
Monads Need Not Be Endofunctors

Thorsten Altenkirch1, James Chapman2, and Tarmo Uustalu2

1 School of Computer Science, University of Nottingham
2 Institute of Cybernetics, Tallinn University of Technology

txa@cs.nott.ac.uk, {james,tarmo}@cs.ioc.ee

Abstract. We introduce a generalisation of monads, called relative mon-
ads, allowing for underlying functors between different categories. Exam-
ples include finite-dimensional vector spaces, untyped and typed lambda
calculus syntax and indexed containers. We show that the Kleisli and
Eilenberg-Moore constructions carry over to relative monads and are
related to relative adjunctions. Under reasonable assumptions, relative
monads are monoids in the functor category concerned and extend to
monads, giving rise to a coreflection between monads and relative mon-
ads. Arrows are also an instance of relative monads.

1 Introduction

Monads are the most successful programming pattern arising in functional pro-
gramming. Apart from their use to model a generic notion of effect they also
serve as a convenient interface to generalized notions of substitution. Research
in the area on the border between category theory and functional programming
focusses on unveiling new programming and reasoning constructions similar to
monads, such as comonads [1], arrows [2] and idioms (closed functors) [3]. Indeed,
especially when working in an expressive and total language with dependent
types, such as Agda [4], we can exploit monads not only as a way to structure
our programs but also their verification.

The present paper is concerned with a generalisation of monads which arises
naturally in dependently typed programming, namely monad-like entities that
are not endofunctors. Consider the following example, which arose when im-
plementing notions related to quantum programming, namely finite-dimensional
vector spaces [5, 6]. (See also Piponi [7] for this and other interesting uses of
vector spaces in functional programming.)

Example 1. In quantum computing, we consider complex vector spaces, but
for the present development any semiring (R,+, 0,×, 1) is sufficient. Finite-
dimensional vector spaces can be given by:

Vec ∈ |Fin| → |Set|
Vecm=df Jf m→ R
η ∈ Πm∈|Fin|Jf m→ Vecm
ηm (i ∈ m) =df λj ∈ m. if i = j then 1 else 0
(−)∗ ∈ Πm,n∈|Fin|(Jf m→ Vecn)→ (Vecm→ Vecn)
A∗ x=df λj ∈ n.

∑
i∈m x i×A i j

Here Fin is the category of finite cardinals (the skeletal version of finite sets).
The objects are natural numbers m ∈ N and the maps between m and n are
functions between m and n where m=df {0, 1, . . . ,m− 1}. By Jf ∈ Fin → Set
we mean the natural embedding Jf m=df m. The finite summation

∑
is just the

finite iteration of + over 0. Indeed ηm is just the unit m×m-matrix (alternatively,
a function assigning to every coordinate i ∈ m the corresponding unit vector)
and A∗ x corresponds to the product of the matrix A with the vector x, where
both matrices and vectors described as functions.

By the types of its data, the structure (Vec, η, (−)∗) looks suspiciously like
a monad, except that Fin is not Set and in the types for η, (−)∗ we have used
the embedding Jf to repair the mismatch. It is easy to verify that the structure
also satisfies the standard monad laws, modulo the same discrepancy.

The category of finite-dimensional vector spaces arises as a kind of Kleisli cat-
egory. Its objects are m ∈ N, understood as finite coordinate systems (describing
vector spaces), and its morphisms are functions Jfm→ Vecn, i.e., matrices (de-
scribing linear transformations).

The structure cannot generally be pushed to a monad on Set. (−)∗ requires
that we can sum over a set. Summation over general index sets is not available,
if R is just a semiring. Also, in a constructive setting, η requires that the set has
a decidable equality, which is not the case for general sets.

We view Vec as a relative monad on the embedding Jf ∈ Fin→ Set. Other
examples of relative monads include untyped and simply typed λ-terms and the
notions of indexed functors and indexed containers as developed in [8].

Overview of the paper In Sect. 2 we develop the notion of a relative monads
on a functor J ∈ J → C, showing that they arise from relative adjunctions and
generalizing Kleisli and Eilenberg-Moore constructions to relative monads.

Since monads on C correspond to monoids in the endofunctor category [C,C],
a natural question is whether a relative monad on J gives rise to a monoid in
the category [J,C]. If J is small and C is cocomplete (e.g., Set), the left Kan
extension along J exists and give rise to a lax monoidal structure where the unit
is J and the tensor is given by F ·J G =df LanJ F · G. Indeed, relative monads
give are the same lax monoids in this lax setting (Sect. 3).

Going further, we identify conditions on the functor J , under which the lax
monoidal structure induced by LanJ is properly monoidal. If this is the case
we do obtain a proper monoid in the category of functors. Moreover, relative
monads extend to monads via LanJ and we get a coreflection between monads
and relative monads (Sect. 4). In the example of vector spaces, LanJ Vec is
the monad whose Kleisli category is that of vector spaces over general sets of
coordinates where however a vector over an infinite set of coordinates may only
have finitely many non-zero components. However, it is worthwhile not to ignore
the non-endofunctor case, because frequently this is the structure we actually
want to use. E.g., in the context of quantum computing we are interested in
dagger compact closed categories [9, 10].

Finally, we show that arrows are an instance of relative monads (Sect. 5),
here the Yoneda embedding plays the role of J . This leads to the, maybe surpris-

ing, outcome that while arrows generalize ordinary monads, they are actually a
special case of relative monads.

Related work The untyped lambda-calculus syntax as has been identified as a
monoid in [Fin,Set] by Fiore et al. [11]. Heunen and Jacobs [12] have shown
that arrows on C are actually monoids in the category [Cop×C,Set] of endopro-
functors; Jacobs et al. have proved the Freyd construction of [13] is, in a good
sense, the Kleisli construction for arrows. Spivey [14] has studied a generaliza-
tion of monads, which differs from ours, but is in a similar spirit and related
(see Conclusion). That the monoid nature of monads is important in developing
applications of monads, was recently shown by Jaskelioff in his work on modular
monad transformers [15].

Notation We will be using a mixture of categorical and type-theoretic notation.
In particular we will be using λ-calculus notation for defining functions (maps
in Set or subcategories). Customarily for both category theory and type theory,
we often hide some arguments of patterns and function applications (normally
subscripted arguments, e.g., an object a natural transformation is applied to).

We write |C| for the objects of C and C (X,Y) for the homsets. Given cat-
egories C,D we write the functor category as [C,D]. While using id, ◦ for the
identities and composition of maps, we write I, · for the identities and compo-
sition of functors.

2 Relative monads and relative adjunctions

We start with defining relative monads, to then give some examples and show
how the theory of ordinary monads carries over to the relative case.

2.1 Relative monads

Rather than being defined for a category C like a monad, a relative monad is
defined for a functor J between two categories J and C.

Definition 1. A relative monad on a functor J : J→ C is given by

– an object mapping T ∈ |J| → |C|,
– for any X ∈ |J|, a map ηX ∈ C (J X, T X) (the unit),
– for any X,Y ∈ |J| and k ∈ C (J X, T Y), a map k∗ ∈ C (T X, T Y) (the

Kleisli extension)

satisfying the conditions

– for any X,Y ∈ |J|, k ∈ C (J X, T Y), k = k∗ ◦ η,
– for any X ∈ |J|, η∗X = idTX ∈ C (T X, T X),
– for any X,Y, Z ∈ |J|, k ∈ C (J X, T Y), ` ∈ C (J Y, T Z), (`∗ ◦ k)∗ = `∗ ◦ k∗.

The data and laws of a relative monad are exactly as those of a monad,
expect that C has become J in some places and, to ensure type-compatibility,
some occurrences of J have been inserted.

Although this is not stated in the axioms, they imply that T is functorial:
T ∈ J → C. Indeed, for X,Y ∈ |J|, f ∈ J (X,Y), we can define a map T f ∈

C (TX, TY) by T f =df (η ◦ Jf)∗ and this satisfies the functor laws. Also, η and
(−)∗ are natural.

A definition of relative monads based on a multiplication µ rather than a
Kleisli extension (−)∗ is not immediately available: the simple functor compo-
sition T · T is not well-typed. In the next section, we will show that a suitable
notion of functor composition is available under a condition.

Clearly, monads are a special case of relative monads via J =df C, J =df IC.
For general J, C and J , we always that T X=df J X is a relative monad with

ηX =df idX and k∗ =df k. A whole class of examples of relative monads on J is
given by restricting monads on C (the relative monad J arises from restricting
the monad IC).

Theorem 1. For any J ∈ J → C, a monad (T, η, (−)∗) on C restricts to a
relative monad (T [, η[, (−)(∗[)) on J , defined by T [X =df T (J X), η[X =df ηJ X ,
k(∗[) =df k

∗.

As a first truly non-trivial example, we saw the relative monad of finite-
dimensional vector spaces in the introduction. We will now look at some further
examples of interest.

Example 2. The syntax of untyped (but well-scoped) lambda-calculus is a rela-
tive monad on Jf ∈ Fin→ Set, as the finite-dimensional vector spaces relative
monad, i.e., we have J=df Fin, C=df Set, J=df Jf . We view Fin as the category
of nameless untyped contexts. The set of untyped lambda-terms LamΓ over a
context Γ satisfies the isomorphism

LamΓ ∼= Jf Γ + LamΓ × LamΓ + Lam (1 + Γ)

Here, the summands correspond to variables from the context (seen as terms),
applications and abstractions (their bodies are terms over an extended context).
The functor Lam ∈ Fin → Set is defined as the carrier of the initial algebra of
the functor F ∈ [Fin,Set]→ [Fin,Set] defined by

F GΓ =df Jf Γ +GΓ ×GΓ +G (1 + Γ)

Now Lam is a relative monad. The unit η ∈ Jf Γ → LamΓ is given by variables-
as-terms and the Kleisli extension takes a finite substitution rule k ∈ Jf Γ →
Lam∆ to the corresponding substitution function k∗ ∈ LamΓ → Lam∆.

This example was described as a relative monad by Altenkirch and Reus [16].
Fiore et al. [11] described it as a monoid in a monoidal structure on [Fin,Set].
Their description of the relative monad of untyped lambda-terms as a monoid
turns out to be an instance of our general description of relative monads as
monoids from Section 4 below.

Example 3. Typed lambda-terms are more involved than untyped lambda-terms,
but they form a relative monad in a similar fashion.

Let Ty be the set of types of typed lambda-calculus (over some base types),
which we see as a discrete category. We take J to be Fin ↓ Ty, which is the

category whose objects are pairs (Γ, ρ) where Γ ∈ |Fin| and ρ ∈ Γ → Ty (typed
contexts) and maps from (Γ, ρ) to (Γ ′, ρ′) are maps f ∈ Fin (Γ, Γ ′) such that
ρ = ρ′ ◦ f (typed context maps).

We further take C to be the functor category [Ty,Set] and let J ∈ Fin ↓ Ty→
[Ty,Set] be the natural embedding defined by J (Γ, ρ) σ =df {x ∈ Γ | ρ x = σ}.

Now, for (Γ, ρ) ∈ |Fin ↓ Ty| and σ ∈ Ty, the set of typed lambda-terms
TyLam (Γ, ρ)σ has to satisfy the isomorphism

TyLam (Γ, ρ)σ ∼= J (Γ, ρ)σ
+ Σ

τ∈TyTyLam (Γ, ρ) (τ ⇒ σ)× TyLam (Γ, ρ) τ

+ if σ is of the form τ ⇒ τ ′, then also

TyLam (1 + Γ,

[
inl ∗ 7→ τ
inrx 7→ ρ x

]
) τ ′

The functor TyLam ∈ Fin ↓ Ty → [Ty,Set] is given by an initial algebra. It is
a monad on J , with the unit and Kleisli extension given by variables-as-terms
and substitution, like in the case of Lam. Fiore [17] studied TyLam as a monoid
in [Fin ↓ Ty, [Ty,Set]].

Note that choosing J to be [Ty,Fin] rather than Fin ↓ Ty would have given
contexts possibly supported by infinitely many types: in every type there are
finitely many variables, but the total number of variables can be infinite.

Example 4. Morris and Altenkirch [8] investigated generalization of the notion
of containers [18] to a dependently typed setting and used it to show that strictly
positive families can be reduced to W-types. Relative monads played a central
role in this development.

Let U ∈ Set together with El ∈ U → Set be a universe of small sets. This
induces a category U with |U| =df U and U (a, b) =df El a → El b. The functor
JU ∈ U → Cat is given by JU a =df El a on objects and the identity on maps
(viewing El a as a discrete category). We assume that U is locally cartesian
closed, i.e., the universe is closed under dependent product and function types
as well as equality types.

As ordinary containers represent endofunctors on U (or any other locally
cartesian closed category), indexed containers represent functors from a slice
over a given a ∈ U , we define the category IF a of indexed functors over a by
IF a=df [[El a,U],U]. The functor IF ∈ U→ Cat is a relative monad on JU. The
unit ηa ∈ JU a → IF a is defined by ηa x =df λf. f x and the Kleisli extension
k∗ ∈ IF a → IF b of k ∈ JU a → IF b is defined by k∗Gf = G (λx.k x f). The
definitions clearly resemble the continuation monad apart from the size issue.

The main result of [8] was that strictly positive families (SPF) can be inter-
preted as indexed functors by via indexed containers (IC). Just as IF, both SPF
and IC are relative monads on JU and the interpretations preserve this structure,
i.e., are relative monad maps.

2.2 Relative adjunctions

As ordinary monads are intimately related to adjunctions, relative monads are
related to a corresponding generalization of adjunctions.

Definition 2. An relative adjunction between J ∈ J → C and D is given by
two functors L ∈ J → D and R ∈ D → C, and a natural isomorphism φ ∈
C (J X,RY) ∼= D (LX, Y).

As expected, relative adjunctions are a special case of ordinary adjunctions
with J =df C, J =df I. Just like any adjunction defines a monad, relative adjunc-
tions define relative monads.

Theorem 2. Any relative adjunction (L,R, φ) between a functor J ∈ J → C
and category D gives rise to a relative monad, defined by T X=dfR (LX), ηX=df

φ−1 (idLX), k∗ =df R (φk).

D
R ��

J
L

33

J //

T

��
C

If a relative monad T on J is related to a relative adjunction (L,R, φ) between
J and some category D in the above way, we call the relative adjunction a splitting
of the relative monad via D.

2.3 Kleisli and Eilenberg-Moore constructions

For monads we know that they split into an adjunction in two canonical ways:
the Kleisli and Eilenberg-Moore constructions. Moreover, the splittings form a
category where the Kleisli and EM splittings are the initial and terminal objects.
We shall now establish that the same holds in the relative situation.

The Kleisli category Kl(T) of a relative monad T has as objects the objects of
J and as maps between X, Y the maps between J X, T Y of C: |Kl(T)|=df |J|
and Kl(T) (X,Y) =df C (J X, T Y). The identity and composition (we denote
them by idT , ◦T) are defined by idTX =df ηX and ` ◦T k =df `

∗ ◦ k.
The Kleisli relative adjunction between J and Kl(T) is defined by LX=dfX,

Lf =df η ◦ Jf (note that L is identity-on-objects), RX =df T X, Rk =df k
∗

and φ is identity. This relative adjunction is a splitting: it is immediate that
R (LX) = T X, ηX = φ−1 (idTLX), k∗ = R (φk).

The Eilenberg-Moore (EM) category EM(T) is given by EM-algebras and
EM-algebra maps of the relative monad T . Since the usual definition of an EM-
algebra refers to µ, which is not available in our relative situation, we generalize
a version based on (−)∗. For monads it is equivalent to the standard definition.

Definition 3. An EM-algebra of a relative monad T on J ∈ J → C is given
by an object X ∈ |C| and, for any Z ∈ |J|, a map function χ ∈ C (J Z,X) →
C (T Z,X), satisfying the conditions

– for any Z ∈ |J|, f ∈ C (J Z,X), f = χf ◦ η,
– for any Z,W ∈ |J|, k ∈ C (J Z, T W), f ∈ C (J W,X), χ (χf ◦ k) = χf ◦ k∗.

These conditions ensure, among other things, that χ is natural.
An EM-algebra map from (X,χ) to (Y, φ) is a map h ∈ C (X,Y) satisfying

– for any Z ∈ |J|, f ∈ C (J Z,X), h ◦ χf = φ (h ◦ f).

The identity and composition of EM(T) are inherited from C.
The Eilenberg-Moore relative adjunction between J and EM(T) is defined

by LY =df (T Y, (−)∗), Lf =df T f , R (X,χ) =df X, Rh=df h (so R is identity-
on-maps), φX,(Y,ψ) f =df ψ f and φ−1

X,(Y,ψ) h=df h ◦ ηX This is also splitting.

Theorem 3. The splittings of a relative monad T on J ∈ J → C form a cate-
gory. An object is given by a category D and an adjunction (L,R, φ) splitting T
via D. A splitting morphism between (D, L,R, φ) and (D′, L′, R′, φ′) is a func-
tor V ∈ D → D′ such that V · L = L′, R = R′ · V , and V φX,Y = φ′X,V Y .
The Kleisli construction is the initial and the Eilenberg-Moore construction the
terminal splitting.

Example 5. The Kleisli category of Vec has objects the objects of Fin under-
stood as finite coordinate systems (describing vector spaces). The maps are maps
Jf m→ Vecn, i.e., m×n-matrixes (describing linear transformations). The iden-
tities are the unit m×m-matrices, the composition is multiplication of matrices.

Example 6. The Kleisli category of Lam has as objects the objects of Fin under-
stood as untyped contexts. The maps are maps Jf Γ → Lam∆, i.e., substitution
rules (assignments of terms over ∆ to the variables in Γ). The identities are the
trivial substitution rules. The composition is composition of substitution rules.

3 Relative monads as lax monoids

A monad on C is the same as a monoid in the endofunctor category [C,C],
which has a monoidal structure given by the identity functor I and composition
of functors ·, which are strictly unital and associative. A monad can be specified
by an object T ∈ |[C,C]| and maps η ∈ [C,C] (I, T) and µ ∈ [C,C] (T · T, T)
satisfying the laws of a monoid in the strict monoidal structure I, ·.

Can we similarly define a relative monad on J ∈ J → C as a monoid in
the functor category [J,C]? This requires a monoidal structure on [J,C], ideally
similar to that on [C,C]. The functor J is a good candidate for the unit, but the
tensor is problematic, as functors J→ C cannot be composed by simple functor
composition. We shall use a left Kan extension to overcome the difficulty and
obtain a lax monoidal structure where relative monads are lax monoids.

3.1 Left Kan extensions

Left Kan extensions are one of the two canonical constructions for extending
functors. The left Kan extension along J ∈ J → C extends functors J → D to
functors C→ D.

D

J

F 44

J // C

LanJ Fjj

It is defined as the left adjoint (if it exists) of the restriction functor − · J ∈
[C,D]→ [J,D]. By definition, it is given by a functor LanJ ∈ [J,D]→ [C,D] and

a natural isomorphism

[J,D] (F,G · J) ∼= [C,D] (LanJ F,G)

While it is possible to work directly with this definition of left Kan extension,
we use an alternative definition, based on the coend formula

LanJ F X ∼=
∫ Y ∈|J|

C (J Y,X) • F Y

Accordingly, we take that a left Kan extension of a functor F ∈ J → D along
J ∈ J→ C to be given by

– an object function LanJ F ∈ |C| → |D|,
– for any X ∈ |C|, a natural transformation
ιF,X ∈ [Jop,Set] (C (J −, X),D (F −,LanJ F X)),

– for any X ∈ |C|, Y ∈ |D| and θ ∈ [Jop,Set] (C (J −, X),D (F −, Y)), a map
[θ] ∈ D (LanJ F X, Y).

satisfying the conditions:

– [θ] ◦ ι g = θ g
– [ι] = id
– f ◦ [θ] = [λg.f ◦ θ g]

Left Kan extensions LanJ F X are functorial in both arguments F and X,
i.e., LanJ ∈ [J,D]→ [C,D]. For any F ∈ |[J,D]|, X,Y ∈ |C|, f ∈ C (X,Y),

LanJ F f ∈ D (LanJ F X,LanJ F Y)
LanJ F f =df [λg. ι (f ◦ g)]

And for any F,G ∈ |[J,D]|, τ ∈ [J,D] (F,G), X ∈ |C|, we have

LanJ τ X ∈ D (LanJ F X,LanJ GX)
LanJ τ X =df [λg. ι g ◦ τ]

In general LanJ ∈ [J,D]→ [C,D] exists, if J is small and D is cocomplete.

3.2 [J, C] is lax monoidal

If LanJ ∈ [J,C] → [C,C] exists, we can turn any functor F ∈ |[J,C]| to one in
|[C,C]|. Hence we can define a composition-like operation

(·J) ∈ |[J,C]| × |[J,C]| → |[J,C]|
F ·J G=df LanJ F ·G

This is our candidate for the tensor on [J,C]. We also need the unital and
associative laws. We define several families of maps indexed by X ∈ |C|.

λX ∈ C (LanJ J X,X)
λX =df [λg. g]
αF,G,X ∈ C (LanJ (F ·G)X,F (LanJ GX))
αF,G,X =df [λg. F (ι g)]
αF,G,X ∈ C (LanJ (LanJ F ·G)X,LanJ F (LanJ GX))
αF,G,X =df αLanJF,G = [λg. [λg′. ι (ι g ◦ g′)]]

All these families are natural in X, hence maps in |[C,C]|.
From these we further define our candidate unital and associative laws.

ρF ∈ [J,C] (F, F ·J J)
ρF =df ι id
λF ∈ [J,C] (J ·J F, F)
λF =df λ · F
αF,G,H ∈ [J,C] ((F ·J G) ·J H,F ·J (G ·J H))
αF,G,H =df αF,G ·H

It turns out that the data so defined provide a structure that is almost
monoidal, but not quite. It is lax monoidal: λ, ρ, α are generally not isomor-
phisms. In the next section we will identify conditions on J that enable us to con-
struct the inverses, turning the lax monoidal structure into properly monoidal.

Theorem 4. If LanJ ∈ [J,C] → [C,C] exists, then ([J,C], J, ·J , λ, ρ, α) is a lax
monoidal category, i.e., ·J is functorial, λ, ρ, α are natural and the following
diagrams commute:

J ·J J
λJ

��;;;;

J

ρJ
AA����

J

(F ·J J) ·J G
αF,J,G // F ·J (J ·J G)

F ·JλG��
F ·J G

ρF ·JG
OO

F ·J G

(J ·J F) ·J G

λF ·JG %%LLLLLL

αJ,F,G // J ·J (F ·J G)

λF ·J G
yyrrrrrr

F ·J G

(F ·J G) ·J J
αF,G,J // F ·J (G ·J J)

F ·J G
ρF ·J G

eeLLLLLL
F ·JρG

99rrrrrr

(F ·J (G ·J H)) ·J K
αF,G·J H,K // F ·J ((G ·J H) ·J K)

F ·JαG,H,K��
((F ·J G) ·J H) ·J K
αF,G,H ·JK

OO

αF ·J G,H,K// (F ·J G) ·J (H ·J K)
αF,G,H·J K// F ·J (G ·J (H ·J K))

3.3 Relative monads are the same as lax monoids in [J, C]

With a lax monoidal structure present on the functor category [J,C], we should
expect that relative monads on J are the same thing as lax monoids in this
structure, generalizing the case of ordinary monads on C and the strict monoidal
structure on the endofunctor category [C,C]. This is indeed the case.

Theorem 5. Assume that LanJ ∈ [J,C]→ [C,C] exists.

1. Given a relative monad (T, η, (−)∗) on J , define, for any X ∈ |J|, a map
µX ∈ C (LanJ T (T X), T X) by µX =df [(−)∗]. This is well-defined, since
(−)∗ is natural: (−)∗ ∈ [Jop,Set] (C (J −, T X),C (T −, T X)).
Then (T, η, µ) is a lax monoid in the lax monoidal category ([J,C], J, ·J , λ, ρ, α):
we have that T ∈ |[J,C]|, η ∈ [J,C] (J, T) and µ ∈ [J,C] (T ·J T, T), and the

following diagrams commute in [J,C]:

T ·J J
T ·Jη // T ·J T

µ

��

T

SSSSSSSSSSS

SSSSSSSSSSS

ρT

OO

T

J ·J T
λT //

η·JT

��

T

00000000

00000000

T ·J T
µ // T

T ·J (T ·J T)
T ·Jµ // T ·J T

µ

��

(T ·J T) ·J T

αT,T,T 55kkkkk

µ·JT ��
T ·J T

µ // T

2. Given a lax monoid (T, η, µ) in ([J,C], J, ·J , λ, ρ, α), define, for any X,Y ∈
|J|, a function (−)∗ ∈ C (J X, T Y)→ C (T X, T Y) by k∗ =df µY ◦ ι k. Then
(T, η, (−)∗) is a relative monad on J .

3. The above correspondence is bijective.

The bijective correspondence between relative monads on J and lax monoids
in [J,C] extends to an equivalence of categories, but we must omit the details
here (we have defined neither relative monad maps nor lax monoid maps).

Moreover, just as the availability of LanJ ∈ [J,C] → [C,C] allows us to
define relative monads based on µ rather than (−)∗, it also facilitates a more
traditional-style definition of EM-algebras (see Appendix).

4 Well-behaved relative monads

It is somewhat unsatisfactory to obtain that [J,C] just lax monoidal, rather than
properly monoidal. This begs the question: would some conditions on J ensure
a properly monoidal structure? The answer is affirmative. Mild conditions turn
the lax monoidal structure of [J,C] into properly monoidal. What is more, the
same conditions also make relative monads on J extend to monads on C.

4.1 Well-behavedness conditions

We define three well-behavedness conditions on J . They are additional to the
existence of LanJ ∈ [J,C] → [C,C] and require the constituent maps of three
canonical families, which are actually natural, to be isomorphisms. For our pur-
poses, these conditions are mild.

Definition 4. J ∈ J → C is well-behaved, if not only does LanJ ∈ [J,C] →
[C,C] exist, but also the following three conditions hold:

1. J is fully faithful, i.e., for any X,Y ∈ |J|, there is an inverse to the map

JX,Y ∈ J (X,Y)→ C (J X, J Y)
JX,Y f =df J f

2. J is dense, i.e., for any X,Y ∈ |C|, there is an inverse to the map

KX,Y ∈ C (X,Y)→ [Jop,Set] (C (J −, X),C (J −, Y))
KX,Y f =df λg. f ◦ g

or, in other words, the functor K ∈ C → [Jop,Set], defined by KX =df

C (J −, X), is fully faithful.

3. For any F ∈ J→ C, X ∈ |J|, Y ∈ |C|, there is an inverse to the map

LFX,Y ∈ LanJ (C (J X,F−))Y → C (J X,LanJ F Y)
LFX,Y =df [λg. λg′. ι g ◦ g′]

Example 7. The functor Jf ∈ Fin → Set is well-behaved. The functor JU ∈
U → Cat of Example 4 is well-behaved, if the type-theoretic universe U ∈
Set,El ∈ U → Set is is closed under dependent products (categorically this
corresponds to the induced category U being cartesian).

From the well-behavedness of Jf , it follows that [Fin,Set] is monoidal and
Lam is a monoid. These facts were proved by Fiore et al. [11].

4.2 [J, C] is monoidal

Our well-behavedness conditions suffice to ensure that the unital and associativ-
ity laws of the lax monoidal structure on [J,C] are isomorphisms. Specifically,
the existence of inverses of J,K,L ensures that ρ, λ, α (and consequently also λ,
α) have inverses too.

Theorem 6. If J ∈ J→ C is well-behaved, then

1. for any F ∈ J→ C, X ∈ |J|, the map ρ−1
F,X ∈ C (LanJ F (J X), F X) defined

by ρ−1
F,X =df [λg. F (J−1 g)] is an inverse of ρF,X ;

2. for any X ∈ |J|, the map λ̄−1
X ∈ C (X,LanJ J X) defined by λ̄−1

X =dfK
−1 ιJ,X

is an inverse of λX ;
3. for any F,G ∈ J→ C, X ∈ |J|, the map

ᾱ−1
F,G,X ∈ C (LanJ F (LanJ GX),LanJ (LanJ F ·G)X) defined by ᾱ−1

F,G,X=df

[λg. [λg. λg′. ι g ◦ ι g′] (L−1 g)] is an inverse of αF,G,X .

Hence, the category ([J,C], J, ·J , λ, ρ, α) monoidal.

As an immediate corollary, we get that, in the well-behaved case, relative
monads are proper monoids in a properly monoidal structure.

Corollary 1. If J→ C is well-behaved, then a relative monad (T, η, (−)∗) is the
same as a monoid (T, η, µ) in the monoidal category ([J,C], J, ·J , λ, ρ, α).

4.3 Relative monads extend to monads

As a pleasant bonus, the well-behavedness conditions also ensure that a relative
monad extends to an ordinary monad. Crucial here is that, if J is well-behaved,
we have that λ and α are isomorphisms.

Theorem 7. If J ∈ J → C is well-behaved, then a monoid (T, η, µ) in [J,C]
(equivalently, a relative monad on J) extends to a monoid (T#, η#, µ#) in [C,C]
(equivalently, a monad on C), defined by

T# =df LanJ T

η# =df I
λ̄−1

// LanJ J
LanJ η // LanJ T

µ# =df LanJ T · LanJ T
ᾱ−1

T,T // LanJ (LanJ T · T)
LanJ µ// LanJ T

We see that, in the well-behaved case, we can not only restrict monads to
relative monads but also extend relative monads to monads. Thanks to ρ being
an isomorphism, this correspondence is an embedding-projection pair.

Theorem 8. If J ∈ J→ C is well-behaved, then correspondence between monoids
in [J,C] (equivalently, relative monads) and monoids in [C,C] (equivalently,
monads) given in Theorems 7 and 1 is an embedding-projection pair up to the
natural isomorphism ρ: If (T, η, µ) is a monoid in [J,C], then ρT is a monoid
isomorphism between (T, η, µ) and (T#[, η#[, µ#[), i.e., ρT ∈ [J,C] (T, T#[) is
an isomorphism and the following diagrams in [J,C] commute:

J
η //

η#[%%KKKKKK T
ρT��

T#[

T ·J T
µ //

ρT ·JρT ��

T
ρT��

T#[·J T#[
µ#[

// T#[

In fact, (−)[extends to a functor from the category of monads on C to
relative monads on J ; (−)# is its left adjoint. The relative monad maps ρT ∈
[J,C] (T,LanJ T · J) give the unit of the adjunction; the fact that it is a natural
isomorphism strengthens the adjunction into a coreflection. Remarkably, this
adjunction is a lifting from functors to relative monads of the adjunction LanJ a
− · J between [C,C] and [J,C], the defining adjunction of LanJ .

The counit of the adjunction is (T · λ) ◦ αT,J ∈ [C,C] (LanJ (T · J), T).
Differently from the unit, it is generally not an isomorphism, so the adjunction
is not simultaneously a reflection. For example, for C=df Set, J=df Fin, J=df Jf ,
the counit is an isomorphism if and only if the monad T is finitary. This is
important for us: the categories of monads on C and relative monads on J are
generally not equivalent.

Example 8. For the powerset monad P on Set, we have that P X is the powerset
of a set X, P[X=dfP (Jf X) is the powerset of a finite cardinal X, and P[#X=df

LanJf P#X is the finitary powerset (the set of finite subsets) of a (possibly
infinite) setX. The difference between P and P[# arises because P is not finitary.

Example 9. For the relative monad Vec on Jf , Vec#X is the space of vectors
over a possibly infinite coordinate system X that may only have finitely many
non-zero components.

Example 10. For the relative monad Lam on Jf , we have that LamX is the
set of lambda-terms over a finite, nameless context X and Lam#X is given by
the set of lambda-terms over a possibly infinite, name-carrying context X. The
functor Lam# is the carrier of the initial algebra of the functor F ∈ [Set,Set]→
[Set,Set] defined by F GX =df X +GX ×GX +G (1 +X).

For the relative monad Lam∞ the picture is different. Lam∞X is the set of
non-wellfounded lambda terms over a finite, nameless context, but Lam∞#

X
is the set of non-wellfounded lambda terms using a finite number of variables
from a possibly infinite, name-carrying context. This differs from the non-finitary
carrier of the final coalgebra of F , capturing general non-wellfounded lambda-
terms that may use infinitely many variables.

5 Arrows as a special case of relative monads

We now turn to a whole class of examples, Hughes’s arrows [2]. As we shall
see, arrows are relative monads on the Yoneda embedding. This is a nice result
against the background that arrows are commonly perceived as a generalization
of monads. With relative monads, this relationship is turned upside down!

The rigorous definition of arrows by Heunen and Jacobs [12] is as follows:3

Definition 5. A (Set-valued) arrow on a category J is given by

– a function R ∈ |J| × |J| → |Set|,
– for any X,Y ∈ |J|, a function pure ∈ J (X,Y)→ R (X,Y),
– for any X,Y, Z ∈ |J|, a function (≪) ∈ R (Y,Z)×R (X,Y)→ R (X,Z),

satisfying the conditions

– pure (g ◦ f) = pure g ◦ pure f ,
– s≪ pure id = s,
– pure id ≪ r = r,
– t≪ (s≪ r) = (t≪ s) ≪ r.

It follows from the conditions that R is functorial (contravariantly in the first
argument), i.e., R : Jop × J → Set, which is the same as to say that R is an
endoprofunctor on J, and pure and ≪ are natural/dinatural.

A monad (T, η, (−)∗) on J defines an arrow (R, pure,≪) on J by R (X,Y)=df

Kl(T) (X,Y), pure f =df Lf and `≪ k =df ` ◦T k where L is the left adjoint in
the Kleisli adjunction and ◦T is the Kleisli composition.

We show now that an arrow on J is the same thing as a relative monad on
the Yoneda embedding Y ∈ J → [Jop,Set] defined by YX Y =df J (Y,X). By
definition, a relative monad on Y is given by

– a function T ∈ |J| → |[Jop,Set]|,
– for any X ∈ |J|, a map ηX ∈ [Jop,Set] (YX,T X),
– for anyX,Y ∈ |J|, a map function (−)∗ ∈ [Jop,Set] (YX,T Y)→ [Jop,Set] (T X, T Y)

satisfying three coherence conditions.

Theorem 9. 1. An arrow (R, pure,≪) on J gives rise to a relative monad
(T, η, (−)∗) on Y defined by T X Y =df R (Y,X), T f r=df r≪ f , η f =df

pure f , k∗ r =df k id ≪ r.
2. A relative monad (T, η, (−)∗) on Y gives rise to an arrow (R, pure,≪) on

J defined by R (X,Y) =df T Y X, pure f =df η f , s≪ r =df (λf. T f s)∗r.
(The last item is well-defined, as λf. T f s is natural.)

3. The above is a bijective correspondence.

The arrows on J and relative monads on Y form categories and the bijection
between them extends to an equivalence of their categories.
3 Since we compare arrows to monads, not strong monads, we mean “weak” arrows

here: J does not have to be symmetric monoidal and no first operation is required.

It is easy to verify that the Freyd category of an arrow is the Kleisli category
of the corresponding relative monad. Jacobs et al. [19] have previously proved
that “Freyd is Kleisli for arrows” taking “Kleisli for arrows” to mean a construc-
tion that is Kleisli-like under a 2-categorical view of the Kleisli construction for
monads. We can take it to mean “Kleisli for arrows as relative monads”.

The Yoneda embedding is well-behaved. We reconstruct the result of Heunen
and Jacobs [12] about arrows being monoids as an instance of a generality.

Theorem 10. If J is small, then Y is well-behaved, hence the category [J, [Jop,Set]]
is monoidal. An arrow on J is a monoid in this category.

Jacobs and Heunen considered the special case of arrows and showed an
arrow to be a monoid in [Jop× J,Set] (the category of endoprofunctors on J) as
a monoidal category, which is an equivalent statement.

6 Conclusions and further work

We have introduced a generalisation of monads, relative monads, which is moti-
vated by examples and subsumes arrows, a well-known generalisation of monads.
Indeed, when moving to a more precise type discipline, the illusion that every-
thing takes place in only one ambient category (say, Set) can no longer be
maintained and as a consequence we have to revisit the categorically inspired
concepts of functional programming. We believe that our examples demonstrate
that monad-like entities which are not endofunctors are natural; fortunately,
they are precisely monoids in the functor category. We also suggest that our
presentation of relative monads given in Sect. 2.1 is accessible for functional
programmers , indeed it does not differ substantially from ordinary monads.

Our development is only the first step. Due to lack of space, we have not
written about monad maps; we did not comment on the relationship between
relative adjunctions and adjunctions etc.; strong monads (esp. versus strong
arrows) are a further additional topic. We will elsewhere comment on the relation
of our relative monads to the the recent generalization of monads by Spivey [14]
that was also motivated by programming examples: he fixes a functor K ∈ C→ J
(notice the direction) to then look for monad-like structures with an underlying
functor J → C. With Paul Levy we have checked that a fair amount of monad
theory transfers to his generalized monads, but they are not monoids in [J,C]
unless K has a left adjoint, in which case they are equivalent to relative monads.

It seems clear that many of the concepts known from ordinary monads carry
over to the relative setting. We have already mentioned Jaskelioff’s work on
monad transformers which is expressed in a general monoidal setting and hence
carries over to relative monads. We hope that this generalisation of the monadic
approach leads to new programming structures supporting a greater reusability
of concepts and programs.

Acknowledgements We are grateful to Paul Levy for valuable comments and hints.
T. Altenkirch was supported by the Engineering and Physical Sciences Research Coun-
cil (EPSRC) grant no. EP/G034109/1. J. Chapman and T. Uustalu were supported by
the Estonian Centre of Excellence in Computer Science, EXCS, financed by the Eu-

ropean Regional Development Fund. T. Uustalu was also supported by the Estonian
Science Foundation grant no. 6940.

References

1. Uustalu, T., Vene, V.: Comonadic notions of computation. In Adamék, J., Kupke,
C., eds.: Proc. of CMCS ’08, ENTCS 203(5), Elsevier (2008) 263–284

2. Hughes, J.: Generalising monads to arrows. Sci. of Comput. Program. 37(1–3)
(2000) 67–111

3. McBride, C., Paterson, R.: Applicative programming with effects. J. of Funct.
Program. 18(1) (2008) 1–13

4. Agda team: Agda (2009) http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.
5. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-

ators as arrows. Math. Struct. in Comput. Sci. 16(3) (2006) 453–468
6. Altenkirch, T., Green, A.: The Quantum IO Monad. In Gay, S., McKie, I., eds.:

Semantic Techniques in Quantum Computation. Cambridge University Press (to
appear).

7. Piponi, D.: Commutative monads, diagrams and knots. In: Proc. of ICFP ’09.
ACM Press (2009) 231–232

8. Morris, P., Altenkirch, T.: Indexed containers. In: Proc. of LICS ’09, IEEE CS
Press (2009) 277–285

9. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc.
of LICS ’04, IEEE CS Press (2004) 415–425

10. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Proc. of QPL ’05, ENTCS 210, Elsevier (2007) 139–163

11. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc.
LICS ’99. IEEE CS Press (1999) 193–202

12. Heunen, C., Jacobs, B.: Arrows, like monads, are arrows. In Brookes, S., Mislove,
M., eds.: Proc. of MFPS ’06, ENTCS. 158. Elsevier (2006) 219–236

13. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. in Comput. Sci. 7(5) (1997) 453–468

14. Spivey, J.M.: Algebras for combinatorial search. J. of Funct. Program. 19(3–4)
(2009) 469–487

15. Jaskelioff, M.: Lifting of Operations in Modular Monadic Semantics. PhD thesis,
University of Nottingham (2009)

16. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In Flum, J., Rodŕıguez-Artalejo, M., eds.: Proc. of CSL ’99. LNCS
683, Springer (1999) 453–468

17. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda
calculus. In: Proc. PPDP ’02. ACM Press (2002) 26–37

18. Abbott, M., Altenkirch, T., Ghani, N.: Containers—constructing strictly positive
types. Theor. Comput. Sci. 342(1) (2005) 3–27

19. Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows. J. of Funct.
Program. 19(3–4) (2009) 403–438

THIS APPENDIX IS NOT PART OF THE PAPER

An equivalent version of EM-algebras

Just as the availability of LanJ ∈ [J,C] → [C,C] allows us to define relative monads
based on µ rather than (−)∗, it also facilitates a more traditional-style definition of
EM-algebras.

Definition 6. If LanJ ∈ [J,C] → [C,C] exists, an EM-algebraalt of a relative monad
T on J is given by an object X ∈ |C| and a map x ∈ C (LanJ T X,X), making the
following diagrams commute in C:

LanJ J X
λX //

(LanJ η)X

��

X

11111111

11111111

LanJ T X
x // X

LanJ T (LanJ T X)
LanJ T x// LanJ T X

x

��

LanJ (LanJ T · T)X

αT,T,X 33ggggggg

(LanJ µ)X ��
LanJ T X

x // X

An EM-algebrasalt map between (X,x), (Y, y) is a map h ∈ C (X,Y), making the
following diagram commute in C:

LanJ T X
LanJ T h //

x ��

LanJ T Y
x��

X
h // Y

EM-algebrasalt and EM-algebraalt maps of T form a category EMalt(T) that in-
herits the identities and composition from C.

Theorem 11. Assume that LanJ ∈ [J,C] → [C,C] exists. Consider a relative monad
T on J .

1. An EM-algebra (X,χ) gives rise to an EM-algebraalt (X, [χ]). An EM-algebra map
between (X,χ), (Y, ψ) is also an EM-algebraalt map between (X, [χ]), (Y, [ψ]).

2. An EM-algebraalt (X,x) gives rise to an EM-algebra (X,λg. x ◦ ι g). An EM-
algebraalt map between (X,x), (Y, y) is also an EM-algebra map between
(X,λg. x ◦ ι g), (Y, λg. y ◦ ι g).

3. The above correspondence is an equivalence of the categories of EM(T) and EMalt(T).

