Dependent Types for Distributed Arrays

Wouter Swierstra and Thorsten Altenkirch

University of Nottingham
{wss,txa}@cs.nott.ac.uk

Abstract. Locality-aware algorithms over distributed arrays can be very
difficult to write. Yet such algorithms are becoming more and more im-
portant as desktop machines boast more and more processors. We show
how a dependently-typed programming language can help develop such
algorithms by hosting a domain-specific embedded type system that en-
sures every well-typed program will only ever access local data. Such
static guarantees can help catch programming errors early on in the
development cycle and maximise the potential speedup that multicore
machines offer. At the same time, the functional specification of effects
we provide facilitates the testing of and reasoning about algorithms on
distributed arrays.

1 Introduction

Computer processors are not becoming significantly faster. To satisfy the demand
for more and more computational power, manufacturers are now assembling
computers with multiple microprocessors. It is hard to exaggerate the impact
this will have on software development: tomorrow’s programming languages must
embrace parallel programming on multicore machines.

Researchers have proposed several new languages to maximise the potential
speedup that multicore processors offer [2, 7-9]. Although all these languages are
different, they share the central notion of a distributed array, where the elements
of an array may be distributed over separate processors or even over separate
machines. To write efficient code, programmers must ensure that processors only
access local parts of a distributed array—it is much faster to access data stored
locally than remote data on another core.

When writing such locality-aware algorithms it is all too easy to make subtle
mistakes. Programming languages such as X10 require all arrays operations to
be local [9]. Any attempt to access non-local data results in an exception. To
preclude such errors, Grothoff et al. have designed a type system for a small
core language resembling X10 that is specifically designed to guarantee that
programs only access local parts of a distributed array [10]. Yet it is somehow
disappointing that these static guarantees require a custom-built type system to
solve a very specific problem.

In this paper, we explore an alternative avenue of research. Designing and
implementing a type system from scratch is a lot of work. New type systems
typically require extensive proofs of various soundness, completeness, principle

typing, and decidability theorems. Instead, we show how to tailor a sufficiently
expressive type system to enforce certain properties—resulting in a domain-
specific embedded type system. We no longer need to prove any meta-theoretical
results, but immediately inherit all the desirable properties of our host type sys-
tem. Functional programmers have studied domain-specific embedded languages
for years [12]; the time is ripe to take these ideas one step further.

In previous work [19], we described a pure specification of several parts of the
IO monad, the interface between pure functional languages such as Haskell [17]
and the ‘real world.” By providing functional, executable specifications we can
test, debug, and reason about impure programs as if they were pure. When we
now shift to a dependently-typed programming language, we can show how our
specifications can provide stronger static guarantees about our programs. To this
end, we make several novel contributions:

— We begin by giving a pure specification of arrays (Section 3). Due to our rich
type system, the specification is total: there is no way to access unallocated
memory; there are no ‘array index out of bounds’ exceptions. As a result,
these specifications can not only be used to program with, but also facilitate
formal proofs about array algorithms.

— Distributed arrays pose more of a challenge (Section 4). Not only do we
attend to locality constraints, but we must also accommodate place-shifting
operators. The pure specification we present is, once again, executable and
total: it can be interpreted both as a domain-specific embedded language for
writing algorithms on distributed arrays and as an executable denotational
model for specifying and proving properties of such algorithms.

— Finally, we demonstrate how programmers may write their own locality-
aware control structures using the primitives we have defined. We also im-
plement several combinators that enable programmers to define their own
distributions, specifying how large arrays must be distributed over differ-
ent processors. We conclude by discussing how our specifications may be
extended to cope with multidimensional arrays with more complex regions
(Section 5).

Throughout this paper, we will use the dependently-typed programming lan-
guage Agda [1,15] as a vehicle of explanation. In fact using lhs2TeX [13], the
sources of this paper generate an Agda program that can be compiled and exe-
cuted.! We will briefly introduce the syntax by means of several examples, as it
may be unfamiliar to many readers.

2 An overview of Agda

Data types in Agda can be defined using a similar syntax to that for Generalized
Algebraic Data Types, or GADTs, in Haskell [?]. For example, consider the
following definition of the natural numbers.

! The resulting code is available from the first author’s website.

data Nat : x where
Zero : Nat
Succ : Nat — Nat

There is one important difference with Haskell. We must explicitly state the kind
of the data type that we are introducing; in particular, the declaration Nat : x
states that Nat is a base type.

We can define functions by pattern matching and recursion, just as in any
other functional language. To define addition of natural numbers, for instance,
we could write:

_+ _: Nat — Nat — Nat
Zero+m =m
Suce n + m = Suce (n+ m)

Note that Agda uses underscores to denote the positions of arguments when
defining new operators.
Polymorphic lists are slightly more interesting than natural numbers:

data List (a:x):x where
Nil : List a
Cons :a — List a — List a

To uniformly parameterise a data type, we can write additional arguments to
the left of the copula. In this case, we add (a:x) to our data type declaration to
state that lists are type constructors, parameterised over a type variable a that
has kind *.

Just as we defined addition for natural numbers, we can define an operator
that appends one list to another:

append : (a: %) — List a — List a — List a
append a Nil ys =ys
append a (Cons x xs) ys = Cons z (append a xs ys)

The append function is polymorphic. In Agda, such polymorphism can be intro-
duced via the dependent function space, written (z:a) — y, where the variable z
may occur in the type y. This particular example of the dependent function space
is not terribly interesting: it merely expresses parametric polymorphism. Later
we will encounter more interesting examples, where types depend on values.

One drawback of using the dependent function space for such parametric
polymorphism, is that we must explicitly instantiate polymorphic functions. For
example, the recursive call to append in the Cons case takes a type as its first
argument. Fortunately, Agda allows us to mark certain arguments as implicit.
Using implicit arguments, we can define the + operator just as in any other
functional language:

_+# _:{a:x} — List a — List a — List a
Nil H# ys =ys
(Cons z xs) + ys = Cons = (xs H ys)

Arguments enclosed in curly brackets, such as {a : %}, are implicit: we do not
write a to the left of the equals sign and do not pass a type argument when
we call the make a recursive call. The Agda type checker will automatically
instantiate this function whenever we call it, much in the same way as type
variables are instantiated in Haskell.

Besides polymorphic data types, Agda also supports indexed families. Like
Haskell’s GADTSs, indexed families allow a data type’s constructors to have differ-
ent codomains. Indexed families, however, are more general as they also capture
data types that are indexed by walues instead of types. For example, we can
define the family of finite types:

data Fin : Nat — = where
Fz:{n:Nat} — Fin (Succ n)
Fs:{n:Nat} — Fin n — Fin (Succ n)

The type Fin n corresponds to a finite type with n distinct values. For example,
Fin 1 is isomorphic to the unit type; Fin 2 is isomorphic to Bool. Note that
the argument n is left implicit in both the constructors of Fin. From the types
of these constructors, it is easy to see that Fin 0 is uninhabited. For every n,
the Fs constructor embeds Fin n into Fin (Succ n); the Fz constructor, on the
other hand, adds a single new element to Fin (Succ n) that was not in Fin n.
By induction it is easy to see that Fin n does indeed have n elements.

Agda has many other features, such as records and a rich module system,
that we will hardly use in this paper. Although there are a few more concepts
we will need, we will discuss them as they pop up in later sections.

3 Mutable arrays

With this brief Agda tutorial under our belt, we can start our specification of
mutable arrays. We will specify three different operations on arrays: the creation
of new arrays; reading from an array; and updating a value stored in an array.
Before we can define the behaviour of these operations, however, we need to
introduce several data types to describe the layout and contents of memory.
Using these data types, we can proceed by defining an IO type that captures
the syntax of array operations. Finally, we define a run function that describes
how the array operations affect the heap, assigning semantics to our syntax. This
semantics can be used to simulate and reason about computations on mutable
arrays in a pure functional language. When compiled, however, these operations
should be replaced by their more efficient, low-level counterparts.

To keep things simple, we will only work with flat arrays storing natural num-
bers. This is, of course, a drastic oversimplification. The techniques we present
here, however, can be adapted to cover multidimensional arrays that may store
different types of data (Section 5).

To avoid confusion between numbers denoting the size of an array and the
data stored in an array, we introduce the Data type synonym. Throughout the

rest of this paper, we will use Data to refer to the data stored in arrays; the Nat
type will always refer to the size of an array.

Data :
Data = Nat

Using the Fin type, we can give a functional specification of arrays of a fixed
size by mapping every index to the corresponding datum.

Array : Nat — %
Array n = Fin n — Data

How should we represent the heap? We need to be a bit careful—as the heap
will store arrays of different sizes, its type should make it clear how many arrays
it stores and how large each array is. To accomplish this, we begin by introducing
a data type representing the shape of the heap:

Shape : x
Shape = List Nat

The Shape of the heap is simply a list of natural numbers, representing the size
of the arrays stored in memory.

We can now define a Heap data type that is indexed by a Shape. The Empty
constructor corresponds to an empty heap; the Alloc constructor adds an array
of size n to any heap of shape ns to build a larger heap with the larger layout
Cons n ns.

data Heap : Shape — x where
Empty : Heap Nil
Alloc: {n: Nat} — {ns: Shape } —
Array n — Heap ns — Heap (Cons n ns)

Finally, we will want to model references, denoting locations in the heap. A
value of type Loc n ns corresponds to a reference to an array of size n in a heap
with shape ns. The Loc data type shares a great deal of structure with the Fin
type. Every non-empty heap has a Top reference; we can weaken any existing
reference to denote the same location in a larger heap using the Pop constructor.

data Loc : Nat — Shape — * where
Top : {n: Nat} — {ns: Shape} — Loc n (Cons n ns)
Pop : forall {n k ns} — Loc n ns — Loc n (Cons k ns)

Note that in the type signature of the Pop constructor, we omit the types of
three implicit arguments and quantify over them using the forall keyword. Al-
ternatively, we could also have written the more verbose:

Pop:{n:Nat} — {k: Nat} — {ns: Shape} —
Loc n ns — Loc n (Cons k ns)

When we use the forall keyword, the types of n, k, and ns are inferred from
the rest of the signature by the Agda type checker. We will use this shorthand
notation to make large type signatures somewhat more legible.

With these data types in place, we can define a data type capturing the
syntax of the permissible operations on arrays. Crucially, the 10 type is indexed
by two shapes: a value of type 10 a ns ms denotes a computation that takes
a heap of shape ns to a heap of shape ms and returns a result of type a. This
pattern of indexing operations by an initial and final ‘state’ is a common pattern
in dependently-typed programming [14].

data IO (a :*) : Shape — Shape — x where
Return : {ns: Shape} — a — IO a ns ns
Write : forall {n ns ms} —
Loc n ns — Fin n — Data — IO a ns ms — 10 a ns ms
Read : forall {n ns ms} —
Loc n ns — Fin n — (Data — I0 a ns ms) — 10 a ns ms
New : forall {ns ms} —
(n: Nat) — (Loc n (Cons n ns) — I0 a (Cons n ns) ms) —
I0 a ns ms

The IO type has four constructors. The Return constructor returns a pure
value of type a without modifying the heap. The Write constructor takes four
arguments: the location of an array of size n; an index in that array; the value to
write at that index; and the rest of the computation. Similarly, reading from an
array requires a reference to an array and a suitable index. Instead of requiring
the data to be written, however, the last argument of the Read constructor may
refer to data that has been read. Finally, the New constructor actually changes
the size of the heap. Given a number n, it allocates an array of size n on the
heap; the second argument of New may then use this fresh reference to continue
the computation in a larger heap.

The IO data type is a parameterised monad [4]—that is, a monad with return
and bind operators that satisfy certain coherence conditions regarding how they
may affect the heap.

return : {a:x} — {ns: Shape} — a — 10 a ns ns
return T = Return z

>=:forall {a bnsmsks}—
10 a ns ms — (a — IO b ms ks) — IO b ns ks

Return © >=f =fz

Write a i x wr >= f = Write a i (wr >=f)
Read aird>=f = Read a i (Az — rd z>=f)
New n io>=f = New n (Aa — 10 a >=f)

The return of the IO data type lifts a pure value into a computation that can
run on a heap of any size. Furthermore, return does not modify the shape of the
heap. The bind operator, >=, can be used to compose monadic computations.

To sequence two computations, the heap resulting from the first computation
must be a suitable starting point for the second computation. This condition is
ensured by the type of the bind operator:

To actually write programs using these arrays, we need to introduce a smart
constructor for the IO data type. For example, we could define the readArray
function as follows:

readArray : forall {n ns} — Loc n ns — Fin n — IO Data ns ns
readArray a i = Read a i Return

There is a slight problem with this definition. As we allocate new memory, the
size of the heap changes; correspondingly, we must explicitly modify any existing
pointers to denote locations in a larger heap. We can achieve this by revising the
above definition slightly, ensuring that an additional Pop constructor is wrapped
around any existing references. For the purpose of this paper, however, we will
ignore this technicality: the above definition will suffice.

Denotational model

We have described the syntax of array computations using the IO data type,
we have not specified how these computation behave. Recall that we can model
arrays as functions from indices to natural numbers:

Array : Nat — %
Array n = Fin n — Data

Before specifying the behaviour of IO computations, we define a several auxiliary
functions to update an array and lookup a value stored in an array.

lookup : forall {n ns} — (I: Loc n ns) — Fin n — Heap ns — Data
lookup Top i (Alloca _)=ai
lookup (Pop k) i (Alloc _ h) = lookup k i h

The lookup function takes a reference to an array [, an index 4 in the array at
location [, and a heap, and returns the value stored in the array at index . It
dereferences [, resulting in a function of type Fin n — Data; the value stored at
index i is the result of applying this function to 1.

Next, we define a pair of functions to update the contents of an array.

updateArray : {n : Nat} — Fin n — Data — Array n — Array n
updateArray i d a = \j — if ¢ = j then d else a j
updateHeap : forall {n ns} —

Loc n ns — Fin n — Data — Heap ns — Heap ns
updateHeap Top i z (Alloc a h) = Alloc (updateArray i x a) h
updateHeap (Pop k) i z (Alloc a h) = Alloc a (updateHeap k i x h)

The updateArray function overwrites the data stored at a single index. The
updateHeap function updates a single index of an array stored in the heap. It

proceeds by dereferencing the location on the heap where the desired array is
stored and updates it accordingly, leaving the rest of the heap unchanged.

Now we finally have all the pieces in place to assign semantics to /O compu-
tations. The run function below takes a computation of type IO a ns ms and
an initial heap of shape ms as arguments, and returns a pair consisting of the
result of the computation and the final heap of shape ms.

data Pair (a:x) (b:*):* where
pair : a — b — Pair a b

run : forall {a ns ms} — IO a ns ms — Heap ns — Pair a (Heap ms)
run (Return z) h = pair x h

run (Read a i vd) h = run (rd (lookup a i h)) h

run (Write a i wr) h = run wr (updateHeap a i x h)

run (New n io) h = run (10 Top) (Alloc (\i — Zero) h)

Py

The Return constructor simply pairs the result and heap; in the Read case, we
lookup the data from the heap and recurse with the same heap; for the Write
constructor, we recurse with an appropriately modified heap; finally, when a new
array is created, we extend the heap with a new array that stores Zero at every
index, and continue recursively. Note that, by convention, the Top constructor
always refers to the most recently created reference. Our smart constructors
should add additional Pop constructors when new memory is allocated.

Ezample Using our smart constructors and the monad operators, we can now de-
fine functions that manipulate arrays. For example, the swap function exchanges
the value stored at two indices:

swap : forall {n ns} — Loc n ns — Fin n — Fin n — 10 () ns ns
swap a1 j =

readArray a i >= Avali —

readArray a j >= \valj —

writeArray a i valj >

writeArray a j vali

In a dependently-typed programming language such as Agda, we can prove
properties of our code. For example, we may want to show that swapping the
contents of any two array indices twice, leaves the heap intact :

swapProp : {n: Nat }{ns : Shape } —
(I:Loc nns) — (i: Finn) — (j: Fin n) — (h: Heap ns) —
(h = snd (run (swap 1 i j > swap 1 1 j) h))

The proof requires a lemma about how updateHeap and lookupHeap interact and
is not terribly interesting in itself. The fact that we can formalise such properties
and have our proof verified by a computer is much more exciting.

4 Distributed arrays

Arrays are usually represented by a continuous block of memory. Distributed
arrays, however, can be distributed over different places—where every place may
correspond to a different core on a multiprocessor machine, a different machine
on the same network, or any other configuration of interconnected computers.

We begin by determining the type of places, where data is stored and code
is executed. Obviously, we do not want to fix the type of all possible places pre-
maturely: you may want to execute the same program in different environments.
Yet regardless of the exact number of places, there are certain operations you
will always want to perform, such as iterating over all places, or checking when
two places are equal.

We therefore choose to abstract over the number of places in the module we
will define in the coming section. Agda allows modules to be parametrised as
follows:

module DistrArray (placeCount : Nat) where

When we import the DistrArray module, we are obliged to choose the number
of places. Typically, there will one place for every available processor. From this
number, we can define a data type corresponding to the available places:

Place : %
Place = Fin placeCount

The key idea underlying our model of locality-aware algorithms is to index
computations by the place where they are executed. The new type declaration
for the IO monad corresponding to operations on distributed arrays will become:

data DIO (a:) : Shape — Place — Shape — = where

You may want to think of a value of type DIO a ns p ms as a computation that
can be executed at place p and will take a heap of shape ns to a heap of shape
ms, yielding a final value of type a.

We strive to ensure that any well-typed program written in the DIO monad
will never access data that is not local. The specification of distributed arrays
now poses a twofold problem: we want to ensure that the array manipulations
from the previous section are ‘locality-aware,” that is, we must somehow restrict
the array indices that can be accessed from a certain place; furthermore, X10
facilitates several place-shifting operations that change the place where certain
chunks of code are executed. As we shall see in the rest of this section, both
these issues can be resolved quite naturally.

Regions, Points, and Distributed Arrays

Before we define the DIO monad, we need to introduce several new concepts.
In what follows, we will try to stick closely to X10’s terminology for distributed

arrays. Every array is said to have a region associated with it. A region is a set
of valid index points. A distribution specifies a place for every index point in a
region.

Once again, we will only treat flat arrays storing natural numbers and defer
any discussion about how to deal with more complicated data structures for the
moment. In this simple case, a region merely determines the size of the array.

Region : %
Region = Nat

As we have seen in the previous section, we can model array indices using the
Fin data type:

Point : Region — *
Point n = Fin n

To model distributed arrays, we now need to consider the distribution that spec-
ifies where this data is stored. In line with existing work [10], we assume the ex-
istence of a fixed distribution. Agda’s postulate expression allows us to assume
the existence of a distribution, without providing its definition.

postulate
distr : forall {n ns} — Loc n ns — Point n — Place

At the end of this section, we will discuss how programmers can define their own
distributions.

Now that we have all the required auxiliary data types, we proceed by defining
the DIO monad.

data DIO (a:) : Shape — Place — Shape — = where

As it is a bit more complex than the data types we have seen so far, we will
discuss every constructor individually.

The Return constructor is analogous to one we have seen previously for the
10 monad: it lifts any pure value into the DIO monad.

Return : {p: Place} — {ns: Shape} — a — DIO a ns p ns

The Read and Write operations are more interesting. Although they correspond
closely to the operations we have seen in the previous section, their type now
keeps track of the place where they are executed. Any read or write operation
to point pt of an array [can only be executed at the place specified by the
distribution. This invariant is enforced by the types of our constructors:

Read : forall {n ns ms} —
(I: Loc n ns) — (pt: Point n) —
(Data — DIO a ns (distr 1 pt) ms) —
DIO a ns (distr 1 pt) ms

Write : forall {n ns ms} —
(I: Loc n ns) — (pt: Point n) — Data —
DIO a ns (distr | pt) ms —
DIO a ns (distr 1 pt) ms

In contrast to Read and Write, new arrays can be allocated at any place.

New : forall {p ns ms} —
(n: Nat) —
(Loc n (Cons n ns) — DIO a (Cons n ns) p ms) —
DIO a ns p ms

Finally, we add a constructor for the place-shifting operator At:

At : forall {p ns ms ps} —
(q: Place) — DIO () ns ¢ ms — DIO a ms p ps — DIO a ns p ps

The At operator lets us execute a computation at another place. As we will
discard the result of this computation, we require it to return an element of the
unit type.

We can add our smart constructors for each these operations, as we have done
in the previous section. We can also show that DIO is indeed a parameterised
monad. We have omitted the definitions of the return and bind operators for the
sake of brevity:

return : forall {ns a p} — a — DIO a ns p ns

>=:forall {ns msksabp} —
DIO A ns p ms — (A— DIO B ms p ks) — DIO B ns p ks

It is worth noting that the bind operator >= can only be used to sequence
operations at the same place.

We can use our primitives to define more interesting functions over dis-
tributed arrays. The distributed map, for example, applies a function to all
the elements of a distributed array at the place where they are stored.

for :forall {n ns p} — (Point n — DIO () ns p ns) — DIO () ns p ns

for { Succ k} dio = dio Fz > (for {k} (dio . Fs))

for {Zero} dio = return ()

dmap : forall {n ns p} — (Data — Data) — Loc n ns — DIO () ns p ns

dmap f | = for (At — at (distr 1 i) (readArray 1 i >= Az —
writeArray 1 i (f z)))

We use the for function defined above to iterate over the indices of an array.
The dmap function illustrates how these primitives we have presented can be
used to write distributed algorithms.

Denotational model

To run a computation in the DIO monad, we stick quite closely to the run
function defined in the previous section. Our new run function, however, must
be locality-aware. To that end, we parameterise the run function explicitly by
the place where the computation is executed.

run : forall {a ns ms} —

(p : Place) — DIO a ns p ms — Heap ns — Pair a (Heap ms)
run p (Return z) h = pair z h
run (distr 1 3) (Read l i vd) h = run (distr [i) (rd (lookup 1 i h)) h
run (distr 1 1) (Write l i x wr) h = let b/ = updateHeap 1 i z h

in run (distr 1 1) wr b’

run p (New n i0) h = run p (i0 Top) (Alloc (A\i — Zero) h)
run p (At g iol i02) h = run p 02 (snd (run q iol h))

Now we can see that the Read and Write operations may not be executed
at any place. Recall that the Read and Write constructors both return compu-
tations at the place distr [i. When we pattern match on a Read or Write, we
know exactly what the place argument of the run function must be. Correspond-
ingly, we do not pattern match on the place argument—we know that the place
can only be distr | i. Agda’s syntax allows us to prefix expressions by a single
period, provided we know that there is only one possible value an argument may
take. This may be unfamiliar to many functional programmers who are used to
thinking of patterns being built-up from variables and constructors—distr [i
is an expression, not a pattern! The situation is somewhat similar to pattern
matching on GADTSs in Haskell, which introduces equalities between types. The
DI0O monad, however, is indexed by values. As a result, pattern matching in the
presence of dependent types may introduce equalities between values.

The other difference with respect to the previous run function, is the new
case for the At constructor. In that case, we sequence the two computations
101 and i02. To do so, we first execute the i01 at ¢, but discard its result; we
continue executing the second computation 702 with the heap resulting from
the execution of ol at the location p. Conform to previous proposals [?], we
have assumed that i0! and i02 are performed synchronously—executing iol
before continuing with the rest of the computation. Using techniques to model
concurrency that we have presented previously [19], we believe we could give a
more refined treatment of the X10’s globally asynchronous/locally synchronous
semantics and provide specifications for X10’s clocks, finish, and force constructs.

Other operations

Using the place-shifting operator at, we can define several other operations to
manipulate places and regions. With our first-class distribution and definition of
Place, we believe there is no need to define more primitive operations. We show
how two new control structures, forallplaces and ateach, can be defined in terms
of the functions we have seen so far.

The forallplaces operation executes its argument computation at all available
places. We define it using the for function to iterate over all places. The ateach
function, on the other hand, is a generalisation of the distributed map operation.
It iterates over an array, executing its argument operation once for every index
of the array, at the place where that index is stored.

forallplaces : forall {p ns} —
((¢q : Place) — DIO () ns g ns) — DIO () ns p ns

forallplaces io = for (\i — at i (io0 7))

ateach : forall {n ns p} —
(I: Loc n ns) — ((pt: Point n) — DIO () ns (distr I pt) ns) —
DIO () ns p ns

ateach 1 i0 = for (Ai — at (distr 1 1) (i0 i)

Defining distributions

Throughout this section we have assumed the existence of a distribution, speci-
fying how an array is distributed over the available places. Several built-in distri-
butions are provided by X10, some of which we will now define. For the moment,
we focus on defining a distribution of a single array, that is, functions of type
Fin n — Place.

There are two atomic distributions: the constant distribution maps all the
points of an array to a single place; the unique distribution maps the i-th index
of an array to the i-th place.

constDistr : {n : Nat} — Place — Point n — Place
constDistr p=Xi — p

unique : Point placeCount — Place
unique © = 1

We can compose any two such distributions, to form a larger distribution:

compose : forall {n m} —
(Point n — Place) — (Point m — Place) — (Point (n + m) — Place)

Although the definition of compose is a bit tricky, there is a particularly elegant
definition in the literature using views [?]. Of course, we can iterate the compose
operator:

cycle : {n: Nat} —
(k : Nat) — (Point n — Place) — (Point (k * n) — Place)
cycle (Succ k) f i = compose f (cycle k f) i

In the case where k is equal to Zero, we need to define a function of type
Fin Zero — Place. As Fin Zero has no inhabitants, this function will never be
applied and we may omit the definition accordingly.

Using similar combinators, we can define distributions over all arrays, ex-
ploiting the obvious similarity between Loc and Fin. There are several other
distributions supported by X10, that can be implemented along the same lines.

5 Discussion

Using a dependently-typed host language, we have shown how to implemented a
domain-specific library for distributed arrays, together with an embedded type
system that guarantees all array access operations are both safe and local. We
have provided semantics for our library in the form of a total, functional specifi-
cation. Although our semantics may not take the form of deduction rules, they
are no less precise or concise. Besides these functional specifications are both ex-
ecutable and amenable to computer-aided formal verification. More generally, we
hope that this approach can be extended to other domains: a dependently-typed
language accommodates domain specific libraries with their own embedded type
systems.

Having said this, there are clearly several serious limitations of this work
as it stands. First and foremost, we have assumed that every array only stores
natural numbers, disallowing more complex structures such as multidimensional
arrays. This can be easily fixed by defining a more elaborate Shape data type.
In its most general form, we could choose our Shape data type as a list of types;
a heap then corresponds to a list of values of the right type.? We decided to
restrict ourself to this more simple case for the purpose of presentation. We also
believe that there is no fundamental obstacle preventing us from incorporating
the rich region calculus offered by X10 in the same fashion.

Secondly, we have not discussed how code in the 10 or DIO monad is actually
compiled. To actually exploit the locality information our types carry, we would
need to customise the existing Agda to Haskell compiler. The ongoing effort to
support data parallelism in Haskell [5, 6] could hopefully provide us with a most
welcome foothold.

Furthermore, we have assumed a fixed distribution. We would like to investi-
gate a more flexible approach, allowing distributions to be associated with arrays
as they are created, rather than require a global distribution to be chosen before
a program is executed.

Finally, there are many features of X10 that we have not discussed here at all.
Most notably, we have refrained from modelling many of X10’s constructs that
enable asynchronous communication between locations, even though we would
like to do so in the future. Nonetheless, we believe this paper demonstrates the
viability of our approach and provides a first stepping-stone for such further
research.

Acknowledgements We wish to express our gratitude to Jens Palsberg for our
interesting discussions; to Ulf Norell for his fantastic new incarnation of Agda,;
and to Mauro Jaskelioff, Nicolas Oury, and Liyang HU for their helpful comments
on a draft version of this paper.

2 There are some technical details involving ‘size problems’ that are beyond the scope
of this paper. The standard technique of introducing a universe, closed under natural
numbers and arrays, should resolve these issues.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Agda 2. http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.

Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress language specification.
Technical report, Sun Microsystems, Inc., 2005.

Thorsten Altenkirch, Conor McBride, and Peter Morris. Generic programming
with dependent types. Draft lecture notes for the Summer School ond Generic
Programming, August 2006.

Robert Atkey. Parameterised notions of computation. In Proceedings of the Work-
shop on Mathematically Structured Functional Programming, 2006.

Manuel M.T. Chakravarty, Gabriele Keller, Roman Lechtchinsky, and Wolf Pfan-
nenstiel. Nepal — Nested Data-Parallelism in Haskell. In FEuro-Par 2001: Parallel
Processing, Tth International Euro-Par Conference, volume LNCS 2150, 2001.

. Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele

Keller, and Simon Marlow. Data Parallel Haskell: a status report. Proceedings of
the 2007 Workshop on Declarative Aspects of Multicore Programming, 2007.

Brad Chamberlain, Steve Deitz, Mary Beth Hribar, and Wayne Wong. Chapel.
Technical report, Cray Inc., 2005.

Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin Lin,
Lawrence Snyder, and Derrick Weathersby. ZPL: A machine independent pro-
gramming language for parallel computers. Software Engineering, 26(3):197-211,
2000.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOPSLA ’05: Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 519538, 2005.

Christian Grothoff, Jens Palsberg, and Vijay Saraswat. Safe arrays via regions and
dependent types. Submitted for publication.

Paul N. Hilfinger, Dan Oscar Bonachea, Kaushik Datta, David Gay, Susan L.
Graham, Benjamin Robert Liblit, Geoffrey Pike, Jimmy Zhigang Su, and Kather-
ine A. Yelick. Titanium language reference manual, version 2.19. Technical Report
UCB/EECS-2005-15, EECS Department, University of California, Berkeley, Nov
2005.

Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28, 1996.

Andres Loh. lhs2tex. http://people.cs.uu.nl/andres/lhs2tex/.

James McKinna and Joel Wright. A type-correct, stack-safe, provably correct,
expression compiler in Epigram. Submitted to the Journal of Functional Program-
ming, 2006.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

Robert W. Numrich and John Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1-31, 1998.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries — The Revised
Report. Cambridge University Press, 2003.

Herb Sutter. The free lunch is over. Dr. Dobb’s Journal, 30(3), 2005.

Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: a functional
semantics of the awkward squad. In Proceedings of the ACM SIGPLAN Haskell
Workshop, 2007.

