Beauty in the Beast
A Functional Semanticsfor the Awkward Squad

Wouter Swierstra Thorsten Altenkirch

University of Nottingham
{wss, txa}@cs.nott.ac.uk

Abstract vein. To illustrate how to reason with our semantics, we grov
It can be very difficult to debug impure code, let alone praseor- g;attht:iic::ofunctlon does indeed echo any character entered

rectness. To address these problems, we provide a funcsipee:
ification of three central components of Peyton Jones'’s awttw

We continue by describing a pure model of mutable state (Sec-

squad: teletype 10, mutable state, and concurrency. Byteats tion 4). We demonstrate how our semantics may be used in tan-
ing an internal model of such concepts within our prograngmin dem with QuickCheck [7] to test a reverse operator on queues
language, we can test, debug, and reason about progranpethat implemented using mutable variables and verify that it rmns
form 10 as if they were pure. In particular, we demonstrate bar constant space.

specifications may be used in tandem with QuickCheck to aatom
ically test complex pointer algorithms and concurrent paogs.

We show how concurrent processes can be modeled as func-
tions parametrised by a scheduler (Section 5). Using this in

Categories and Subject Descriptors D.1.1 [Programming Tech- ition, we provide a novel semantics for Concurrent Haskgé.
niqueg: Applicative (Functional) Programming; D.2.S¢ftware implement an example scheduler and use QuickCheck to verify
Engineering: Testing and Debugging; F.3.Theory of Computa- that a Haskell implementation of channels never duplicates
tion]: Logics and the Meanings of Programs loses data.

Finally, we discuss how our functions can be méatal (Sec-
tion 6). By restricting ourselves to a total framework, we ca
avoid some of the hairier corners of Haskell's semanticsch su
as reasoning in the presence of bottoms.

General Terms Experimentation, Languages, Reliability, Theory,
Verification.

1. Introduction

While we have a solid understanding of pure and total funstio
programming with and reasoning about effects is much mdee di
ficult. Every functional programmer worth his salt knows htow
reverse a list, debug the code, and prove that list reves s own
inverse. How many could do the same when asked to implement
gueues using mutable variables?

We address this imbalance by providing a lightweight seiogaint
for side-effecting functions. We demonstrate how to camtstpure
functional programs that precisely specify the behavidwfiects.
Our functional specifications are both pure and executaisle; re-
sult we can freely test and debug effectful code in pure fonet
languages such as Haskell [29]. Reasoning about impure isode
reduced to reasoning about the pure functional programsewe d
scribe. As we can utilise Haskell's expressivity when sfyéuj
our semantics, we can capture a wide range of side-effefttimg
tions:

The pure specifications we present are closely related tdehe
notational semantics of effects. Implementing them in afiomal
language, however, is a valuable and novel contributiohedunc-
tional programmers’ repertoire. It is no longer necessatydat all
side-effecting functions as opaque black boxes: it is finpdissi-
ble to assign some kind of meaning to programs in the 10 monad
without leaving the realm of functional programming.

Having such meaning is not only of theoretical interest.-Pro
grammers can immediately profit from our specifications yTden
test code in the 10 monad using QuickCheck without resortiing
unpredictable hacks such assafePerformlOAs our specifica-
tions consist entirely of pure values, they can examine dmeents
of the heap when debugging or experiment with different dahe
ing algorithms when executing concurrent code. Prograrsicen
study our specifications, without having to learn formal aatits.
While the semantics themselves may not be new, it is onlykipga
it off the blackboard and into the hands of working programsne

e We begin by describing how to conduct teletype 10 (Section 3) that theory pays off in practice. o
Although the programs we end up with are classic examples of Naturally, we are still left with one central obligation: $bow
interactive structures in functional programming, the agrder that the actual code the compiler produces matches ourifunadt
of our paper deals with more complex problems in a similar SPecification. Although we will discuss different approestto this
problem (Section 8), this issue is beyond the scope of theeour
paper.

Permission to make digital or hard copies of all or part of thiork for personal or 2. M onadlc I npUt/OUtpUt

classroom use is granted without fee provided that copesarmade or distributed Haskell encapsulates any potentially harmful side-effacthelO

for profit or commercial advantage and that copies bear titisenand the full citation X ffecting f : h h ks i

on the first page. To copy otherwise, to republish, to postenmess or to redistribute monad[31]. Any side-e ecting function has a type that marks it as
to lists, requires prior specific permission and/or a fee. potentially dangerous. For instance, the functimiCharreads a
Haskell'07, September 30, 2007, Freiburg, Germany. character from the terminal: it may not format your hard dlskt

Copyright(© 2007 ACM 978-1-59593-674-5/07/0009. .. $5.00 carelessly executing it might break referential transpeyelts type

tells us that it is a side-effecting function that will retua value of
type Char:

getChar:: 10 Char

Similarly, putChar prints a given character to the teletype. As we
are not interested in the valymitChar returns, but rather in the
effect its execution entails, its result typd @ ().

putChar:: Char — 10 ()

There is no safe way to extract the actual character read usin
getChar— doing so would allow seemingly innocent functions to
have side-effects: the exact problem we were trying to awvote
first place. Instead, values in the IO monad are combinedyubki
following two operations:

return::a— 10 a
(>ﬁ) cl0a— (a—» 10 b) —10b

Thereturn function lifts a pure value into the 10 monad. The op-
erator >=, usually pronounced ‘bind’, performs the computation
associated with its first argument and passes the resuét$edond
argument. As these are the only primitive operations, @nogners
must sequence individual computations explicitly usireptk= op-
erator.

As computations are first class values, we can define new con-
trol structures. Thes> operator sequences two computations, but
discards the result of the first. We can construct a list of matar-
tions, and perform them one by one using seguencecombina-
tor:

(>>):10a—10b—10b
p>q=p>=Ax—(q

sequence: [10 ()] — 10 ()
sequence]] =return()
sequence(x: xs) = X >> sequencexs

Using these building blocks it becomes straightforward tiben
simple interactive programs:

echo: 10 ()

echo= getChars= (Ac — putChar g >> echo
putString:: String— 10 ()

putString= sequenceo map putChar

Haskell offers syntactic sugar to make large monadic compu-
tations a great deal more palatable. A series of monadicesxpr
sions can be sequenced using tleenotation. We can also write
the aboveechoas:

echo= doc « getChar
putChar ¢
echo

Haskell provides a large number of built-in functions thah c
perform all the real world side-effects that every seriorggpam-

ming language should accommodate. The 10 monad makes sure

that any such side-effecting functions are branded as tiazar
Unfortunately, but unavoidably, side-effecting funcmsuch as
putCharare primitive and are not implemented by a pure Haskell
expression. This makes debugging or reasoning about su# co
inherently difficult. The 10 monad may prevent unexpectatesi
effects, but we need a system of formal semantics outside our
programming language to prove propertiepofChar. Throughout
this paper, we explore a different avenue of research: wenuitlel
getCharandputCharby pure functions in Haskell.

3. TeletypelO

We begin by defining a data typg®: that specifies the primitive
interactions that can take place with the teletype in Lgstin
Besides getting and putting a single character, we can ead th
interaction by returning a value.

Listing 1 Teletype 1O

datalOy a=
GetChar(Char — 10y a)
| PutChar Char(I0y a)
| Return a

instance Monad 1Q; where
return= Return
(Returng >=g=ga
(GetCharf) >==g= GetChar(Ac —f c>=90)
(PutChar ¢ g =g = PutChar c(a>=g)

getChar :: 10y Char

getChar = GetChar Return
putChar :: Char— IO ()
putChar c= PutChar c(Return())

This specification is far from original. Gordon describesnais
lar approach to doing teletype 10O in his thesis [13], andsaigtated
work dating back more than twenty years [16, 19]. Rather tiemn
such structures to perform 10, however, we use them to aactsir
pure model of functions in the 10 monad.

Quite conveniently, thdOy data type also forms a monad.
The return function corresponds to thReturn constructor. The
bind operator recurses through the interaction specifieitslfyrst
argument and feeds the computed value to its second argument

Using this data type we cagefinethe getCharand putChar
functions as if they were any other functions in our language
Although they will not actually print characters to the tgfee, we
can use them to specify any interaction.

Given a value of typdOy a, we can calculate its behaviour.
What should the result of an interaction be? From a userist wdi
view one of three things happen: either a value of ty[Ereturned,
ending the interaction; or the interaction continues afteharacter
is read from the teletype or printed to the screen. Outputdata
type in Listing 2 captures exactly these three cases.

Listing 2 Teletype IO — semantics

data Output a=
Read(Output g
| Print Char (Output g
| Finish a
data Stream a= Cong hd:: a,tl :: Stream g

run :: 10y a — (Stream Char— Output g

rung (Returngcs = Finisha

rungt (GetChar f) cs = Read(runy (f (hd cg) (tl cs))
rung; (PutChar c g cs= Print ¢ (rung p ¢9

Once we have fixed the type @futput writing therurny func-
tion that models the behaviour of a given interaction isiglri®or-
ward. We assume that we have a stream of characters thatéewe b
entered by the user. Whenever our interaction gets a clearact

read the head of the stream and continue the interactiontigth
tail.

Using theputCharandgetCharfunctions that we have defined
ourselves, we can write the same code for teletype intersti

as before, but we now have a good understanding of how they

behave. When such code is compiled, we can replaceu@har
and getChar with calls to the primitive version defined in the
Haskell Prelude. Before moving on to more complex semantics
we illustrate how to prove properties of teletype interasi

Example: echo

Using our semantics, we can prove once and for allé¢chbprints
out any character entered at the teletype. In particulacamalefine
the following function that exhibits the behaviour we expecho
to have:

copy:: Stream Char— Output()
copy(Cons x x$ = Read(Print x (copy x3)

The copy function simply copies the stream of characters en-
tered at the teletype to the stream of characters printeukettete-
type one at a time. ThReadconstructor is important here: a vari-
ation of the echo function that required two characters ttyped
before producing any output would not satisfy this spedifice
We can now prove that runningchowill behave exactly like the
copyfunction.

Using a variation of the take lemma [4], we show thapy cs
and the result of runningchoon cs are identical, for every input
streamcs The proof requires us to define an exta&e function,
analogous to the one for lists:

take:: Int — Output() — Output()

take(n+ 1) (Print x xs) = Print x (take n x$
take(n+ 1) (Read x$ = Read(take(n+1) xs)
takeO = Finish ()

We can now prove that:

take n(runy; echo x$ = take n(copy x$

The proof proceeds by induction onThe base case is trivial; the
induction step is in Listing 3.

Proving such an equation is still quite some work. However,
most Haskell programmers are already familiar with suchaequ
tional proofs. There is no external system of semantics et éal
prove such a property, but programmers can reason abouttius
as if it were pure.

4, Mutable State

While teletype 10 makes an interesting example, an obviags<4
tion is whether or not this approach can deal with anythingemo
complicated. Interestingly, we can handle mutable state very
similar fashion.

Mutable state in Haskell revolves around mutable variables
known adORefs There are three functions that respectively create,
write to and read from alORef:

newlORef ::a— 10 (IORef g
writelORef:: IORef a— a— 10 ()
readlORef::IORef a— 10 a

We begin by defining a data type representing the possible
changes to the state in Listing 4. We follow Haskell's lead an
introduce separate constructors for each operatiolOftefs As
with the teletype, we have an additional construd®aturnthat
lifts pure values to stateful ones. It is worth pointing coéttthe
signatures of the functions we wish to implement determiree t
constructors of our data type; the only freedom we have ifén t
representation of memory locations and data.

Listing 3 The behaviour oécho

take(n+ 1) (runy echo(Cons x x$)
{by definition ofechaputChar andgetChar

take(n+ 1) (runy (GetChar Return
>=Ac — PutChar c(Return())
>>echg
(Cons x x$)

{by definition ofruny and(>=)}

take(n+1)
(Read(runy (Return x
>= Ac — PutChar c(Return())
>>echg
x9)

{by definition of(>=)}
take(n+ 1)
(Read(runy (PutChar x(Return() >> echa) xs))

{by definition of (>>)}

take(n+ 1) (Read(runy (PutChar x echpxs))
{by definition ofrury }

take(n+ 1) (Read(Print x (runy echo x$))
{by definition oftake}

Read(Print x (take n(runyt echo x$))
{induction}

Read(Print x (take n(copy x3))
{by definition oftake}

take(n+ 1) (Read(Print x (copy x3))
{by definition ofcopy}

take(n+ 1) (copy(Cons x x$)

We model memory locations using integers. This is rather lim
ited. By using integers to model memory locations, programsm
could ‘invent’ their own locations, perform pointer aritetic, or
access unallocated memory. To address this problem, weggop
to use Haskell's module system to hide the constructor ofeef
type. As a result, the only operations a programmer can perfo
with anlORef are those supported by ol@®s data type.

We also restrict ourself to mutable variables storing iateg
A more flexible approach would be to use Haskell's support for
dynamic types [5, 1] to allow references to different typ€kis
does make reasoning about our programs much, much more dif-
ficult [10], as the implementation of dynamic types relies on
unsafeCoercefor instance. For the sake of presentation, we there-
fore choose to limit ourself to references storing a fikeda type.
The price we pay is, of course, having to update this typeyever
time we wish to change the types stored in mutable refereiides
will discuss how to tackle both this and the previous problesing
a more expressive type system in Section 6.2.

Now that we have all relevant definitions, we construct an in-
terpretation of these operations in Listing 5. Haskelladyehas a
very convenient library for writing stateful computatichst pivots
around the state monad:

newtype State s a= State runState: (s— (a,9)) }

Listing 4 Mutable state — data type

Listing 5 Mutable state — semantics

typeData= Int
typeLoc =Int

datalOsa=
NewlORef DatdLoc — 10s a)
| ReadlORef Lo¢Data— 10s a)
| WritelORef Loc Datd10s a)
| Return a

instance Monad 1Q; where

return = Return
(Returna>==g=ga
(NewlORef d f>=g

= NewlORef dAl — f | >=0)
(ReadIORef If>=g

= ReadlORef (Ad — f d>=0)
(WritelORef 1d $>=¢g

= WritelORef | d(s>=0)

newtype lORef= IORef Loc

newlORef: Data— |05 IORef

newlORef d= NewlORef dReturnc IORef)
readlORef.: IORef — |0g Data

readlORef(IORef) = ReadlORef | Return
writelORef:: IORef — Data— 105 ()
writelORef(IORef |) d = WritelORef | d(Return())

The state monad has several functions to manipulate the-othe
wise implicit state. In particular, we will make use the éoliing
functions:

get :Statess
gets i(s—a) — Statesa
put s— State §)

evalState: State sa—~s— a
execState Statesa~»s— s

To access the hidden state, we useghimndgetsfunctions that
respectively return the hidden state and project value ftoithe
put function updates the state. Finally, the functi@valStateand
execStateun a stateful computation, and project out the final result
and the final state respectively.

Before we can use the state monad, we must decide on the

type of the states that we wish to use. In our case, there are two
important pieces of information the state should record: riext
free memory location and the heap that maps memory locatiions
data. Both are captured by oBtoredata type.

Now we can begin defining the functionns that evaluates the
stateful computation described by a value of ty@e. We begin
by constructing a value of typ8tate Store aand subsequently
evaluate this computation, starting with an empty storeeNloat
we leave théneapof the initial state undefined.

Once again, theReturn case ends the stateful computation.
Creating a newORef involves allocating memory and extending
the heap with the new data. ReadlORefoperation looks up the
data stored at the relevant location. Writing to l@Ref updates
the heap with the new data. Although we require a few auyiliar
functions to manipulate the state and the heap, the codestingi
5 should contain very few surprises.

All in all, the definition and semantics of d@Ref fits on a
single page and is remarkably simple. Some might even algue t

data Store= Store{ fresh:: Loc, heap:: Heap}
typeHeap= Loc — Data

emptyStore Store
emptyStore= Store{ fresh=0}
runs::10sa— a
runs io = evalStatg runlOState ig emptyStore
runlOState: 105 a — State Store a
runlOState(Return g = return a
runlOState(NewlORef d ¢
=doloc — alloc
extendHeap loc d
runlOState(g loc)
runlOState(ReadlORef |y
=dod < lookupHeap |
runlOState(g d)
runlOState(WritelORef 1 d p
= doextendHeap I d
runlOState p

alloc:: State Store Loc
alloc = doloc «+ gets fresh
modifyFresh((+) 1)
return loc
lookupHeap: Loc — State Store Data
lookupHeap k= do h « gets heap
return (h 1)

extendHeap Loc — Data— State Storég)
extendHeap | &= modifyHeapupdate | d

modifyHeap: (Heap— Heap) — State Storé)
modifyHeap f=do s+ get
put (s{heap=f (heap $})
modifyFresh: (Loc — Loc) — State Storg)
modifyFresh f= do s+ get
put (s{fresh=" (freshg})
update: Loc — Data— Heap— Heap
update Id hk
[1=k =d
| otherwise=h k

the semantics are trite and trivial — but this is a good thivg!want
our semantics to be easy to understand. There is really mbtoee
make things any more complicated.

Example: queues

To demonstrate how our semantics can be used in practice, we
implement queues using mutable references. Such queussstcon
of two references to the first and last cell of the queue. Egelly
stores an integer value together with a pointer to the néktTdee

last cell’s reference points to a null value. Figure 1 iltagts what

an example queue might look like.

Although the implementation is standard, it is all too easy t
make a mistake. Listing 6 gives the type signatures of theadipas
involved. To begin with, we must fix the type of our references
From Figure 1 we can see that every pointer is either null, or
points to a cell storing an integer and another pointer. \W&lrie

Figure 1 An example queue implemented using mutable references what we expect? We should not just use equality to compangague

2| 1> 5| > 8 | 1>

T front T back

change the type of data stored by a poinBata, in our semantics
accordingly.
A Queueconsists of a pair of pointers to the front and back

of the queue. In an empty queue, both these pointers are null.

A complete implementation of the type signatures in Listthip
provided in an appendix for the sake of completeness.

Listing 6 Implementing queues using mutable variables

dataData = Cell Int IORef| NULL
type Queue= (IORef, IORef)

emptyQueue 105 Queue
enqueue ::Queue— Int — 105 ()
dequeue ::Queue— IOs (Maybe In}

Claessen and Hughes have shown how to use QuickCheck to

test properties of a similar implementation of queues in $fie
monad [8]. Rather than follow suit, we implement queue reater

— this will just compare the addresses of the head and tdildiu
the content of the queue.

One solution is to define a pair of functiotistToQueueand
queueToList The former enqueues all the elements of a list to
the empty queue; the latter dequeues elements from a quéilie un
it is empty. Using these functions, we can define the property
revRevPropn Listing 7 that compares a list of integers to the result
of enqueueing the integers, reversing the resulting queige tand
finally dequeuing all the elements of the queue.

When we run QuickCheck on the resulting property, we can
claim with some degree of certainty that our operation iows
inverse:

*Main> quickCheck revRevProp
0K, passed 100 tests.

This is, of course, a useless property to check—the identity
function satisfies the same specification. It does illustitadwever,
that proofs and properties of pure functions, such as thedam
reverse reverse= id on lists, do not need to be treated differently
from those of impure functions.

In contrast to the work by Claessen and Hughes, we can also
verify that queue reversal does not allocate any new menidey.
accomplish this by inspecting the state after running a cgatjon.

If new memory has been allocated, tineshcounter that points to
the next free memory cell will have been incremented.

The memoryUsagdunction in Listing 8 returns the number
of memory cells needed by a computation. Using this function
we can compare the amount of memory needed to store a queue,

Listing 7 shows how to reverse a queue. If the queue is empty, queueMemSizend the amount of memory allocated after revers-

we are done. Otherwise, we traverse the linked list, rengravery
pointer as we go and finish off by swapping tfient and back
pointers.

Listing 7 Reversing queues

reverseQueue Queue— 10s ()
reverseQueuéfront, back)
=dof < readlORef front
casef of
NULL — return ()
Cell x nextRef— do
flipPointers NULL(Cell x nextRef
b « readlORef back
writelORef front b
writelORef back f

flipPointers:: Data— Data— IOs ()
flipPointers prev NULL= return ()
flipPointers prey(Cell x nexj
= do nextCell« readlORef next
writelORef next prev
flipPointers(Cell x nexj nextCell

revRevProp: [Int] — Bool
revRevProp xs= Xxs= runs (revRev x§
whererevRev xs= do q < listToQueue xs
reverseQueue q
reverseQueue q
queueToList q

Operations that rely heavily on pointer manipulations agy/v
easy to get wrong. How can we be sure thaterseQueueloes

ing a queuerevQueueMemSiz&he revMemPropproperty then
formulates the desired property: reversing a queue shaildllo-
cate new memory.

Listing 8 Memory usage of queue reversal

memoryUsage |I0s a — Int
memoryUsage io

= fresh(execStatérunlOState ig emptyStore
queueMemSize[Int] — Int
gueueMemSize xs memoryUsagélistToQueue X5
revQueueMemSizgInt] — Int
revQueueMemsSize xs

= memoryUsagélistToQueue xs:>= reverseQueue
revMemProp: [Int] — Bool
revMemProp xs= queueMemSize xsrevQueueMemsSize xs

This example shows how we can use the tools most functional
programmers are comfortable with to reason about effepifod
grams. As the store is modeled by a pure value, we can chepk pro
erties of our programs that we could not even express if weenro
them using th&sT monad.

The model for mutable state is more complicated than our
previous model for teletype 10. Proofs using this model casilg
become quite complex. Even formulating properties invajvihe
heap layout, for instance, can become rather onerous. riatety,
as illustrated by Bird [3], we can introduce high-level cangtors
to facilitate reasoning about and formulating propertiepainter
algorithms. Just writing down the low-level semantics oftafle
state is by no means the whole story, but rather forms a rsgarti
point from which to embark on more serious analyses.

5. Concurrency

Although the models for teletype IO and mutable state welee re
tively straightforward, concurrency poses a more serigablpm.
Concurrent Haskell enables programmers to fork off a neeatthr
with theforklO function:

forklO::10 a— 10 Threadld

The new thread that is forked off will evaluate the argumdrihe
forklO call. The programmer can subsequently useheeadldto
kill a thread or throw an exception to a specific thread.

Threads can communicate with one another using a synchro-
nised version of ahORef called anMVar. As with anlORef there
are three functions to create, write to and read fronvisar:

newEmptyMVar. 10 (MVar a)
putMVar “MVara—a—10 ()
takeMVar MVara— 10 a

Unlike an IORef, an MVar can be empty. Initially, there is no
value stored in aMVar. An emptyMVar can be filled using the
functionputMVar. A filled MVar can be emptied using the function
takeMVar If a thread tries to fill a non-emptiVar, the thread
is blocked until another thread empties tM&ar usingtakeMVar
Dually, when a thread tries to take a value from an en\ptar, the
thread is blocked until another thread puts a value intavikar.

Although there are several other functions in Haskell'sotwn
rency library, we choose to restrict ourselves to the foacfions
described above for the moment.

In what should now be a familiar pattern, we begin by defining
the data typdO. for concurrent input/output in Listing 9. Once
again, we add a constructor for every primitive functionetibgr
with an additionaReturnconstructor. As is the case in ol®Ref
implementation, we model memory addresses and the datdstor
there as integers. Forked off threads have a unique identiie
Threadld which we also model as an integer. The typd-ofk is
interesting as it will take alO¢ b as its first argument, regardless
of what b is. This corresponds to the parametric polymorphism
that theforklO function exhibits — it will fork off a new thread,
regardless of the value that the new thread returns.

Once we have defined the data tyji2;, we can show it is
a monad just in the same fashion th@ and 10y are monads.
We continue by defining the basic functions, correspondintipé
constructors.

Running the computation described by a value of tjpe a
is not as straightforward as the other models we have seesr.so f
Our model of concurrency revolves around an explicit schexdu
that determines which thread is entitled to run. Beheduleris
a function that, given an integer, returns a number between 0
andn—1, together with a new scheduler. Intuitively, we inform the
scheduler how many threads are active and it returns thelstdte
thread and a new scheduler. Listing 10 describes how ilyit@aket
up the semantics of our concurrency operations.

Besides the scheduler, we also need to keep track of thedthrea
that could potentially be running. The thresdupis a finite map
taking aThreadldto aThreadStatusTypically, such & hreadStatus
consists of the process associated with a giVereadld Note,
however, that once a thread is finished, there is no valu®egf
that we could associate with iT$readldso we have an additional
Finishedconstructor to deal with this situation. Besides the thread
soup we also store an integerextTid that represents the next
unassigned hreadld

In addition to information required to deal with concurrgnc
we also need a lot of machinery to cope with mutable state. In
particular, we keep track oflreapandfreshjust as we did for our
model of mutable state. Unlike d®Ref, anMVar can be empty;
hence theneapmaps locations tdMaybe Data using Nothing to

Listing 9 Concurrency — data type

type Threadld= Int

typeData =Int
typelLoc =Int
datalOca=

NewEmptyMVafLoc — IO¢ a)
| TakeMVar LoqData— 10 a)
| PutMVar Loc Data(10¢ a)
| Vb. Fork (I10¢ b) (Threadld— 10 &)
| Return a

newtype MVar = MVar Loc

instance Monad 1Q; where
return = Return
Return x>=g =gX
NewEmptyMVar £5=g = NewEmptyMVa(Al — f | >=g)
TakeMVar | f>=g = TakeMVar I(Ad — f d>=Q)

PutMVarcd f>=g = PutMVarcd(f >=0)

Fork pl p2s=g = Fork p1(Atid — p2 tid>=g)
newEmptyMVar ::10; MVar
newEmptyMVar = NewEmptyMVafReturno MVar)
takeMVar ::MVar — 10 Data

takeMVar(MVar |) = TakeMVar | Return

putMVar ::MVar — Data— 10¢ ()
putMVar (MVar I) d = PutMVar | d (Return())

forklO :110c a— 10¢ Threadld
forklO p = Fork p Return

Listing 10 Concurrency — initialisation

newtype Scheduler=
SchedulefInt — (Int, Scheduley)

data ThreadStatus=
Vb . Running(IO¢ b)
| Finished

data Store= Storg{ fresh:: Loc
,heap:: Loc— Maybe Data
, nextTid: Threadld
, soup:: Threadld— ThreadStatus
, scheduler: Scheduler
}

initStore:: Scheduler— Store

initStore s= Storeg{fresh =0
,nextTid= 1
,scheduler=s

}

runlO¢ ::10¢ a — (Scheduler— a)
runlO¢ io s= evalStatginterleave ig (initStore g

represent an emptiyiVar. All these ingredients together form the
Store

To interpret a value of typéO. a, we define a function that
will run the concurrent process that it represents. Oncinagee
use Haskell’s state monad to encapsulate the implicit ploghb
involved with passing around tt®&tore To run a concurrent process
we must tackle two more or less separate issues: how to pegor
single step of computation and how to interleave these iididat
steps. We will begin defining the single steps in Listing £aving
theinterleavefunction undefined for the moment.

The stepfunction closely resembles our semantics for mutable
variables, with a few minor adjustments. In contrast to theation
for mutable variables, we do not guarantee that we returiweva
of typea, but rather distinguish three different possible results.

First of all, a thread might terminate and produce a result.
Secondly, athread might have a side-effect, such as takawgaiue
stored in anMVar, and return a new, shorter process. Finally, a
thread might be blocked, for instance when it tries to takalaes
from an emptyMVar. These three cases together form 8Status
data type that is returned by te&epfunction.

Note that we have omitted a few functions that modify a specifi
part of the state, analogous toodifyFreshand modifyHeapin
Listing 5.

There are a few differences with the model of mutable state.
When we return a value, the thread is finished and we wrap eur re
sult in aStopconstructor. Creating a neMVar is almost identical
to creating a nedORef. The only difference is that adVar is ini-
tially empty, so we extend the heap wittothingat the appropriate
location.

The case fofakeMVarandPutMVaris more interesting. When
we read arMVar we look up the appropriate information in the
heap. If theMVar is filled, we empty it and perform a single step.
When theMVar is empty, the thread is blocked and we cannot make
any progress. The situation for writing to Bf\V/ar is dual.

The final case of thetepfunction deals with forking off new
threads. We begin by generating breadldfor the newly created
thread. Subsequently, we extend the thread soup with the new
thread. Finally, we return the parent thread wrapped inStep
constructor as the thread has made progress, but is not igiefith

Although it was relatively easy to perform a single step, the
interleaving of separate threads is more involved. Listigdinally
defines thenterleavefunction.

Different threads may return different types. In particutae
main thread has typkD. a, but auxiliary threads have tyg®¢ b
for some unknown typé. To make this distinction, we introduce
the Procesglata type.

Essentially, to interleave a concurrent process we begtohy
sulting the scheduler to determine the next active thraatally,

Listing 11 Concurrency — performing a single step

data Status a= Stop a Step(IO¢ a) | Blocked

step:: |0 a — State StorgStatus a
step(Return g = return (Stop 3
step(NewEmptyMVar f
=doloc « alloc
modifyHeap(update loc Nothing
return (Step(f loc))
step(TakeMVar | f)
= dovar < lookupHeap |
case var of
Nothing— return Blocked
(Just d — doemptyMVar |
return (Step(f d))
step(PutMVar I d p
= dovar < lookupHeap |
case var of
Nothing— dofillMVar | d
return (Step p
(Just d — return Blocked
step(Fork I'r)
= dotid « freshThreadld
extendSoup | tid
return (Step(r tid))

lookupHeap: Loc — State StoréMaybe Data

lookupHeap | =doh« gets heap
return (h 1)

freshThreadld: State Store Threadld

freshThreadld = dotid <+ gets nextTid
modifyTid((+) 1)
return tid

emptyMVat: Loc — State Storg)

emptyMVar |

fillMVar :: Loc — Data — State Storé)
fillMVar | d = modifyHeap(update I(Just d))

extendSoup 10 a — Threadld— State Storg)
extendSoup p tid
= modifySougupdate tid(Running p)

= modifyHeap(update | Nothing

this will always be the main process. Once the main procaks fo the thread. As we want to treat the main and auxiliary threads
off child threads, however, such threads may be schedugtead. differently, we need to pattern match on the scheduled gsoce

The result of scheduling is a value of tyPeocess aogether with Regardless of which thread was scheduled, we allow it to per-
the Threadldof the thread that has been scheduled. Although we form a single step. There are five possible outcomes of thjs, st
have omitted the code for thechedulefunction, it is relatively that we cover one by one:

straightforward: given the main process, it consults theedaler
for the nextThreadld and returns that hreadldtogether with the
corresponding process from the thread soup. We need to lpass t
main process to the scheduler, as it is not in the thread dmuip,
could still be scheduled.

If we want to use thd’rocessreturned by the scheduler, we
need to be careful. We would like to allow the scheduled Bsce
to perform a single step — but what should we do with the r@sult
If the main thread returns a final value, we can wrap thingsnep a
return that value. If an auxiliary thread returns a value aneenot
particularly interested in its result, but rather want tontmate

Themain thread stops When the main thread terminates, the en-
tire concurrent process is finished. We simply return theeal
that the step produced. Any auxiliary threads that have unfin
ished work will never be scheduled.

An auxiliary thread stops If an auxiliary thread finished its com-
putation and returns a value, we discard this value and fthish
thread. We update the thread soup to indicate that thisdhsea
finished and continue the interleaving.

Themain threads performsastep If the main thread manages
to successfully perform a single step, we continue by agllin
the interleave function again. The argument we pass to the

Listing 12 Concurrency — interleaving

Figure 2 An example channel

data Process a=
Main (I0¢ a)
| Vb. Aux(IO¢ b)
interleave: 10, a — State Store a
interleave main
=do (tid,t) < schedule main
caset of
Main p—
dox« stepp
case x of
Stopr —returnr
Stepp — interleave p
Blocked— interleave main
Aux p—
dox« stepp
case x of
Stop_ — dofinishThread tid
interleave main
Step q — doextendSoup g tid
interleave main
Blocked— interleave main

finishThread tid= modifySougupdate tid Finishegl

interleavefunction is the new main process that was wrapped
in a Stepconstructor.

An auxiliary thread performsastep When an auxiliary thread

makes progress, we proceed much in the same way as we do

for the main thread. Instead of passing the new computation t
interleave however, we update the thread soup. Once the soup

has been updated, we continue by interleaving with the same

main thread as we started with.

>
>

Y
]

Y

2 5

Read end Writeend | ¢

hard to formulate precisely what it means for data to be lost o
duplicated.

Rather than repeat the implementation of channels, we once
again focus on how to use QuickCheck to demonstrate that cer-
tain properties are at least plausible. Listing 13 givestyipes of
channels and the data stored by references, together wittyple
signatures of the channel operations. We do not discussdow-t
plement these operations, but refer the implementatiocud&ed
in [28]. Our main concern is checking whether or not the above
property is plausible.

Listing 13 Channels

type Channel= (MVar, MVar)

data Data=

Cell Int MVar

| Ref MVar

| Reg[Int]
newChan: |O; Channel
putChan:: Channel— Int — 10¢ ()
getChan:: Channel— IO¢ Int

Before we can implement the channel operations, we need to fix
the data typéata, i.e. the type of data stored in &fvar. As we

Blocked If the scheduled thread can make no progress, for instance can see from Figure 2, the data stored inMiar is not always a

because it is waiting for an emplyVar to be filled, scheduling
that thread will returrBlocked In that case, we schedule a new
thread, until progress is made.

The semantics for concurrency are more complicated thasetho
for teletype 10 and mutable state. Actually using them, hergs
no more difficult.

Example: channels

cell. In particular, the references to the read end and et of
the channel are also stored in lsiVar. Therefore, we need to add
an extra constructdrefto ourDatadata type. Finally, we will later
use arMVar to store a list of integers in the test we propose to run;
therefore, we add a final construct®es

Listing 14 shows the test we would like to run. ThleanTest
function takes a list of integers, and forks off a thread facte
integer that will write that integer to an initially empty atnel.
It also forks off a thread for each integer that attempts &al fieom

When Peyton Jones describes the semantics of concurrency inthe channel. Once a thread manages to read from the channel, i

Haskell [28], he illustrates the expressive powelkdarsby giving
an implementation of channels.
Channels enable separate threads to communicate safely. Th

records the value read in a shafgar calledresult The main
thread then waits until every thread has successfully nead the
channel, and concludes by returning the list of all values tiave

generalise the queues we have seen previously, as a chdnnel abeen read. This final result should, of course, be a perrouatafi

lows multiple processes to read from and write to it. Thiscisom-
plished by having a pair d/Vars storing pointers to the read end

our original list.
The semantics of concurrency we have presented abstraats ov

and write end of the channel. Whenever a process wants to readthe scheduling algorithm. Before we can run the test we have i

from or write to the channel, it must first acquire access ¢odap-
propriate end of the queue. Storing these pointeldVarsensures
that separate writes or reads can never interfere with oothen
One example of a channel is illustrated in Figure 2.

Peyton Jones claims that:

...each value read will go to exactly one process.

Unfortunately, there is no justification of this claim. Pirny such
statements can, of course, be really difficult. In fact, ialieady

mind, we must therefore decide what scheduler to use. As &e ar
already using QuickCheck, we implement a random scheduling
algorithm in an attempt to maximize the number of interlagsi
Listing 15 gives one possible implementation of such a saleed

The streamSchfunction defines a scheduler, given a stream
of integers. The definition of th&treamdata type can be found
in Listing 2. Whenever it is asked to schedule a thread, isuse
the appropriate modulus on the head of the stream and cestinu
scheduling with its tail. As we can use QuickCheck to gemerat

Listing 14 Testing the implementation of channels

chanTest: [Int] — 1O [Int]

chanTest ints

= doch« newChan
result<— newEmptyMVar
putMVar result(Res]])
forM ints (Ai — forklO (putChan ch))
replicateM (length intg (forklO (reader ch resulf)
wait result ints

reader:: Channel— MVar — 10¢ ()
reader channel var
= dox « getChan channel
(Res x$ « takeMVar var
putMVar var(Res(x: xs))
wait:: MVar — [Int] — 1O¢ [Int]
wait var xs
=do (Res |) < takeMVar var
if length r=length xs
then returnr
elsedo putMVar var(Res 1)
wait var xs

Listing 15 Random scheduling

streamSclt Stream Int— Scheduler
streamSch xs-
SchedulefAk — (hd xs mod k, streamSclitl xs)))

instance Arbitrary a = Arbitrary (Stream awhere
arbitrary = do x < arbitrary
Xs< arbitrary
return (Cons X x$

a random stream of integers, we use itieeamScho produce a
random scheduler.
The following property should hold:

chanProp ints streara
sort (runlO¢ (chanTest ints(streamSch stream
= sortints

Once again, QuickCheck informs us that the above property
holds for 100 test runs. When we classify the input lists ediog
to their length, it is reassuring to see that this propergnevolds
for lists of more than 90 elements: that's almost 200 rangtoml
scheduled pseudothreads vying for access to a single dhanne

Clearly, this property is insufficient to verify Peyton Jeise
claim. We should also check that the resulting channel istgmp
and all the threads are finished. Even then, we have only edeck
one kind of scenario, where every thread either writes odgea
single value. Yet our semantics are capable of providmgeorm
of sanity check. It is not clear how such a check could be zedli
using Peyton Jones’s semantics.

It may not be a surprise that the implementation of channels
usingMVars is correct. Running this test, however, found a very
subtle bug in our scheduling function. Recall that gehedule
function returns th& hreadldand process of the scheduled thread.
If we schedule a finished thread, we call thehedulefunction

again, in search of a thread that is not yet finished. In ayault
version of our specification, if we encountered a finisheéaty
we called the schedule function again, but returnedTtheadld

of the finished thread. This caused quite some chaos in teadhr
soup, as threads were lost and duplicated.

As the entire state of concurrent computations is a pureeyalu
we can access otherwise inaccessible data, such as the diee o
heap or the number of threads that have finished. In partjcula
abstracting over the scheduler allows us to check certgorigthms
with specific schedulers or check a large number of intenegv
using a random scheduler as we see fit.

Extensions

Haskell cognoscenti will have spotted that we have not bheth
all the primitive functions provided by Concurrent Haskéltlding
new primitives to our semantics is, however, not difficulttm In
particular, we do not need to extend the code that deals Wwéh t
interleaving and scheduling, but can restrict ourselvesdiapting
the IO data type and thstepfunction. For instance, it is fairly
straightforward to extend our semantics with functionshsas:

killThread:: Threadld— 10 ()
yield:: 10 ()

ThekillThread function simply removes a certain thread from the
thread soup; thgield function merely passes control to some other
thread, whenever it is scheduled.

These semantics could also be extended to deal with asyn-
chronous exceptions and explicitly delayed threads. Héslex-
ception mechanism allows threads to throw exceptions teroth
threads. In our semantics, throwing an exception to anadkinead,
would involve updating the thread soup, i.e. alerting thredd that
receives the exception. Besides asynchronous exceppi@ugam-
mers can also delay threads for a number of milliseconds.-A de
layed thread will never be scheduled until enough time hesseld.

We hope to be able to address this in the future by a more re-
fined functional semantics that takes time into accountieitiy|

as is already done in functional reactive programming syst&uch

as Yampa [17]. Such semantics require a judicious choiceipf s
ported operations — adding explicitly delayed threads naalyreew
functionality, but could drastically complicate the seities

6. Totality

The semantics we have provided are very suitable for what has
been dubbed ‘fast and loose’ reasoning [9]. We use QuickChec
and freely perform equational reasoning without worryirogpuat
undefined values or non-terminating functions. While thigtifies

our results to a degree, we may sometimes be interested itea-wa
tight proof of correctness. The semantics we have providedrs
however, are unsuitable for such proofs.

Fortunately, we can make our semantics more precise. If we
make sure that all ourun functions are total, then any equality
we prove between programs written in a total calculus will be
valid. This is particularly relevant for programming larges with
dependent types where all functions are guaranteed to alebipt
construction, such as Epigram [23] @allina, the functional core
of Coq [2]. In such systems, we can not only write our programs
but also prove that they meet their specification.

Throughout our semantics we have occasionally used general
recursion and undefined values, such as the initial heapv@ig-a
ing bottoms and restricting ourselves to primitive recomsihe to-
tal run functions we describe below will assign sensible semantics
to every program.

6.1 Total semanticsfor teletype O

The runy; function in Listing 2 is total. When we restrict ourself
to a total language, however, all data is finite. In particulaere
can be no infinite sequence BitChar constructors that produce
an infinite stream of output. This is rather unfortunaterehare
situations where we would like to repeatedly print a chanatd
the teletype.

One solution is to distinguish between inductively defined

data and coinductively defined codata, as has been propgsed b

Turner [33]. If we considelOy; andOutputto be codata, thetream
function below is total:

streant: Char — 10yt ()
stream c= PutChar c(stream ¢

Once again, it becomes possible to output an infinite strem o
characters to the teletype. Similarly, we could writgrsk function

that consume input from the user, without ever producing any
output.

There is slight subtlety here. We have chosen to make both
reading and printing visible in ouDutput data type. While this
makes sense for teletype interactions, it is questionalbietiver
you should be able to observe how much data a process readals fro
a handle that is nodtdin If we drop theReadconstructor of our

We begin by changing the return type of aunlO; function
to Maybe a usingNothingto represent a deadlock. Whenever we
learn that a thread is blocked, we recordTitgeadld When every
thread is either blocked or finished, and the main processotan
make progress, we are in a deadlock and rellothing Whenever
any thread makes progress, we empty émtire list of blocked
threads; a thread might be blocked because it is waitingft\éar
to be filled. If another thread makes progress, it may hawadfithe
MVar our blocked thread was waiting on — thereby unblocking the
original thread. By dynamically detecting deadlocks is flaishion,
we claim our specification can be made total.

7. Related work

The idea of providing functional specifications of 10 is Hgndew.
Early versions of the Haskell Report [29] contained an agpen
with a functional specification of interactions with the ogting
system. Curiously, this appendix disappeared after thedaottion
of monads. Similar specifications have been proposed th teac
mantics to undergraduates. Our proposal to use these spéoifis
both for programming and reasoning, is an important stepdas.
This work has been influenced strongly by the semantics of

Outputdata type, our semantics become more abstract: we describeqaskell’s |0 as described by Peyton Jones [28]. This secmuatie

a process’s behaviour as stream processor. Ghani et alu§&li
mixed data-codata structure that can be used to specifylyxiais
behaviour in a total setting.

6.2 Total semanticsfor mutable state

There are a few problems with the semantics of mutable state i
Section 4. Although theunlOStatefunction in Listing 5 only uses
primitive recursion, the semantics makes use of undefinktesa

a process calculus containing Haskell's purely functiccae to
silently evaluate pure functions as the need arises. Whigentork

has been widely cited as an excellent tutorial on 10 in Hdskel
the semantics presented have, to the best of our knowledger n
been used on the scale of the examples we present here. @ur spe
ifications are intended to be more ‘user-friendly. Theyuieg no
external mathematical system of reasoning, but ratheeptahe
semantics in terms with which programmers are already cdamfo

such as the empty heap. As a result, programmers may accesable.

unallocated memory, resulting in unspecified behaviouis Té
easily fixed, provided our type system is sufficiently expies

In a dependently typed setting we can model the heap as an
tuple. We can then model d®Ref as a pointer into the heap that
will never go out of bounds. Finally, we index th@s data type by
the size of the source and a target heap, reminiscent of the te
nique used to type stack operations [24]. Every construttten
explicitly records how it modifies the heap. OwmnlOStatefunc-
tion than becomes total — our types guarantee that it is isiples
to access unallocated memory. We have implemented theas ide
in Agda 2 [27]. Using such a dependently typed system, we can
even correctly handle a heterogeneous heap, storingetifféypes
of data, and well-scoped, well-typed pointers. We defeidibeus-
sion of this implementation to further work.

6.3 Total semanticsfor concurrency

The above remarks about mutable state are also pertinemirfge-
mantics of concurrency. A total implementation of #tepfunction
in Listing 11 function should forbid programmers from acing
unallocated memory.

A more serious problem, however, is that the heart of our sema
tics for concurrency, thimterleavefunction in Listing 12, uses gen-
eral recursion. Whenever a blocked thread is scheduledogogss
is made, and an unguarded recursive call is made. If therddad-
lock, however, we will continue scheduling blocked threadghe
hope that some thread will make progress, andritezleavefunc-
tion loops.

Fortunately, we can avoid this problem by detecting deddloc
Instead of hoping that our scheduler will indeed find a thrid
can make progress, we should keep track of threads that we kno
are blocked. We sketch the idea here, but omit the detailsiof o
implementation.

Besides Peyton Jones’s work, there is a huge amount of oésear
in the semantics of programming languages. Many of the prosl
we discuss here have been covered elsewhere. The semantics f
mutable state are fairly well-understood. Our developnoéele-
type 10 was heavily influenced by earlier work on understagdi
10 in a purely functional language [13, 16, 19].

There are several papers that model concurrency withinéflask
worth discussing separately. First of all, Claessen hasrithes!

a ‘concurrency monad transformer’ [6]. Using continuatfmass-

ing ingenously, he shows how to add interleaved computation

any monad. The monad transformer he describes can even model
MVars. While continuations are very expressive, it can be rather
difficult to reason about them. This makes it a bit less siatat
reason with, when compared to our approach.

Harrison shows how theesumption monadan be used to in-
terleave stateful computations [15]. To interleave corapoihs he
introduces a pair of mutual recursive functioeshedandhandler.
Theschedfunction is a round robin scheduler that essentially con-
sults the thread soup and passes the next active thread bauthe
dler. The handler processes the active thread and invokesltied
function again. We feel that our separation of interleaand pro-
cessing threads makes it easier to extend the semanticavith
functions, such agillThread andyield, without having to worry
about interleaving. Harrison mentions that ‘it is not theemtion
of the current work to model the awkward squad,” and does not
explore this line of research further.

Finally, Nanevsket al. have proposed a type theory that allows
programmers to reason about effectful programs [25, 26}ebd
of giving a concrete implementation of the specification aswave
done here, they formulate several axioms that charactéose
effectful programs behave. Both approaches have theirtsremd
further research is warranted to fully understand how tletgte.

8. Further work

There are two important issues that we hope to address irefutu
work: composing the individual semantic models and provimegr
validity.

Composing semantics

Although we have discussed the semantics of several merobers
the awkward squad separately, the real challenge involwedbin-

ing these semantics. We do have good hope that there is @&certa
degree of modularity we can exploit.

Combining arbitrary monads is a difficult problem and stilbs
ject to active research. Besides monad transformers [21 dést
tributivity laws [20], more recent work has focused on connirtg
monads by taking their coproduct [22]. Unfortunately, tleaeral
formula to compute the coproduct of two monads is ratherodilfti

The monads we have described so far, however, all have the

same shape: constructors for every supported operatidra am-

gle Return constructor. This general pattern is known a$ree
monad To compute the coproduct of free monads, we only need
to collect all the constructors for the supported operatioy tak-

ing their coproduct. Previous work on modular interpref2ig de-
scribes how to do so, while minimalizing the overhead asdedi
with finding the right injection into a large coproduct.

One major advantage of composing such monads using their

coproduct, is that we can compose the semantics of suchrootsst
— that is we could construct a functianing,s that will assign
semantics to a program i®©¢;s that uses both concurrency and
mutable state. Essentially, this involves pasting togethe state
associated with individual semantics, such as the schedmie
heap, and allowing each operation to update the relevacépie

This would greatly refine the current state of affairs, in ethi
the colossallO monad jumbles together all these separate is-

sues. Refining the 10 monad is one of the major open problems

Peyton Jones identifies in his retrospective on Haskel\elde-
ment [30]. This is really a problem — if you have a value of type
10 () it could do everything from format your hard drive to print
"Hello World!" —it's a bit worrying that we really have no idea
of what kind of side-effects such a value has.

Correctness
Although we have defined semantics for teletype 10, mutaile s

tors. There is an enormous gap between theory and practice/¢h
cannot hope to bridge unilaterally.

9. Conclusions

We feel that this work has several significant merits. We tare
by reiterating why we believe this approach to semanticgter
awkward squad is worth pursuing further:

Simplicity In contrast to process calculi, operational and denota-
tional semantics, you don’'t need a theoretical backgroand t
understand these functional semantics. A programmer can us
them to debug or test impure code, without having a deep math-
ematical understanding of all the issues involved.

Transparency One of the joys of Haskell is that there is no magic.
Once someone understands higher order functions and alge-
braic data types, they could almost write the entire Prelude
Using these functional semantics, there is no need to lase th
transparency.

Tool Support There are a large number of tools available to test,
trace, and debug Haskell code [7, 32, 12]. Such tools tylgical
do not cope well with functions in the 10 monad. By construct-
ing a faithful model within the programming language, such
tools could be used to debug our pure model — a massive im-
provement over the status quo!

Granularity We have presented a fine grained semantics for pieces
of the 10 monad. Further refinement could really pay off. A
case in point is made by Haskell's software transactionahme
ory [14]. The distinction between the STM monad and the 10
monad make sure that transactions can roll back. Similagy,
can guarantee that a teletype interaction of ty@e will never
cause a deadlock in a concurrent process of t¢pe- thetype
of a side-effecting function suddenly means something.

Mutable state, concurrency, and teletype 10 are considered
beasts of programming language design by the purest ofitunadt
programmers. With the advent of monads, these issues have be
come managable — monads contain the havoc that such beasts ca
wreak. The semantics we present here take things one staprfur
— there is no longer a hard distinction between pure and ienpur
functions. There is, perhaps, beauty in these beasts édfter a

and concurrency, we cannot be sure that the models we have con Acknowledgments

structed are indeed a faithful representation of the relatsifects.

We are greatly indebted to our colleagues in the Foundatibifso-

We need to guarantee that that the semantics we have pmsentegramming group for their encouragement and entertainiegugi_

here can actually be trusted.

sions. Diana Fulger, Peter Hancock, Graham Hutton, Maiskeda

We could try prove that our semantics are equivalent to those |ioff, Andres Loh, and Nicolas Oury all deserve a particutzen-

presented by Peyton Jones [28]. One problem with this isRbgt

ton Jones’s semantics are not completely formal — there &pro-

ification of how pure functions should be silently evaluateidre-

over, this still does not guarantee that our specificatioasaman-
tically equivalent to the code produced by any Haskell coenpi
but merely proves the two sets of semantics are equivalent.

An alternative approach would be to describe how Haskell-com
piles to code for some (virtual) machine. We could then campa
the behaviour of the primitiveutCharwith the putCharwe have
defined ourselves. If these two are semantically equivalarthe
machine level, we know that it is safe to reason using thetions
we have defined. Hutton and Wright take a very similar apgroac
to proving the correctness of a compiler for a simple languaigh
exceptions [18].

This is actually an instance of a much wider problem: how many
compilers have been proven to satisfy a language’s spe@fica
We have provided a very usable specification of effects, bat c
only share the burden of proof together with compiler impem

tion for their valuable feedback on earlier versions of thégper,
for which we are forever grateful. We would also like to exgze
our gratitude for the helpful feedback we received from gnoous
referees.

References

[1] Arthur I. Baars and S. Doaitse Swierstra. Typing Dynaiyping. In
ICFP '02: Proceedings of the Seventh ACM SIGPLAN Intermetio
Conference on Functional Programmir2002.

[2] Yves Bertot and Pierre Castérarinteractive Theorem Proving
and Program Development. Coq'Art: The Calculus of Induetiv
Constructions Texts in Theoretical Computer Science. Springer
Verlag, 2004.

[3] Richard Bird. Functional Pearl: Unfolding pointer atgbms.
Journal of Functional Programmingl1(3):347-358, 2001.

[4] Richard Bird and Philip Wadler.An Introduction to Functional
Programming Prentice Hall, 1988.

[5] James Cheney and Ralf Hinze. A Lightweight Implementatdf
Generics and Dynamics. In Manuel Chakravarty, edRooceedings
of the 2002 ACM SIGPLAN Haskell Workshppges 90-104. ACM-
Press, October 2002.

Koen Claessen. A Poor Man’s Concurrency Monad. Jburnal
of Functional Programmingvolume 9, pages 313-323. Cambridge
University Press, May 1999.

Koen Claessen and John Hughes. QuickCheck: A Lightvi€igiol
for Random Testing of Haskell Programs. |@FP '00: Proceedings
of the Fifth ACM SIGPLAN International Conference on Fuoiél
Programming 2000.

[6

—

[7

—

8

—_

Koen Claessen and John Hughes. Testing Monadic Code with
QuickCheck. InProceedings of the 2002 ACM SIGPLAN Haskell
Workshop2002.

Nils Anders Danielsson, John Hughes, Patrik Janssash Janemy
Gibbons. Fast and Loose Reasoning is Morally Correct. In

[9

—

Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languaggsages 206-217, 2006.

[10] Philip Derrin, Kevin Elphinstone, Gerwin Klein, Davi@ock, and
Manuel M. T. Chakravarty. Running the manual: an approactigio-
assurance microkernel development.Haskell '06: Proceedings of
the 2006 ACM SIGPLAN workshop on Hask2006.

[11] Neil Ghani, Peter Hancock, and Dirk Pattinson. CortaimsFunctions
on Final Coalgebras.Electronic Notes in Theoretical Computer
Science164(1):141-155, 2006.

[12] Andy Gill. Debugging Haskell by Observing IntermediaData
Structures. IrProceedings of the 4th Haskell Worksh@@00.

[13] Andrew D. GordonFunctional Programming and Input/Outpu®hD
thesis, University of Cambridge, 1992.

[14] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maairi
Herlihy. Composable Memory Transactions. Rnoceedings of
the tenth ACM SIGPLAN Symposium on Principles and Practice o
Parallel Programmingpages 48-60, 2005.

[15] William L. Harrison. The Essence of Multitasking. In &hiael John-
son and Varmo Vene, editorBroceedings of the 11th International
Conference on Algebraic Methodology and Software Teclgyolo
volume 4019 olecture Notes in Computer Scienpages 158-172.
Springer, 2006.

[16] Soren Holmstrom. PFL: A Functional Language for Hafa
Programming. IrDeclarative Programming Workshppages 114—
139, 1983.

[17] Paul Hudak, Antony Courtney, Henrik Nilsson, and JoletePson.
Arrows, Robots, and Functional Reactive ProgrammingSummer
School on Advanced Functional Programminglume 2638 of
Lecture Notes in Computer Scienpages 159-187. Springer, 2003.

[18] Graham Hutton and Joel Wright. Compiling Exceptionsr€ctly. In
Proceedings of the 7th International Conference on Math@naf
Program Constructionvolume 3125 of_ecture Notes in Computer
ScienceSpringer, 2004.

[19] Kent Karlsson. Nebula: A Functional Operating SysteFachnical
report, Chalmers University of Technology, 1981.

[20] David J. King and Philip Wadler. Combining monads. Ihdo
Launchbury and Patrick M. Sansom, editospceedings of the
Glasgow Workshop on Functional Programmirmges 134-143,
Glasgow, 1992. Springer.

[21] Sheng Liang, Paul Hudak, and Mark Jones. Monad tramsfos
and modular interpreters. l@onference record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 333—-343, 1995.

[22] Christoph Lith and Neil Ghani. Composing Monads Using
Coproducts. IrProceedings of the 7th ACM SIGPLAN International
Conference on Functional Programmir2002.

[23] Conor McBride and James McKinna. The view from the l@éurnal
of Functional Programmingl4(1):69-111, 2004.

[24] James McKinna and Joel Wright. A type-correct, staafesprovably
correct, expression compiler in Epigram. Submitted to thedal of
Functional Programming, 2006.

[25] Aleksandar Nanevski and Greg Morrisett. Dependent tyygory of
stateful higher-order functions. Technical Report TRé%4-Harvard
University, 2005.

[26] Aleksandar Nanevski, Greg Morrisett, and Lars Birked®&oly-
morphism and separation in hoare type theory.Ptaceedings of
th Eleventh ACM SIGPLAN Internation Conference on Funetion
Programming 2006.

[27] UIf Norell. Agda Il. Available online.

[28] Simon Peyton Jones. Tackling the Awkward Squad: manadi
input/output, concurrency, exceptions, and foreign-legg calls
in Haskell. InEngineering theories of software constructi@®02.

[29] Simon Peyton Jones, editoHaskell 98 Language and Libraries —
The Revised Repor€ambridge University Press, 2003.

[30] Simon Peyton Jones. Wearing the hair shirt: a retrdsmgec
on Haskell. Invited talk at the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2003.

[31] Simon L. Peyton Jones and Philip Wadler. Imperativecfiomal
programming. InConference record of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languafe33.

[32] Bernard Pope. Declarative debugging with Buddha.Stmmer
School on Advanced Functional Programminglume 3622 of
Lecture Notes in Computer Scienpages 273-308. Springer, 2005.

[33] D. A. Turner. Total functional programminglournal of Universal
Computer Sciencel0(7):751-768, 2004.

A. Appendix

Listing 16 An implementation of queues using mutable references

data Data= Cell Int IORef| NULL
type Queue= (IORef, IORef)

emptyQueue 10s Queue
emptyQueue- do
front < newlORef NULL
back<— newlORef NULL
return (front, back)

enqueue: Queue— Int — 105 ()
enqueuéfront, back x =
do newBack— newlORef NULL
let cell = Cell x newBack
¢ «— readlORef back
writelORef back cell
case c of
NULL — writelORef front cell
Celly t— writelORef t cell

dequeue: Queue— 105 (Maybe In}
dequeuéfront, back = do
¢ < readlORef front
case ¢ of
NULL — return Nothing
(Cell x nextRef — do
next— readlORef nextRef
writelORef front next
return (Just X

