A user’s guide to ALF *

Thorsten Altenkirch Veronica Gaspes Bengt Nordstrom

Bjorn von Sydow
Department of Computing Science
University of Goteborg/Chalmers

S-412 96 Goteborg Sweden

Draft June 14, 1994

Contents
1 Introduction
2 A first example

3 Description of the system

3.1 The twomain windows
3.2 Themouse,
3.3 Thescratcharea
3.3.1 The Filemenu
3.3.2 The Defineemenu
3.3.3 The Construct-menu
3.3.4 The Edit-menu
3.3.5 The Goalmenu
3.3.6 The Context-menu
3.3.7 TheView-menu.
3.4 The constraints

4 The ALF Libraries

4.1 The Micro Library
4.2 The Contributions Library

5 Bugs and improvements to be made
6 History of the system
7 Acknowledgements

A Syntax

*This research has been done within the ESPRIT Basic Research Action
grams”. It has been paid by NUTEK and Chalmers.

15
........... 15
........... 21

21
22
22

22

“Types for Proofs and Pro-

1 Introduction

ALF (“Another Logical Framework”) is a structure editor for Martin-L&éf’s monomorphic
type theory; i.e. it ensures that the constructed objects are wellformed and welltyped '. Tt
can be used for the development of proofs and programs and for the integrated verification
of functional programs. ALF emphasizes the interactive development of type-theoretic
constructions, i.e. proof objects and programs, using a window-based user interface. Thus
ALF supports an arbitrary mixture of top-down and bottom-up development.

A logical framework is a pure dependent Type Theory. It is an open theory, i.e. the
user can add constants and equations. In the current implementation of ALF there is
no check whether the theory is consistent. However, the user can restrict herself to the
set theory described in [13] — this is implemented as a library. New inductive sets can
be added following [7, 6]. Recently Coquand has proposed to use pattern matching to
introduce new non-canonical constants [3], see also the discussion in [5]. The interactive
definition of proofs/programs by pattern matching is supported by ALF. See also [4] to
get a recent description of the type theory used in ALF.

The basic metaphor of ALF is the refinement of an incomplete proof object which is
displayed in a window (scratch area). By using the mouse the user can fill in placeholders
by first pointing to them and then selecting a previously constructed object from a menu.
ALF uses unification to fill in further placeholders automatically. If this is not yet possible
ALF generates a set of constraints, which can also be manipulated from the user interface.
Once the construction of the current object has been completed the object is moved to
another more permanent window (theory window).

ALF has been used to formalize parts of intuitionistic mathematics or to verify simple
programs:

e Nora Szasz has given a formal proof [14] that Ackermann’s function is not primitive
recursive.

e Bjorn von Sydow [15] showed the fundamental theorem of arithmetic, i.e. that every
integer is a product of a unique multiset of primes.

¢ K.V.S. Prasad and Karlis Cerans have made experiments in expressing proofs about
various process calculi.

e Michael Hedberg constructs a category of semilattices and approximable mappings
and show that it is cartesian closed and wellpointed.

e Veronica Gaspes showed [9] functional completeness of combinatorial logic, i.e. that
every function can be compiled into an expression only involving the basic combina-
tors S, K and 1.

e Daniel Fridlender presented formal proofs of Higman’s lemma and of an intuitionistic
version of Ramsey’s theorem. [8].

e Peter Dybjer and Thierry Coquand formalized a normalization proof for intuition-
istic propositional logic using glueing.

'See [10] and [11] for some details of the implementation.

e Jan Cederquist formalized the intuitionistic approach to pointfree topology and do-
main theory developed by Martin-Lof and Sambin.

e Thierry Coquand developed a semantical proof of Cut-Elimination for propositional
logic and formalized a type checker for simply typed lambda calculus.

e Catharina Coquand formalized a semantic analysis of simply typed lambda calculus
including a normalization proof [2].

e Bror Bjerner implemented the language P (based on while-loops and registers).

o Gustavo Betarte formalized the set Z of integer and the proofs that Z with addition
and multiplication form an integral domain [1].

e Thorsten Altenkirch formalized different sorting algorithms (insertion-sort, merge-
sort and quicksort).

ALF is an experimental tool and still very much in development; there are a number of
known bugs - see section 5. Later version of ALF should inculde a consistency check and
a program extraction facility.

2 A first example

In this section we give a detailed presentation of how the system is used to develop a small
example. We define the set of natural numbers, define addition and the < relation and
prove two results: that < is transitive and that m < m+ n for all natural numbers m and
n.

When ALF is started two windows appear on screen: the theory window and the
scratch window. Both are split into subwindows by horizontal lines; the theory window
consists of two subwindows and the scratch window of three. All five subwindows are
initially empty. In the initial state only the basic type theory is known to the system. A
theory is developed by making a sequence of definitions of various kinds. At the top of the
scratch window we find a menu bar. We use the mouse to select (with any mouse button)
the Define entry and the following menu appears:

File [Define |Construct Edit Goal Matching Context Wiew |
ScratchE<plicit Constant,.,.
Implicit Constant,,.
set...

Tupe...
Context,, .

Uidnat it i
HERLATAIN I,

The different entries represent the kinds of objects that can be defined. We will
introduce them one at a time and start to define the set of natural numbers. So we
move the mouse cursor to the entry Set... and release the mouse button. A small text
editor window pops up and prompts us to give the name of the set to be defined. We type
the name N:

[@][=][2] {2][=][+]F]]

MName of new set:

[|

Cancel

113

We then strike the Return key (or click on the Ok button) and the pop-up window
disappears. Instead the incomplete definition appears in the scratch area, which is the top
subwindow of the scratch window:

Scratch Avea
I‘II..E..?N_T []

The first reason that the definition is incomplete is that the type of the new constant N
has not yet been specified, as can be seen from its type 7 . For the moment we ignore
the significance of the subscript. It suffices to know that we have to complete the definition
of this placeholder. We also ignore the empty pair of brackets following the definition. So
we select the placeholder, using the left mouse button. It appears in inverted video and
we click on the right mouse button to get a menu with the available options:

I, T

Set

Prop

(7%

e ??
Pazte

Edit As Text...

M. M™r

The choices Set and Prop represent the two predefined ground types of sets and
propositions, respectively. (These two are actually synonyms, because of the identification
of proposition and sets). The two next choices represent non-dependent and dependent
function types. There is also the possibility to paste a type from some previous definition
or to invoke the text editor. These six items are always present in this menu when the
selection is a type expression. At the end there is a context-sensitive part, where additional
possibilities may appear. In our case we choose the first item, i.e. Set and the placeholder
is replaced by our choice. You may wonder at this point why we had to make this choice
since we already had indicated that we wanted to define a set. This will be explained
below, when we define <.

It is now clear to the system that the name N denotes a set. However, to complete the
definition we have to give the constructors of the set. In this case the constructors are 0

and the successor function. To define these, we select N (left mouse button!) and invoke
the menu of options (right button!):

Make constructor,..

It should be obvious that the choice should be Make constructor.... The text editor
window pops up and we type 0 as the name of the first constructor. When the window
closes, we see in the scratch area that we have to give the type of 0. We select the
placeholder for the type and invoke the command menu. Now the final, context-sensitive
item N € Set is the correct choice? and the situation is the following;:

Scratch Avea
N.c.Set []
0.e.N []

As should be apparent already now, the ALF user does almost all work by selecting
items using the left mouse button and invoking the pop-up menu of commands applicable
to the selection with the right button. Occasionally some text has to be typed in the
pop-up text editor.

We are not yet finished with N; there is one more constructor. So we select N, choose
Make constructor... from the command menu and type succ in the editor. The next step
is to give the type of succ. Since it is a function, we should choose a function type from
the command menu. The type of the successor function is non-dependent, so we could use
the (?7)? entry. However, if we have a preferred variable name to use for an unspecified
argument to the function, it is convenient to indicate this now. This will be explained in
more detail below, so let us for the moment accept that it is a good idea to choose the (x
€ 7)? entry. The text editor prompts us for a name and we type n. There are now two
placeholders in the type for succ and we select them in turn and use the pop up menu to
set them to N. The definition of the set of natural numbers is now complete:

N.s. Set []
succ. e (ne NI N []
0.e.N []

Before we continue, we consider briefly what one can do in case of mistakes. Select
the type of succ, i.e. (n € N)N. In doing this, note that the selection is always a complete
subexpression. Thus the best way of selecting the entire type is to click on one of the
parentheses, since the smallest enclosing expression is then the entire type. Now invoke
the pop up menu and choose Clear. The type is replaced by a placeholder and we may

2Note that the type of N is known now, which it was not the previous time we saw the menu.

start again to give the type®. To do this, we use another method: We double-click on
the place-holder and the text editor pops up. We may now give the entire type (using
colon for €): (n:N)N. This is a general feature; by double-clicking when selecting, the text
editor pops up and one may edit the expression as text. Of course, this may produce a
syntactically incorrect expression. In that case, one gets an error message and may open
the editor again to correct the error.

The definition of N is now complete. We select it (click on N) and invoke Move-to-
theory from the pop-up menu. The definition disappears from the scratch area and appears
instead in the lower half of the theory window. Completed definitions should be moved to
the theory. If it is necessary to change an already completed definition one has to move
it back to the scratch area first by selecting it and choosing Move-to-scratch. If necessary
multiple definitions have to be selected (shift left-button) and moved at once.

As our next step, we define the constants 1 and 2 as abbreviations or, in ALF termi-
nology, explicit constants. To do this, open the Define menu and choose Explicit constant....
When prompted for the name, we answer 1 and the result in the scratch area is

1..5..?1..6..?1_1' []

Both the type and the value of this constant have to be defined. We may start with
either. We choose the type, so we select this placeholder and find the choice N in the
pop-up menu. Next, we select the value placeholder and find succ in the menu. Choosing
this will have the effect

1= succ(%). e N []|

i.e., a new placeholder is inserted for the argument to succ. The type-checker of ALF
has realized that if 1 is to be a natural number, it cannot be succ itself, but rather
succ applied to a natural number. We complete the definition by selecting the remaining
placeholder and choosing 0 from the menu. Here we can also note that in the menu we
are also offered the choice 1 € N, which would give the circular definition 1 = succ(1) €
N. If this choice is attempted, an error message results. We see from this example that
the context-sensitive choices offered are somewhat roughly computed and may not always
be possible to select. In a similar way we define 2 as succ(1).

We go on to define addition. This can be done by a pair of recursive equations with
case analysis on one of the arguments. In ALF terminology, this is an implicit constant.
We note here also that the present version does not admit infix operators, so we prefer
the name plus. The first step is to choose Implicit constant... from the Define menu and
reply with this name when prompted. The next step is to give the type of the constant.
We choose to do this with the text editor (double-click!):

% An unwanted feature of the present version is that the constructors are reordered on the screen by this
action. This causes no harm, but is somewhat annoying.

lus. = :
plas. < - 1R (@[][] {1][<][+]H]

Enter type:
[(m,n: M| |

Ok, Cancel

To fill in the definition, we select the name plus and choose Make pattern from the
menu. A defining equation with a placeholder as right-hand side appears. However, we
cannot fill in this placeholder yet. We want to do case analysis on the first argument (the
choice of the first rather than the second is arbitrary), so we select the parameter m in the
left-hand side and invoke Make pattern again. The equation is split in two, one for each
possible constructor form of N. Now the right hand sides of the equations can be easily
filled in, by a sequence of selections and choices from the pop-up menu.

plus. e . .(m.a e NN]
plus(0, 7). =&
plus{succiza;),.q). .= succ(plus(a; . 2))

We have defined plus by pattern-matching on its first argument. In such definitions, we
allow recursive calls. To ensure that a recursive definition leads to a well-defined function it
is necessary that there is an argument position in which the recursive call has a structurally
smaller argument. In the case of plus, the first argument has this property. The present
version of ALF does not enforce this condition. It is thus possible in ALF to make
meaningless recursive definitions, such as f(x) = f(x). The user must manually check that
recursive definitions are well-formed.

We may now move our completed definitions to the theory and go on to define Leq, the
relation “less than or equal to” on N. For any two natural numbers m and n, Leq(m,n) is
a proposition or, equivalently, a set. The ALF action to define this is therefore to choose
Set... from the Define menu and choose the name Leq when prompted by the text editor.
This leaves us in the situation

Leq--e--?Leq.T []

and we now see why we have to give the type of Leq also in the Set... case. Leq is
not a set itself; rather it is a function that given two natural numbers produces a set. We
say that Leq is a family of sets. So we may double-click on the placeholder for the type
and type (m,n:N)Set. We note that we have our first example of a dependent set; for each
choice of m and n we have a distinct set (proposition), whose elements are the proofs of the
proposition. Of course, this will mean that Leq(2,1) will have to be defined to be empty,
while Leq(1,2) will be inhabited. Next we have to give the constructors. There are many
ways to define Leq. A convenient one is an inductive definition: we have Leq(0,n) for any n
and also that Leq(succ(m),succ(n)) if Leq(m,n). These two cases will give the constructors

of the set. We have to invent two names for the two cases and define the constructors as
before:

Leg.e..(m.n e M) Ret []
leg 0.=..(n € N Leq(0.2) []
leg_suce. €. (m,.n e N; p e Leqgim,r)) Leq(succim), succ{r)) []

To help understand this definition, we can check that leq_0(1) is a proof (element) of
Leq(0,1) and leq_succ(0,1,leq-0(1)) a proof of Leq(1,2). As a more interesting example,
we now prove that Leq is transitive. This theorem is represented by the set (m,n,k:N;
p:Leq(m,n); q:Leq(n,k))Leq(m k). To prove it, we have to define a constant leq_trans of this
type. Since the theorem involves arbitrary natural numbers, we define this as an implicit
(recursive) constant. The first steps, including the first Make pattern, give the situation

leg rans. . =..(m, 0,k € N; p € Leq(m,.n); ¢ € Leg(n, &)) Leglm, &) []
leq_trans(m, 2, &,2,). =. Nleq twans0 E

It now seems natural, following the ideas in defining plus, to do pattern matching on
one of the natural number arguments. However, it turns out to be even better to do
pattern matching on the proof arguments p and q. To do this, we first have to move
the definition of the family Leq to the theory, since we are not permitted to do pattern
matching on an argument whose type is in the scratch area. (Such a definition could later
be extended with another constructor, which would invalidate the pattern matching done).
After having done this, we select p and invoke Make pattern. The following happens:

leq rans. .. .(m.n,k € N; p € Leqim, 7)), ¢y € Leq(n, &)) Legiz, &) []
leq wans{_,»,4&,1eq 0L), ¢). = "eq tams00E
leq wans(,_, k. leq succ(?;,. 2,000, ¢) = Neq tars 0 1E

The two constructors for Leq appear in the respective cases, but some arguments
have been replaced by a wildcard _. This is because there is a dependency between the
arguments. In the first equation, the third argument leq_0(_) has (according to the typing
of leq_trans) type Leq(m,n). On the other hand, according to the definition of Leq, leq_-0(x)
has for any x type Leq(0,x). These two types are now unified and ALF is able to conclude
that m must be 0 and that also x=n. The latter is enforced by choosing n as argument
to leq_0. Such inferred arguments are not displayed by the system but instead shown as a
wildcard. This device maintains the patterns in linear form, i.e. no variable appears more
than once.

The first equation can now easily be completed. To do this, we select the right hand
side. Here we note a fact that we have not mentioned before. The small bottom subwindow
of the scratch window displays the type of the selection, in this case Leq(0,k). An element
of this type is obvious: it is leq-0(k), which we construct by choosing leq_0 from the
pop-up menu. The argument k is inferred by the system and filled in automatically. It
remains to define the right hand side of the second equation. Selecting it we see its type
Leq(succ(m1),k)) at the bottom of the theory window. We cannot directly give a proof of

this; leq_succ requires both its first two arguments to be on successor form. Thus we do
pattern matching on q. Now something interesting happens; only one of the cases appear:

leg_trans. . ..(m,4,.k € N; p € Leq(m,2); ¢ € Leq(a, &) Leq(m, &) []
leg_trans(2,42, leq 00),.4). = leqg_O0%)
lﬂq_tFBHSLJ,_,_J_lﬁ.q_SUCCIim;J_.?E; J-FEJJ-IEQ—SHCCL :--’3:-}9”- = ?leq_uans.lil.l.l.E

The reason for this is apparent when the situation is analyzed: Since p now has con-
structor leq_succ, n cannot be 0 and thus the proof q:Leq(n,k) cannot have constructor
leq_0. The type of the right hand side of the remaining case is Leq(succ(m1),succ(n)) and
an application of leq_succ seems appropriate. We try this and the right hand side is partly
completed to leq_succ(m,n,?), where the remaining placeholder has type Leq(m1,n). The
situation is the following, where we have opened the pop-up menu to see what is available
to us:

leqg trans. .= .(m,un,k € N; p € Legim,8); ¢ € Leg(n, &) Leq{m, &) []
leg_rans(_, &, &, leq O 1,.g)..= leq Q&)

leq_trans(_,_,_ leq succim;, 2, p:)leq suecl &1, pl) =
leg_succiz; .2, =)
[x]7
[x..]7
Pazte

Edit Az Text,..

n: .= Legimg, n)
.= Leqia; .2
leg_suce. . e..(m,.n € N;
I € Leq(m,.n)) Leq{succim), succin))
leg_0.e..(# € N) Leq(0,x)

leg_trans. . =..(m,.8,.4 € N,
p < Leq(m,n);
g e Leq(n, %)) Leq(m,.&)

We see that we have pl and p available, which would give us a term of the required
type by a recursive application of leq_trans itself. We make this choice and have to fill in
the arguments pl and p, which cannot be inferred by the system. This completes the proof
and it remains only to check that the recursive call is on a structurally smaller argument.
This is indeed the case, as the third argument in the recursive call is on pl, which is one
of the arguments to the constructor in the corresponding position on the left hand side.

Finally, we prove the simple result leq_plus:(m,n:N)Leq(m,plus(m,n)). We define this as
an implicit constant and do pattern matching on m. This gives us

legplus..=..(m,2 € W) Leg(m, plasiz,.2 []
leq plus{0,#). = Teq plusonE
leq plus{succ(n;), 7)..=.. Meq pls.0.1E

Selecting the right hand side of the first equation, we find that its type is Leq(0,plus(0,n)).
But according to the definition of plus, plus(0,n) is definitionally equal to n, which means
that the required type is the same as Leq(0,n), for which we can easily find the proof
leq-0(n). Similarly, in the second case, ALF can use the second defining equality for plus
to compute the type of the right hand side to Leq(succ(m),succ(plus(m,n))) and we can
complete the proof with leq_succ, using a recursive call to leq_plus as third argument:

legplus. e (m,.n = W) Legim, plusiz, 2] []
leq _plus(0, 7). .= leg _O(plus(0,2))
leq_plus({succin;), z). = leq succln;, plus(az, 2], leg_plus(nz, 2))

3 Description of the system

3.1 The two main windows

Two main windows are opened when ALF is started.

[®@][2][2] Alf theory - #nameless# H[[[@][=][7] Alf scratch - #nameless# === [t][~][+]{]

iMFile Define Construct Edit Goal Matching Context Yiew
Scratch Area

#nameless#

One window presents the theory and the other the scratch area. There are also two
minor windows, one window showing the type of the current expression, and one window
showing the constraints which must hold. This will be explained later.

10

The theory is a list of constants with their types and definition. The upper part of the
theory window contains the imported theories, i.e. constants which reside in files which
have been loaded by the system. Imported theories cannot be changed, they can only be
changed by invoking the editor on the files they reside in. The other constants, the current
theory, can be changed by first moving them to the scratch area.

The scratch area is a place where objects and types are being edited, so it contains
incomplete objects and types. These objects can be built using the constants defined in
the current theory and in the scratch area. When an object or type is completely built, it
is moved to the theory window by the user. Below the scratch area there is a subwindow
containing a set of constraints and a window showing the type of the selected expression.

Before we describe the menus which can be used in the two windows we have to explain
how the mouse is used.

3.2 The mouse

We use a mouse with three buttons. The left bution is used to select a subexpression or
a definition. By pressing the shift key it is possible to select more than one definition.
This is used when several constants are to be moved simultaneously between the scratch
area and the theory window. A double click on the left button opens a text editor on the
selected expression. After the text has been edited, it will be parsed and typechecked and
will replace the selected expression. The middle button is used to replace a placeholder
with an application of a constant. So, first select a placeholder (with the left button) and
then move the mouse to the definition of the constant and click on the middle button. A
click on the right button will pop up a menu containing all commands which are applicable
at the selection. If the selection is a placeholder, then it will also give an approximation
of the list of all the applicable constants and locally bound variables. The placeholder will
be replaced by a variable by choosing the variable in the list, and it will be replaced by
an application of the constant which has been chosen.

3.3 The scratch area

The main menus in the scratch area are the following:

3.3.1 The File-menu

This menu is used for interaction with the file system, to read and write theories, to
start a new theory and to quit the editor. Files will be searched in an order decided by
the environment variable ALFPATH. This has a default setting, but can be changed by for
instance putting the command setenv ALFPATH directoryl: directory2: ... in
the file .cshrc.

The file menu contains the following entries:

New... Creates a new empty theory.
Open... Restores the editor to a previously saved state.

Save Saves the current state of the editor.

11

Save As... Saves the current theory and scratch area with a new name. This will also
be done automatically every time the complete command is used to move a defini-
tion from the scratch area to the theory window. It will then be saved in the file
##BACKUP_ALF##.

Revert Reads the theory and the scratch area again, so that all changes becomes undone.

Import... Reads a file into the theory. The content of this file cannot be changed. The
only way to change the content of a theory file is to open it.

Print... Produces a postscript file (default alfout.ps) of the Imports, Main Theory,
Scratch area or Constraints. The postscript file can be previewed or printed directly
or included in a TeX document by using a package like epsf. 4

Quit Quits the editor.

3.3.2 The Define-menu

When you start to build something in the scratch area you first have to tell what kind of
thing you are going to build and then giving it a name. This is done with selections from
this menu.

Explicit Constant Create an explicitly defined constant. This has a definiendum (a
name, a left hand side), a definiens (a right hand side), a type and a context. After
giving the name the other parts are filled in by the user by replacing place-holders
(question marks) with other expressions.

Implicit Constant Create a new implicitly defined constant. This is a constant which
is defined by pattern-matching and possibly recursively defined. After giving it a
name, you tell what type it should have (by incrementally editing placeholders).

Set Create a new a set or a family of sets.
Type Create an explicitly defined constant denoting a type.
Context Create a named context °.

Substitution Create a named substitution. Not implemented yet.

3.3.3 The Construct-menu

When the current selection is a placeholder it is possible to replace the placeholder with
different new incomplete expressions. Depending on where the placeholder is, diffferent
replacements can be made. These are the alternatives:

[x]? In the case that the expected type of a placeholder is a function or a place holder
then it is possible to replace it by an abstraction.

*Note that it may be worthwhile to use postscript software to adjust the bounding box.

®Contexts consists of list of variable declarations, i.e. a list of variables together with their type. Every
constant is defined in a context and the variables in the context can be given a name by using a substitution.
This is in an experimental phase and only partly implemented.

12

[x...]? This replaces the placeholder with a repeated abstraction.

case 7 Replaces the placeholder with a case-expression. This can only be done if the
placeholder is the righthand side of an equation of an implicitly defined constant or
is the righthand side of a branch of another case expression. These restrictions will
be removed.

Make a pattern If the current selection is a typing of an implicitly defined constant or
a variable in the lefthand side of an implicitly defined constant then this command
will create new defining equations for this constant. This command is also used to
create a pattern in a case-expression.

Set Replaces the current placeholder with the expression Set.
Prop Replaces the current placeholder with the expression Prop.

(?)? Replaces the current placeholder with the expression (7;)7,, i.e. a non-dependent
function type.

x : 7)? Asks for a variable name z and replaces the current placeholder with an expres-
p p p
sion (x €71)?, which is a template for a dependent function type.

Make a constructor If the current selection is a typing of a set or a family of sets, then
this command will ask the user to input the name of a new constructor for this set.
As an example, if the current selection is

N € Set
then the user is asked to give the name of a constructor of N.
[] Creates an empty context. Not implemented yet.
... + ? Adds a context to a context. Not implemented yet.
x : ? extends a context with the declaration of a new variable (which is prompted for).
{} Creates an empty substitution. Not implemented yet.

x := 7 Makes a substitution. Not implemented yet.

3.3.4 The Edit-menu

Undo Undo the effects of the last command.

Cut Replaces the current selection with a placeholder and inserts the selected expression
in the cut buffer.

Copy Copies the current selection into the cut buffer.
Paste Inserts the content of the cut buffer into the current placeholder.

Clear Replaces the current expression with a placeholder and deletes all expressions which
are consequences of that expression. °

®Tme implementation of Clear is based on the concept of a local undo; details can be found in [10].

13

Edit as Text Asks the user to input text, which is parsed and replaces the current place-

holder.
Unfold Replace the current selection with its definition (if it is an explicit definition).
Normal Form Replaces the current selection with its value in normal form.
Head Normal Form Replaces the current selection with its value in head normal form.

Expand If the current selection is a definition of an explicitly defined constant then this
constant is removed from the scratch area and all occurrences of it is replaced by its
definiens. Not implemented yet.

Move to theory Moves a definition from the scratch area to the theory window.

Move to scratch Moves a definition from the theory window to the scratch area.

3.3.5 The Goal-menu

Lists all remaining placeholders and their type. You can select a subgoal from this menu.

3.3.6 The Context-menu

Prints the context of the current selection.

3.3.7 The View-menu

This menu is used to change the presentation of expressions.

Show all arguments / hide arguments This is a toggle which says if the system should
show or hide the hidden arguments in an application.

Layout This is used to hide the first arguments of a functional constant. You are asked
to increment a counter to the number of hidden arguments. You can also show how
to display the constant using other fonts (subscripts, a symbol font, different font
sizes etc).

Normal Form Shows the normal form of an object.
Head Normal Form Shows the head normal form of an object.

Command... Gives the user a possibility to give a command directly to the proof engine.
It is intended for people who know the commands of the proof engine. It can be
used for bug reports: you type history f to write on file £ a command history of
the present state. You can also use it to compute the normal form of an expression,
etc.

Full view / Restricted view Normally, only the type of the constants in the theory
is shown. By selecting a constant and applying this menu, the definitions of the
constant will be shown.

14

3.4 The constraints

The scratch area also shows a list of constraints, this is a set of definitional equalities which
must hold for the scratch area to represent well formed partial expressions. Constraints
are being added or deleted as an object is being edited.

It is possible to select a constraint and solve it by choosing “solve” with the right
button. This will take a constraint of the form

where e does not contain placeholders and replace all occurrences of 7 with [z]e in the
scratch area.

4 The ALF Libraries

The ALF libraries provide the user with a collection of theories that may be imported on
demand. The libraries contain commonly used sets, functions and properties of these. Two
libraries are provided: a very basic one (the Micro Library) containing most commonly
used sets; and a more elaborate one (the Contributions Library) where one finds complete
developements in ALF.

The libraries are organized in theories where all sets, functions and properties relating
to some concept are defined. In order to use the constants defined in some theory, one must
import the theory. This is done by using the Import entry in the File menu. ALF then
prompts the user for the name of the theory. The user replies with a theory name, say Nat.
ALF tries to find a file Nat.alf in any of the directories listed in the environment variable
ALFPATH. If this search is successful, the file is loaded and displayed in the upper half of
the ALF theory window. Imported theories may be used but not changed or amended.
When the user saves her current theory (the open theory, which is displayed in the lower
half of the theory window), the system records all imported theories and automatically
imports these the next time the current theory is opened. The ALF libraries reside in
subdirectories of a common site-dependent root directory.

When importing these theories to ALF, applications of some of the constants are
displayed by default with an initial sequence of arguments suppressed. This is indicated
on screen by a vertical arrow (|) in front of the argument name in the type of the constant.
This is intended to improve readability, but can be changed using the command Show all
arguments in the View menu. Some of the constants (such as Sigma) are displayed on
screen using an extended font; these cases should be self-explanatory.

4.1 The Micro Library

This library collects very basic theories concerning the most commonly used sets together
with some elementary properties. It may be imported alltogether invoking Import on
microlib. A core theory provides an implementation of the sets presented in [13], though
without the constants corresponding to the elimination rules. The theory rel provides
constants to characterize binary relations, it formally defines what it means for a binary
relation to be reflexive, symmetric, transitive, decidable, total and defines the accessible
part of a relation. In the theory id properties of propositional equality are proved. The
theory algebra contains definitions characterizing semigroups, monoids and commutative

15

monoids. The theories nat , lists and vec define natural numbers, lists and arrays, toghether
with some functions, relations and properties of these. We now list the theories of the
microlibrary. In this list, the primitive constants are shown as they stand, but for the
defined constants only the name and typing is shown (the definitions themselves have
been hidden, one may inspect them by importing the theories). In writing this library we
have followed the following conventions:

1. names of sets start with a capital letter,
2. names of elements of sets start with a small letter,
3. different words in a name are commenced with a capital letter,

4. for sets with one constructor the same name is used both for the set and the con-
structor.

core
Empty [0 Set
univ 0 (LA O Set; Empty) A
Not 0O (Set) Set
not O (A O Set; (A) Empty) Not(A)
Unit O Set
unit 0 Unit
Bool [0 Set
tt 0 Bool
ff O Bool
> 0 (AD Set; BO (A) Set) Set
pair 00 (WA 0O Set; .BO (A)Set; alA; b 0 B(a) (A B
Prod OO (Set; Set) Set
prod O (1A, :B 0 Set; a A; b O B) Prod(A, B)
Plus OO (A, B O Set) Set
int O (LA, B0 Set; a0 A) Plus(A, B)
inr O (WA, :B 0O Set; b O B) Plus(A, B)
Lift O (Set) Set
bot O (A O Set) Lift(A)
in O (LA O Set; A) Lift(A)
M O (ADQ Set; BO (A) Set) Set
A O (GADSet; BO(A)Set; f O (all A)B(a)) MN(A, B)
Fun O (A, B O Set) Set
fun O (LA, B O Set; f O (A)B) Fun(A, B)
Id O ((ADO Set; a,b 0A) Set
id O (A D Set; x OA) ld(x, x)
I O (GAD Set; A)A
o (1A 1B.CO Set; (BC (AB A C

16

rel
Refl O (A O Set; RO (A; A) Set) Set
refl O (WA O Set; RO (A; A)Set; (alA)R(a, a) Refl(R)
Sym O (A O Set; RO (A; A) Set) Set
sym O (LA O Set;
VRO (A; A) Set;
(a,a OA;R(a, @))R(@, @) Sym(R)
Trans O (LA O Set; RO (A; A) Set) Set
trans 00 (1A O Set;
VRO (A; A) Set;
(aa,a’ A R@ a);R@,a’))R(a a’)) Trans(R)
Dec O (1A [0 Set; P [0 (A) Set) Set
dec O (LA O Set; P O (A) Set; (all A) Plus(P(a), Not(P(a)))) Dec(P)
DecR O (1A O Set; RO (A; A) Set) Set
decR O (LA O Set;
RO (A; A) Set;
(a, @ OA)Plus(R(a, @), Not(R(a, a')))) DecR(R)
Tot O (A O Set; RO (A; A) Set) Set
tot 0 (LA O Set;
RO (A; A) Set;
(a,a OA)Pus(R(a, @), R(@', a))) Tot(R)
Acc O (1A O Set; (A; A) Set; A) Set
acc 0 (LA O Set;
RO (A; A) Set;
alA;
(bOA; R(b, a)) Acc(R, b)) Acc(R, a)
id
substld O (1A O Set; 1a,:b OA; Id(a, b); C O (A) Set; C(a)) C(b)
respld O (LA, :B O Set; 1a,1a OA; f O (A)B; Id(a, @)) Id(f(a), f(a'))
reflid O (A O Set) Refl(1d())
symidl O (A O Set; a,b 0A; Id(a, b)) Id(b, @)
symid O (A O Set) Sym(ld())
transldl O (A O Set; a, b,c O A; Id(a, b); 1d(b, ©)) Id(a, ¢
transid O (A O Set) Trans(ld())

17

algebra
Assoc O (A O Set; op O (A; A)A) Set
assoc [(A O Set;
op O (A A)A;

(x, y, L A)ld(op(op(x, y), 2), op(x, op(y, 2)))) ASSOC(A,

Comm O (A O Set; op O (A; A)A) Set
comm O (A O Set;
op O A A)A
y 1 A)Id(op(x, y), op(y, X))) Comm(A, op)
WithUnitL [(A D Set; op O (A;A)A) S
withUnitL 00 (A O Set
op O (A; A A,
e A
(x OA) Id(op(e, x), X)) WithUnitL(A, op)
Semigroup O (A O Set; op O (A; A) A) Set
semigroup O (A O Set;
op O (A A)A;
Assoc(A, op)) Semigroup(A, op)
WithUnitR O (A O Set; op O (A; A) A) Set
withUnitR O (A O Set;
op O (A A)A;
e A
(x OA) Id(op(x, €), X)) WithUnitR(A, op)
Monoid [0 (A O Set; op O (A; A)A) Set
monoid 0 (A [Set;
op O (A A)A;
Assoc(A, op);
WithUnitL (A, op);
WithUnitR(A, op)) Monoid(A, op)
CommMonoid [0 (A O Set; op O (A; A)A) Set
commMonoid O (A O Set;
op O (A A)A;
Assoc(A, op);
Comm(A, op);
WithUnitL (A, op);
WithUnitR(A, op)) CommMonoid(A, op)

18

op)

nat
Nat [0 Set

0 O Nat

s O (Nat) Nat
Lt O (Nat; Nat) Set

[t0 O (i O Nat) Lt(0, s(i))

It1 O (.1, O Nat; Lt(i, j)) Lt(s(i), s(j))
add O (Nat; Nat) Nat
i S O (ui, 1) O Nat; 1d(s(i), s(j))) 1d(, j)
noConfNat [0 (:i O Nat; 1d(0, s(i))) Empty
egNatl 0O (i,j O Nat) Plus(ld(i, j), Not(ld(i,)))
egNat O DecR(Id())
Le O (Nat; Nat) Set
ltLeml O (i O Nat; Lt(i, 0)) Empty
ltLem2 O (.i,:j O Nat; Lt(i, s(j))) Plus(Id(i, j), Lt(i, }))
accLtaux O (i O Nat; (j ONat; Lt(j,i)) Acc(Lt,j); k O Nat; Lt(k, s(i))) Acc(Lt, k)
accLt O (i O Nat) Acc(Lt,i)
ltLem3 O (m n O Nat; Lt(s(m), s(n))) Lt(m, n)
decRLt1 0O (m n O Nat) Plus(Lt(m, n), Not(Lt(m, n)))
decRLt [0 DecR(Lt)
trichLt O (m n O Nat) Plus(Lt(m, n), Plug(Lt(n, m), Id(n, m)))
totalLe O (m, n O Nat) Plug(Le(m, n), Le(n, m))
leSuccLem O (m,n O Nat; Le(m, n)) Lt(m, s(n))
[tSuccLem O (n O Nat) Lt(n, s(n))
assocAddl O (x,y, z O Nat) ld(add(add(x, y), 2), add(x, add(y, 2)))
commAddLeml O (x O Nat) Id(x, add(x, 0))
commAddLem2 O (x,y O Nat) ld(s(add(x, y)), add(x, s(y)))
commAddl O (x,y O Nat) Id(add(x, y), add(y, X))
withUnitLAddl O (x O Nat) Id(add(0, x), X)
withUnitRAdd1 O (x O Nat) Id(add(x, 0),)
assocAdd [0 Assoc(Nat, add)
commAdd 0 Comm(Nat, add)
withUnitLAdd O WithUnitL(Nat, add)
withUnitRAdd [0 WithUnitR(Nat, add)
addCommMonoid O CommMonoid(Nat, add)

19

lists
List O (A O Set) Set
nl O (A DO Set) List(A)
cons O (1A O Set; aOA; | O List(A)) List(A)
map O (LA, :BO Set; f O (A)B; | O List(A)) List(B)
append O (1A O Set; List(A); List(A)) List(A)
LigAll O (A O Set; P O (A) Set; List(A)) Set
[a0 O (LA O Set; P O (A) Set) LigtAll(P, nil())
lal O (LA O Set; P O (A) Set; a0 A; .l O List(A); P(a); LigAll(P, 1)) LigtAll(P, cons(a, 1))
length O (LA O Set; List(A)) Nat
listldLeml O (LA O Set; 1a O A; «x O List(A); 1d(nil(), cons(a, x))) Empty
listtdLem2 O (1A O Set;

g, b OA

X, 1y O List(A);

Id(cons(a, x), cons(b, y))) Id(a, b)
listtdLem3 O (1A O Set;

g, b OA

X, 1y O List(A);

Id(cons(a, x), cons(b, y))) Id(x, y)
decldListl O (LA O Set;

d O (a, bOA) Plug(ld(a, b), Not(Id(a, b)));

X,y O List(A)) Plus(ld(x, y), Not(ld(x, y)))
decldList O (A O Set; d O DecR(1d())) DecR(1d())
assocAppendl [0 (A O Set;

X, ¥,z O List(A)) Id(append(append(x, y), 2),

. append(x, append(y, 2)))
withUnitLAppendl O (A O Set; x O List(A)) Id(append(nil(), x), X)
withUnitRAppendl O (A O Set; x O List(A)) Id(append(x, nil()), x)
assocAppend O (A O Set) Assoc(List(A), append())
withUnitLAppend O (A O Set) WithUnitL(List(A), append())
withUnitRAppend [0 (A O Set) WithUnitR(List(A), append())
monoidAppend [0 (A O Set) Monoid(List(A), append())
appendLength O (A O Set;

X,y U List(A)) Id(length(append(x, y)),
add(length(x), length(y)))

vec
Fin O (Nat) Set

Orn O (n O Nat) Fin(s(n))

Srin O (vn O Nat; Fin(n)) Fin(s(n))
finToNat O (+n O Nat; Fin(n)) Nat
emb O (.n O Nat; Fin(n)) Fin(s(n))
addrn, O (¢m,.n O Nat; Fin(m); Fin(n)) Fin(add(m, n))
Vec O (Set; Nat) Set

nilvec 0 (A O Set) Vec(A, 0)

consyee O (1A O Set; 1n O Nat; A; Vec(A, n) Vec(A, s(n))
nth O (A O Set; :n O Nat; Vec(A, n); Fin(n)) A
update O (1A O Set; .n O Nat; Vec(A, n); Fn(n); A) Vec(A, n)
insert 0 (LA O Set; «n O Nat; Vec(A, n); Fn(n); A) Vec(A, s(n))
delete O (1A O Set; :n O Nat; Vec(A, s(n)); Fin(n)) Vec(A, n)

20

4.2 The Contributions Library

This library is not based on the Micro Library, because it grew up independently of
it. The different contributions build on one another. These contributions include the
monomorphic set theory as presented in [13] with all the elimination constants and also
their reading as logical constants; arithmetic with natural numbers; some results about
the algebraic structure of integers and some basic functions and properties on lists. The
library is organized as follows:

The directory Monomorphic.Set.Theory contains the following theories: Empty, N1, Bool,
Nat, Sigma, Product, Pi, Function, Union, Id, |d_properties.

The directory Predicate.Logic contains the theories: Absurdity, True, And, Or, Imply,
Exists, Forall.

The directory Natural.Numbers contains the theories: Nat_properties, Lift, It, plus, mult,
div, monus.

The directory Integers contains the theories: Z, plussubs, 1dZ, zsprops, zadd, zaddinv,
zminus.

The directory Lists contains the theories lists, list_props, perms, gensym.

5 Bugs and improvements to be made

The current version of ALF is still very much experimental. Users are encouraged to
report bugs or make proposals for improvements by email to alf@cs.chalmers.se. *
The following is a list of known bugs or shortcomings of ALF which will hopefully

dealt with in forthcoming releases.

e Sometimes the saved scratch file is inconsistent because the definitions are saved in
the wrong order. This can be repaired by editing the scratch file.

e When editing the type of a constructor one sometimes gets an error message
*print_in_order cannol happen. The only way out is to start editing this constructor
again (but saving the current state by copy and paste).

e There is a problem when copying definitions with hidden variables. In this case
one should select Show all arguments first or change the layout of the constants in
question.

e There are some layout problems with the postscript file. E.g. expressions may
disappear because they are too much to the right.

e The window interface has a memory leak and uses up more and more memory after
some time. Therefore it can be useful to save and restart ALF from time to time.

e When ALF is busy it sometimes does not repaint the window which may lead to
strange looking windows. This should not affect the usability of the system.

"Local users should rather consult the newsgroup cth.cs.alf.

21

e Some operations (like sl Clear) are performed asynchrously which may have the effect
that other operations (like the updating of the type of the selected expression) are
blocked.

e Sometimes the choice menu right button may get very long, such that the lower parts
cannot be selected.

e ALF first loads a file into memory before parsing. This may lead to strange behaviour
when one attempts to load a very large file (like a core dump).

e One cannot select anything in the type of the current expression.

e The menu items Normal Form, Head Normal Form and Expand may appear twice
in the choice menu (right button). In this case the first occurence corresponds to the
Replace menu and the second to the View menu.

If you believe that you have found a new bug it is useful if you try to narrow down the
problem as much as possible and produce a history of the actions. This can be done by
selecting Command and typing history bug;. The file bug together with the theory and the
scratch area and and a description of the problem should be send to the above address.

6 History of the system

This version of ALF has been implemented by Lena Magnusson and Johan Nordlander.
Lena has implemented the proof engine and Johan the user interface.

The basic ideas in this system comes from the first version of ALF which was designed
by Thierry Coquand and Bengt Nordstrom in 1991, Thierry implemented the first proof
engine and Lennart Augustsson implemented the user interface.

7 Acknowledgements

We want to thank Thierry Coquand, Lena Magnusson and Johan Nordlander for all their
efforts put into this project.

A Syntax

The following grammar defines the syntax of expressions (EXP), types (TYPE) and pat-
terns (PATTERN). The syntax which is constructed by the window interface is automat-
ically correct but it is useful to know the syntax when using Edit As Text.

An identifier (ID) in ALF is a sequence of letters, digits and the underscore character

(-)-

22

EXP = VAR
| CONST
| [VARLIST] EXP
| EXP (EXPLIST)
| 7
VAR := 1ID
CONST == 1ID
VARLIST := VAR | VAR , VARLIST
EXPLIST := EXP |EXP , EXPLIST
TYPE := Set
| Prop
| EXP
| TYPE
| (DECLIST) TYPE
DEC := VARLIST : TYPE
| TYPE
DECLIST := DEC|DEC ; DECLIST
PATTERN VAR

ID (PATTERNLIST)

Note: The syntax of case-expressions is not included since it is subject to change.
In the moment case-expressions are only possible on the top-level; i.e. not inside a A-
abstraction.

References

[1] Gustavo Betarte. A case study in machine-assisted proofs: The integers form an
integral domain. Licentiate Thesis, Chalmers University of Technology and University
of Géteborg, Sweden, November 1993.

[2] Catarina Coquand. A machine assisted semantical analysis of simply typed A-calculus.
Technical report, Dept. of Comp. Science, Chalmers Univ. of Technology, 1993.

[3] Thierry Coquand. Pattern matching with dependent types. In Proceeding from the
logical framework workshop at Bastad, June 1992.

[4] Thierry Coquand, Bengt Nordstrom, Jan M. Smith, and Bjorn von Sydow. Type
theory and programming. FATCS, (52), February 1994.

[5] Thierry Coquand and Jan M. Smith. What is the status of pattern matching in type
theory? Draft, 1993.

23

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Peter Dybjer. Inductive sets and families in Martin-L6f’s type theory and their set-
theoretic semantics. In Logical Frameworks, pages 280-306. Cambridge University
Press, 1991.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 1994. To appear.

Daniel Fridlender. Ramsey’s theorem in type theory. Licentiate Thesis, Chalmers
University of Technology and University of Goéteborg, Sweden, October 1993.

Veronica Gaspes. Formal Proofs of Combinatorial Completeness. In To appear in the
informal proceedings from the logical framework workshop at Bastad, June 1992.

Lena Magnusson. Refinement and local undo in the interactive proof editor ALF. In
The Informal Proceeding of the 1993 Workshop on Types for Proofs and Programs,
May 1993.

Lena Magnusson and Bengt Nordstrém. The ALF proof editor and its proof engine.
In The Formal Proceeding of the 1993 Workshop on Types for Proofs and Programs,
Nijmegen, 1994.

Bengt Nordstrém. The ALF proof editor. In Proceedings 1993 Informal Proceedings
of the Niymegen workhop on Types for Proofs and Programs, 1993.

Bengt Nordstrém, Kent Petersson, and Jan M. Smith. Programming in Martin-Lof’s
Type Theory. An Introduction. Oxford University Press, 1990.

Nora Szasz. A Machine Checked Proof that Ackermann’s Function is not Primitive
Recursive. Licentiate Thesis, Chalmers University of Technology and University of
Goteborg, Sweden, June 1991. Also in G. Huet and G. Plotkin, editors, Logical
Frameworks, Cambridge University Press.

Bjorn von Sydow. A machine-assisted proof of the fundamental theorem of arithmetic.
PMG Report 68, Chalmers University of Technology, June 1992.

24

