLE TYPES

composition Given types A, B, C' and two functions f : A - Bandg: B — C
we can combine them to form a new function go f : A — C which on an
input a : A first runs f and then g. More precisely we define cmpy g ¢ :
(B=C)—=(A—=C)—= A— Cascmpy pc = A,g9.Av.f(g) but to
improve readability we write cmpy g fgas fog.

You may notice the strange change of direction in when looking at the type of
composition: first comes the function which is run last. The reason for tis is that
already function application is the wrong way around that_is when calculating
f(ga) we first evaluate ga and then feed the result into f, but we write f
before g reading from left to right. The point is that composition just doesn’t
change the order of functions that is (f o g)a = f(ga). If we could reinvent
mathematical notation from scratch we would write the argument before the
function. This is as easy as convincing English people to drive on the right side
instead of the left.

There are some basic equalities governing these two functions: If we compose
any function with the identity function then nothing changes. This is expressed
as foid = f and ido f = f. Actually to be clear these equalities follow from
the 8 and n-laws:

foid=Xax.f (Ayy)x
=X\x.fx
=7

and for the other direction

ido f = Xz(Ay.y) (f )

=X\x.fzr

=f
Another equation tells us that if we compose f with the composition of g and
h then this will give us the same result as composing the composition of f and

g with h, that is f o (goh) = (f o g) o h. This law follows from the S-law. We
show this by showing that both expressions are equal to Az.f (g (hx)):

fol(goh)=Xx.f(M\y.g(hy))x
=Mv.f (g(hz))

and

(fog)oh=Xy.(Az.f(g2)) (9y)
=Mx.f (g (hx))

Note that I am changing the name of variables all the time not just to avid
capture but also to improve readability, because if you see the same variable
twice you may mistakenly assume that the refer to the same thing but as we
have seen this isn’t always the case.



3.2. PRODUCTS WITHOUT MULTIPLICATION 29

I am not saying that g o f is the same as g o f, first of all this doesn’t type-
check because if g : B — C and f: A — C with all three types being different
then only go f : A — C makes sense but go f doesn’t. For this equality to make
sense we need to assume that f,g : A — A and in this case we can compare
fogand go f because both have the type A — A. However, it is easy to find
a counterexample: let f: N —->Nbe fr=z+2andg: N—-Nbegr=2xx
then fog=Azr.f(gz) = x.(2xz)+2 whilego f=Az.g(fz) =2 x (x+2).
These functions are different, since for example (fog)1 =4 while (go f)1 =6.

A structure satisfying the three laws foid = f,ido f = f and fo(goh) =
(f og)oh is called a category. Category theory grew out of very abstract
algebra and was established since the 1940ies by Saunders MacLane and others.
There is a very good fit between category theory and Type Theory but they
have different purposes. Type theory is based on some intuitive insight what
laws should hold, while category theory has some very effective mechanisms to
classify laws and support abstract reasoning.

3.2 Products without multiplication

Products in simple type theory are very easy, given a : A and b : B we can
form (a,b) : A x B. How do we construct a function out of a product, that is
f:Ax B — C? We just need to say what it does on tuples, e.g. we can define
the alternative version of

plus: Nx N — N
by defining
plus(z,y) :=x+y

This induces a definitional equality plus(3,4) := 3 + 4.

We can define two generic functions, which are called projections to extract
the components of a tuple: 79 : AX B — A and m; : A x B — B which are
defined:

xT

WO(may) :
7T1(.’L',y) =Y

Using only projection there is a different way to define plus:

plus p := (mo p) + (71 p)

Indeed all functions on x can be defined using only projections. Hence the
defining equations for the projections are the f-equality for products.

Given a tuple p : A x B with p := (a,b) what happens if we take it’s
projections and then put it back together? That is (7o p, 71 p) : A x B. Exactly
we end up where we started (mgp, ™1 p) = (a,b). Generalising this to any term
gives us the n-rule for products:

(mop,mp) =p



