
DR
AF
T

62 CHAPTER 4. DEPENDENT TYPES

Did you notice that ⇥ actually appears twice: we can either view A ⇥ B as
a non-dependent ⌃-type (⌃x : B.B) or as a Bool-indexed ⇧-type. This dual
nature of products indeed leads to slightly di↵erent approaches to products:
either based on tupling or based on projections.

To summarize these observations we can say that we can classify the op-
erators in 2 di↵erent ways: either along dependent / non-dependent or along
binary or iterated:

non-dep. dep.
⇥ ⌃
! ⇧

binary iterated
+ ⌃
⇥ ⇧

This can lead to some linguistic confusions: what is a dependent product
type? Hence I prefer just to say ⇧-type and ⌃-type.

4.3 One Universe is not enough

So far we have avoided to consider types as explicit objects but instead they
were part of our prose. Remember, I was saying: given a type A we define
the type of lists ListA. But what is List if not a function on types, that is
List : Type ! Type. Here we introduce Type as a type of types and this
sort of thing is called a universe in Type Theory. So for example N : Type

but also 3 : N hence N can appear on either side of the colon. A universe is a
type whose elements are types again. This also works for Fin : N ! Type and
Vec : N ! Type ! Type. We call Fin and Vec families of types or dependent
types and we should also call List a dependent type but the terminology is a bit
vague here and some people would call it a type indexed type.

The reason is that functional programming languages support types like
List but not properly dependent types like Fin or Vec. This has mainly to do
with pragmatic reasons, namely that programming language implementers don’t
want to evaluate programs at compile time but they would have to do check
that applying a function f : Fin 7 ! N to i : Fin (3+4) as in f i is well typed. In
this case this is easy and just involves checking that 7 ⌘ 3 + 4 but there are no
limits what functions we could use here. In the case of a language like Haskell
this could even involve a function that loops which would send the compiler
into a loop. However, implementations of Type Theory like Agda or Coq aren’t
really so much better, at least from a pragmatic point of view, since we may
use the Ackermann function here which may mean that while the function will
eventually terminate this may only happen after the heat death of the universe.

The obvious question is what is the type of Type? Is it Type : Type. Hang
on wasn’t this the sort of thing where Frege got in trouble’? Does Russell’s
paradox applies here? The type of all type which does not contain itself? Not
immediately because : isn’t a proposition hence we cannot play this sort of trick
here. Maybe this was what Per Martin-Löf was thinking when he wrote his
first paper about Type Theory which did include Type : Type. This time it



DR
AF
T

4.3. ONE UNIVERSE IS NOT ENOUGH 63

wasn’t an English philosopher who pointed out the problem but a french one:
Jean-Yves Girard. But then Per Martin-Löf is from Sweden not Germany.

Girard wasn’t interested in dependent types at the time but rather in the
type indexed by type variety. Actually he wasn’t interested in types for pro-
gramming but types for logic. His goal was to prove Takeuti’s conjecture who
was looking for a syntactic proof of the consistency of 2nd order logic, which is
predicate logic extended by extra quantifiers which allow you to quantify over all
propositions. Girard’s approach was to introduce a �-calculus which he called
System F which corresponds to 2nd order logic in the same way as Gentzen’s
System T corresponds to Peano Arithmetic. I should add that the power of 2nd
order logic and hence System F vastly exceeds Peano’s Arithmetic / System T.
By the power of a logic we mean the ability of one logic to eat another one: we
can prove the consistency of Peano’s arithmetic in 2nd order logic but not the
other way around. Hence Takeuti’s conjecture was asking for a relative simple,
i.e. syntactic, proof of the consistency of a very powerful system. I believe
it wasn’t very clear what exactly he meant by this and it is maybe doubtful
wether Girard’s ingenious proof of the strong normalisation of System F fits
this bill. Girard proved that all programs in System F terminate no matter how
you evaluate them, this is called strong normalisation.

The main feature of System F is that we can construct ⇧-types that quantify
over all types as in ⇧X : Type.X ! X. This is the type of the polymorphic
identity function:

I ⌘ �X.�x : X.x : ⇧X : Type.X ! X

The nice feature of the polymorphic identity is that it works for any type, e.g.
I N : N ! N is the identity for natural numbers. It even works for its own type
as in

I (⇧X : Type.X ! X) : (⇧X : Type.X ! X) ! (⇧X : Type.X ! X)

which means that in particular we can apply it to itself:

I (⇧X : Type.X ! X) I : ⇧X : Type.X ! X

I find this rather mind boggling and it also looks dangerous since in the untyped
�-calculus self-apply was the main ingredient of the fixpoint combinator which
enables us to run any program including some which don’t terminate. Hence
it is reassuring to know that strong normalisation holds and that this is indeed
impossible.

There are some interesting games one can play with System F: there is a
clever way to encode the natural numbers which is called Church numerals :

N :⌘ ⇧X.X ! (X ! X) ! X

The idea is that a number is represented by a higher order function that repeats



DR
AF
T

64 CHAPTER 4. DEPENDENT TYPES

another function, e.g. 3 a f ⌘ f (f (f a)). We can represent zero and successor:

0 : N
0 ⌘ �X, a, f.a

suc : N ! N
suc ⌘ �n,X, a, f.f (nX af)

and there also clever ways to encode the standard arithmetic functions:

plus : N ! N ! N
plus : �m,n.�X, a, f.mXf(nXfa)mult : N ! N ! N
mult : �m,n.�X, a, f.mX(nXf)a

pow : N ! N ! N
pow : �m,n.�X, a, f.n(X ! X)(mX)

Unlike our primitive recursive definitions, plus doesn’t use suc, mult doesn’t use
plus and pow doesn’t use mult. Instead we use the power to repeat: plus repeats
the function f first n-times and then m-times, mult repeats the repetition of n,
m-times and pow? I don’t know anybody who understand pow without getting
a headache but it is interesting that this is the first function which exploits the
polymorphic nature of the natural numbers and instantiates the 2nd argument
to a type di↵erent from X.

The idea of System F was so natural that it got reinvented in Computer
Science by John Reynolds who introduced the polymorphic �-calculus only to
find out that Girard had invented basically the same calculus a few years earlier
under the name System F. However, it is certainly Reynolds influence which
lead to the polymorphic �-calculus aka System F to be used as the base of type
systems for many modern programming languages.

Ok, this was a long diversion. What has all this to do with Martin-Löf’s
Type Theory using Type : Type. I am almost there! One generalisation of
System F is to allow not only to use Type but also functions over types, that
is something like

⇧F : (Type ! Type).⇧X.F (F X) ! X

This extension which allows to quantify over functions over types is called Sys-
tem F

! and it is still strongly normalizing. But Girard wondered wether this
level could be polymorphic again, i.e. using System F instead just the simply
typed �-calculus to define functions over types, such as

⇧G : (⇧X : Type.X ! X).⇧X : Type.GX ! X

But here Girard hit a brick wall - this system which he called System U is
not strongly normalising anymore. Girard’s truly ingenious paradox used an
encoding of the Burali-Forti Paradox in System U: the collection of all well-
orders cannot be well-ordered itself.



DR
AF
T

4.3. ONE UNIVERSE IS NOT ENOUGH 65

Now when Girard saw Martin-Löf’s system he quickly realized that this
system is powerful enough to encode System U, and hence it couldn’t be strongly
normalising itself. Even worse it turns out that in a system with Type : Type

every type is inhabited including the empty type. This makes it useless as a
logic because now we can prove everything.

To explain whyType : Type doesn’t work I prefer a construction by Thierry
Coquand [?] who showed that we can encode Russell’s paradox in such a theory
using trees. This is less general than Girard’s paradox because it relies on the
availability of trees and it doesn’t work for System U (at least I am not aware
how it could be adapted to System U). But Girard’s paradox is very technical
and hard to understand intuitively (at least for me).

Thierry’s idea was to use an idea by Peter Aczel and encode the sets of set
theory as trees. That is he defined a type Tree : Type with a constructor

mkTree : ⇧I : Type(I ! Tree) ! Tree

The idea is that mkTree works like the curly brackets from set theory. That is
if we have any collection of trees indexed by any type we can form a new tree.
For example we can define the empty tree empty : Tree using the empty type,

empty :⌘ mkTree 0 efq

where efq : 0 ! Tree is a function that needs no definition. Also given a, b : Tree
we can define a new tree pair a b : Tree representing {a, b}. This implements the
axiom of pairing.

pair a b :⌘ mkTreeBool (�x.if x then a else b)

We don’t get the axiom of extensionality because pair a b and pair b a are not
equal. However, this doesn’t matter for Russell’s paradox which also works for
trees. We do get unlimited comprehension for trees that is given a property of
trees encoded as a family of types P : Tree ! Type we can define comprP :
Tree representing {t | P t} as

comprP :⌘ mkTree (⌃t : Tree.P t)⇡0

That is the index type is a pair of a tree and a proof that it satisfies the property
and the function which assigns trees to indices is just the first projection.

To define the property of trees that they are not an element of themselves
we have to explain what an element of a tree is, namely a direct subtree. That
is we define el : Tree ! Tree ! Type with el a b expressing a 2 b.

el a (mkTree I f) ⌘ ⌃i : I.f i = a

Here we use ⌃ to encode 9 and we use the equality type which we haven’t
discussed yet but I hope this is clear anyway. Now we can express the property
of a tree t not containing itsef (el t t) ! 0 and we define Russell’s tree R : Tree
as

R :⌘ (compr(�t.(el t t) ! 0)



DR
AF
T

66 CHAPTER 4. DEPENDENT TYPES

Just using were elementary reasoning we can show that

elRR $ (elRR) ! 0

And it follows from propositional logic that ¬(P , ¬P ) from simple reasoning
in propositional logic. But this means that the empty type in inhabited.

Where did we actually use Type : Type? We didn’t explicitly but implicitly
when we introduced a constructor makeTree whose argument is a type again.

So, if Type : Type doesn’t work what is now the type of Type? To avoid
the problem we introduce not one namely infinitely many universes.

Type0 : Type1 : Type2 : . . .

Hence the answer depends on the level, if we ask about the first universe Type0

then its type is Type1 and what is the type of Type1? Right is is Type2. And
so on.

The numbers 0, 1, 2, . . . which as the index of types are not our natural
numbers (even though the look very much like them) because otherwise we
would have to make our mind up was is the type of a function that assigns to a
number a type and what is the type of this function?

All our usual garden variety types like N,Bool,ListN,N ! Bool, InfTree, . . .
are elements of Type0, but they are also elements of all higher universes - this
is called cummulativity. The thing that is new in Type1 is Type0 itself. We
say that Type0 is larger then all the types in Type0 because if there would be a
type in Type0 which is equivalent to Type0 we can derive the paradox. There
are more new types in Type1 for example ListType0 or Type0 ! N. This
story continues: the new types in Type2 are Type1 and all the types which
can be built from it.

While this solves the problem with Type : Type it does introduce a lot of
bureaucracy: for example we have many copies of List namely List0 : Type0 !
Type0 and List1 : Type1 ! Type1 etc. This is not covered by cummulativity
which only tells us that List0 N : Type1. What is the best way to deal with
this problem is a research question: while there are a number of candidates and
implementations there is no general agreement what is the best way. On paper
we can be lazy and adopt the convention that we just pretend that we had
Type : Type but then check that there is a consistent assignment of indices
to each occurence of Type. This is close to what the Coq system is doing but
there are cases where the inference algorithm is too weak.

4.4 Propositions as Types: Predicate logic

I am now going to deliver on the promise to extend the propositions as types
explanation to predicate logic using dependent types. Actually it is rather
straightforward and I couldn’t avoid giving away the secret in the last section
- maybe you noticed. We translate 8 with ⇧-types. That is for example the


