A categorical semantics for inductive-inductive
definitions

Thorsten Altenkirch!*>**, Fredrik Nordvall Forsberg?*, Peter Morris'**, and
Anton Setzer?*

1 School of Computer Science, University of Nottingham
2 Department of Computer Science, Swansea University

Abstract. Induction-induction is a principle for defining datatypes in
Martin-L&f Type Theory. An inductive-inductive definition consists of a
set A, together with an A-indexed family B : A — Set, where both A and
B are inductively defined in such a way that the constructors for A can
refer to B and vice versa. In addition, the constructors for B can refer
to the constructors for A. We extend the usual initial algebra semantics
for ordinary inductive datatypes to the inductive-inductive setting by
considering dialgebras instead of ordinary algebras. This gives a new and
compact formalisation of inductive-inductive definitions, which we prove
is equivalent to the usual formulation with elimination and computation
rules.

1 Introduction

Induction is an important principle of definition and reasoning, especially so in
constructive mathematics and computer science, where the concept of inductively
defined set and datatype coincide. There are two well-established approaches to
model the semantics of such datatypes: in Martin-Lof Type Theory [13], each
set A comes equipped with an eliminator which at the same time represents
reasoning by induction over A and the definition of recursive functions out of
A. A more categorical approach [9] models datatypes as initial T-algebras for a
suitable endofunctor T'.

At first, it would seem that the eliminator approach is stronger, as it allows us
to define dependent functions (z : A) — P(x), in contrast with the non-dependent
arrows A — B given by the initiality of the algebra. However, Hermida and
Jacobs [I1] showed that an eliminator can be defined for every initial T-algebra,
where T is a polynomial functor. Ghani et. al. [§] then extended this to arbitrary
endofunctors. This covers many forms of induction and datatype definitions
such as indexed inductive definitions [4] and induction-recursion [6] (Dybjer and
Setzer [7] also give a direct proof for induction-recursion).

There are, however, other meaningful forms of datatypes which are not covered
by these results. One such example are inductive-inductive definitions [15], where a

* Supported by EPSRC grant EP/G033374/1.
** Supported by EPSRC grant EP/G034109/1.

set A and a function B : A — Set are simultaneously inductively defined (compare
with induction-recursion, where A is defined inductively and B recursively). In
addition, the constructors for B can refer to the constructors for A.

In earlier work [15], a subset of the authors gave an eliminator-based axioma-
tisation of a type theory with inductive-inductive definitions and showed it to be
consistent. In this article, we describe a generalised initial algebra semantics for
induction-induction, and prove that it is equivalent to the original axiomatisation.

One could imagine that that inductive-inductive definitions could be described
by functors mapping families of sets to families of sets (similar to the situation for
induction-recursion [7]), but this fails to take into account that the constructors
for B should be able to refer to the constructors for A. Thus, the constructor for
B is described by a non-endofunctor

Argp : (A:Set)(B: A — Set)(c: Argp (A, B) —» A) — Argy (A, B) — Set

and we are forced to move to the more general setting of dialgebras [T0JI7] in
order to accommodate our functors.

The equivalence between initiality and having an eliminator still carries over
to this new setting. This is because our development actually is an instance of a
generic principle for categories that are models of Type Theory (i.e. Categories
with Families [512]). Due to space constraints, we have however instantiated the
theory to our current setting and are only treating the case of inductive-inductive
definitions.

1.1 Examples of Inductive-Inductive Definitions

Danielsson [3] and Chapman [2] define the syntax of dependent type theory in
the theory itself by inductively defining contexts, types in a given context and
terms of a given type. Let us concentrate on contexts and types for simplicity.
There should be an empty context €, and if we have any context I" and a valid
type o in that context, then we should be able to extend the context with a fresh
variable of that type. We end up with the following inductive definition of the
set of contexts:
I': Ctxt o:Type(I)
e : Ctxt I'>o0o: Ctxt

For types, let us have a base type ¢ (valid in any context) and a dependent
function type: if ¢ is a type in context I', and 7 is a type in I" extended with a
fresh variable of type o (the variable from the domain), then IT(c,) is a type
in the original context. This leads us to the following inductive definition of
Type : Ctxt — Set:

I Ctxt I': Ctxt o:Type(I') 7:Type(I'>0)
vr - Type(I) (o, 7) : Type(I')

Note that the definition of Ctxt refers to Type, so both sets have to be defined
simultaneously. Another peculiarity is how the introduction rule for IT explicitly
focuses on a specific constructor in the index of the type of B.

For an example with more of a programming flavour, consider defining a
datatype consisting of sorted lists (of natural numbers, say). With induction-
induction, we can simultaneously define the set SortedList of sorted lists and the
predicate <r: (N x SortedList) — Set with n <p, £ true if n is less than or equal
to every element of /.

The empty list is certainly sorted, and if we have a proof p that n is less than
or equal to every element of the list ¢, we can put n in front of ¢ to get a new
sorted list cons(n, ¢, p). Translated into introduction rules, this becomes:

n:N £ : SortedList p:n<p/{
nil : SortedList cons(n, £, p) : SortedList

For <1,, we have that every m : N is trivially smaller than every element of the
empty list, and if m < n and inductively m <y, ¢, then m <y, cons(n, ¢, p):

qg:m<n DPme:m <p, ¢

triv,, : m <g, nil & ¢, Pmg Pmonep - M g, cons(n, £, p)

Of course, there are many alternative ways to define such a datatype using
ordinary induction, but the inductive-inductive one seems natural and might be
more convenient for some purposes. It is certainly more pleasant to work with
in the proof assistant/ programming language Agda [16] which allows inductive-
inductive definitions using the mutual keyword. One aim of our investigation
into inductive-inductive definitions is to justify their existence in Agda.

1.2 Preliminaries and notation
We work in an extensional type theory [14] with the following ingredients:

Set We use Set to denote our universe of small types, and we write B : A — Set
for an A-indexed family of sets.

Il-types Given A : Set and B : A — Set, then ((z : A) - B(x)) : Set. Elements
of (z: A) — B(z) are functions f that map a : A to f(a) : B(a).

Y-types Given A : Set and B : A — Set, then Yz : A. B(z) : Set. Elements
of ¥z : A. B(x) are dependent pairs {a,b) where a : A and b : B(a). We
write my : Xx: A.B(x) — A and 7 : (y : Yz : A. B(z)) — B(mo(y)) for
the projections. If B : A — Set is propositional, i.e. there is at most one
inhabitant in B(a) for every a : A, we write { a: A | B(a)} for Xx: A. B(z).

+ Given A, B : Set, we denote their coproduct A + B with coprojections inl :
A— A+ Bandinr: B— A+ B. We use [f,g] for cotupling.

Equality and unit types Given a,b: A we write a = b : Set for the equality
type, inhabitated by refl if and only if a = b. In contrast, the unit type 1
always has a unique element * : 1.

2 Inductive-Inductive Definitions as Dialgebras

In this section, our goal is to describe each inductive-inductively defined set as
the initial object in a category constructed from a description of the set. Just as

for ordinary induction and initial algebras, this description will be a functor of
sorts, but because of the more complicated structure involved, this will no longer
be an endofunctor. The interesting complication is the fact that the constructor
for the second set B can refer to the constructor for the first set A (as for example
the argument 7 : Type(I” = o) referring to - = - in the introduction rule for the
IT-type). Thus we will model the constructor for B as (the second component
of) a morphism (c,d) : Argg(A, B,c) — (A, B) where ¢ : Arg, (A, B) — A is the
constructor for A. Here, (¢, d) is a morphism in the category of families of sets:

Definition 2.1. The category Fam(Set) of families of sets has as objects pairs
(A, B), where A is a set and B : A — Set is an A-indexed family of sets.
A morphism from (A, B) to (A’,B’) is a pair (f,g) where f : A - A’ and
g:(z:A) = B(z) > B'(f(x)).

Note that there is a forgetful functor U : Fam(Set) — Set sending (A4, B) to A
and (f,g) to f. Now, c¢: Arg, (A, B) —> A is not an Arg,-algebra, since Argy, :
Fam(Set) — Set is not an endofunctor. However, we have ¢ : Arg, (A, B) —
U(A, B). This means that cis a (Arg, , U)-dialgebra, as introduced by Hagino [10]:

Definition 2.2. Let F,G : C — D be functors. The category Dialg(F,G) has as
objects pairs (A, f) where A€ C and f : F(A) — G(A). A morphism from (A, f)
to (A, ') is a morphism h : A — A’ in C such that G(h) o f = [o F(h).

Note that there always is a forgetful functor V : Dialg(F,G) — C defined by
V(A f) = A.

Putting things together, we will model the constructor for A as a morphism
c: Arg, (A, B) — A in Set and the constructor for B as the second component
of a morphism (c¢,d) : Argg(A, B,c) — (4, B) in Fam(Set). Thus, we see that
the data needed to describe (A, B) as inductively generated with constructors
¢, d are the functors Arg, and Argg. However, we must also make sure that the
first component of Argp coincides with Argy, i.e. that U o Argp = Arg, o V.

Definition 2.3. An inductive-inductive definition is given by two functors

Arg, : Fam(Set) — Set
Argg : Dialg(Arg,,U) — Fam(Set)

such that U o Argg = Arg, o V.
Lemma 2.4. Equivalently, Argg can be replaced by an operation
Argy i (A: Set)(B: A — Set)(c: Arg4(A, B) —> A) — Arg,(A, B) — Set

that is functorial in the sense that if if we have a Dialg(Argy, U)-morphism
(f,9): (A, B,c) — (A, B,) then this can be lifted to an action on morphisms

A’f’g%(f, g) : (J? : ArgA(A7 B)) - A’f’g%(/h Bv c, x) - Arglé(Alv Bla cl7 ArgA(.f7 g)(Jj))
such that Argg(id)(z,y) =y and
Argp((f,9) o (f',9")(2,y) = Argp(f, 9)(Arga(f', ") (@), Argp(f', 9") (x,y)) -

Ezample 2.5 (Contexts and types). The inductive-inductive definition of Ctxt :
Set and Type : Ctxt — Set from the introduction is given by

Argo (A, B) =1+ XT:A B(I')
Argho (A, B c,z) =1+ (X o:B(c(z)). 7: B(c(inr(c(x), 0)))) -

Type

For Arg,,, the left summand 1 corresponds to the constructor € taking no argu-
ments, and the right summand X' I": A. B(I') corresponds to =’s two arguments
I': Ctxt and o : Type(I"). Similar considerations apply to Arg%ype.

Ezample 2.6 (Sorted lists). The sorted list example does not fit into our frame-
work, since <r,: (N x SortedList) — Set is indexed by N x SortedList and not
simply SortedList. It is however straightforward to generalise the construction to
include this example as well: instead of considering ordinary families, consider
“N x A-indexed” families (A, B) where A is a set and B : (N x A) — Set. The
inductive-inductive definition of SortedList : Set and <r,: (N x SortedList) — Set
is then given by

Arggrii (A, B) =1+ (X n:N. X 0: A. B(n,{))
Arg” (A, B,c,m,inl(x)) =1
Arg” (A, B,c,m,inr({(n,,p))) = Xm < n.B(m,l) .

<L

For ease of presentation, we will only consider ordinary families of sets.

2.1 A Category for Inductive-Inductive Definitions

Given Arg, and Argpy representing an inductive-inductive definition, we will now
construct a category Earg, Arg, Whose initial object (if it exists) is the intended
interpretation of the inductive-inductive definition. Figure |1| summarises the
functors and categories involved (U, V and W are all forgetful functors).

Argp Argg (V,U)
VS S T T
Set Fam(Set) Dialg(Arg,,U) Dialg(Argg, V) < O Earg, Argg
N~ ~— ~—
U Vv w

Fig. 1. The functors and categories involved.

One might think that the category we are looking for is Dialg(Argg, V),
where V : Dialg(Arg,, U) — Fam(Set) is the forgetful functor. Dialg(Argg, V)
has objects (A, B, ¢, (do,d1)), where A : Set, B: A — Set, ¢: Arg,(4,B) - A
and (dp,d;1) : Argg(A, B,c) — (A, B). The function dj : Arg, (A4, B) — A looks
like the constructor for A that we want, but

di : (z: Args (A, B)) — Argh(A, B, c,z) — B(dg(x))

does not look quite right — we need ¢ and dy to be the same!

To this end, we will consider the equalizer of the forgetful functor W :
Dialg(Argg, V) — Dialg(Arg,,U), W(A, B, ¢, (do,d1)) = (A, B, ¢), and the func-
tor (V,U) defined by

(Vv U)(A,B,C, (d07d1)) = (V(A,B,C),U(do,dl)) = (AvadO)
V., U)(f,9) = (f,9)

Note that U(do, dy1) : U(Argg(A, B,c)) » U(V(A, B,c)) but U o Argg = Arg, o
V, so that U(dy,d1) : Arga(V(A,B,c)) — U(V(A,B,c)). In other words,
(V(A,B,c),U(dg,dy)) is an object in Dialg(Arg,, U), so (V, U) really is a functor
from Dialg(Argg, V) to Dialg(Arg,, U).

Definition 2.7. For Arg, and Argg representing an inductive-inductive defini-
tion, let Earg, arg, be the underlying category of the equaliser of (V,U) and the
forgetful functor W : Dialg(Argg, V') — Dialg(Arg,,U).

Explicitly, the category Earg, Arg, has

— Objects (A, B,¢,d), where A : Set, B : A — Set, ¢ : Argy(A,B) — A,
d: (z:Argy (A, B)) — Argh(A, B, ¢, z) — B(c(z)).

— Morphisms from (A, B, ¢, d) to (A’, B’, ¢, d") are morphisms
(f,9): (A, B,¢) = Dialg(Arg,,U) (A, B’,) such that in addition

g(c(@), d(z,y)) = d'(Args (£, 9)(z), Argg(f. 9)(z,y)) -
Ezample 2.8. Consider the functors Argeyy, Argrype from Example

Argo (A, B)=1+XT:A.B(I)
Argho (A, B c,z) =1+ (X o:B(c(z)). 7: B(c(inr(c(x), 0)))) -

Type

An object in EArgmqurgTypc consists of A : Set, B : A — Set and morphisms
¢ =[ea,B,= A, B] and d which can be split up int(ﬂ

cap:1—-A4, >ap:((I':A)xB(I)) > A,
va,p (It Argoy (A, B)) = B(c(I)
Map: (T Atgo (A, B)) = (03 Be(T) x (7 : Bl=a p(e(D),0)))) = B(e(D)) .

Remark 2.9. The intended interpretation of the inductive-inductive definition
given by (Arg,, Argg) is the initial object in Earg, Arg,- Depending on the meta-
theory, this might of course not exist. However, we will show that it does if and
only if an eliminator for the inductive-inductive definition exists.

3 Notice that tap : (I' : Argg,, (A, B)) — ... and not ta,5 : (I' : A) — ... as one
would maybe expect. There is no difference for initial A, as we have Argq,,.(4,B) = A
by (a variant of) Lambek’s Lemma.

Remark 2.10. From Figure [it should be clear how to generalise the current
construction to the simultaneous definition of A : Set, B: A — Set, C': (z : A) —
B(xz) — Set, etc.: for a definition of n sets, replace Fam(Set) with the category
FAM,, of families (A;, Ag, A3, ..., A,) and consider Arg, : FAM,, — Set, Argg :
Dialg(Argy,U) — Fam(Set), Argq : Earg, arg, — FAM3, ... taking an equalizer
where necessary to make the constructors in different positions equal.

2.2 How to Exploit Initiality: An Example

Let us consider an example of how to use initiality to derive a program dealing
with the contexts and types from the introduction. Suppose that we want to
define a concatenation +H- : Ctxt — Ctxt — Ctxt of contexts — such an operation
could be useful to formulate more general formation rules, such as:

o : Type(I) 7 : Type(A)
o x 7: Type(I’ + A)

Such an operation should satisfy the equations

A+H e =A
A+ (I'=0) = (A+ Dye(wkr(o,4))

where wk : (I" : Ctxt) — (o : Type(I')) — (A : Ctxt) — Type(A HI') is a
weakening operation, i.e. if o : Type(I"), then wkp(o,A) : Type(A H+ I'). A
moment’s thought should convince us that we want wk to satisfy

wkr(ir,A) = taqr
wkr(IIr(o,7),A) = Harr(wkr(o, A), wkreo (1, A4)) .

Our hope is now to exploit the initiality of (Ctxt, Type) to get such operations.
Recall from Example 2.5 that Ctxt, Type are the underlying sets for the inductive-
inductive definition given by the functors

Arge (A, B) =14+ XT:A.B(I)

Argt, (A, B,c,z) =1+ (X o:B(c(x)). 7: B(c(inr(c(x), 0)))) .

"

Type
From the types of + : Ctxt — Ctxt — Ctxt and wk : (I" : Ctxt) — (A :
Type(I')) — (A : Ctxt) — Type(A + I'), we see that if we can equip (A4, B)
where A = Ctxt — Ctxt and B(f) = (4 : Ctxt) — Type(f(A)) with an
(Argcixt, Arg%ype) structure, initiality will give us functions of the right type. Of
course, we must choose the right structure so that our equations will be satisfied:

ing : Argeg (A, B) = A
iny (inl(*)) =)AA. A
ina(inr((f,9)) = AA.(f(4)=g(4)) ,

ing : (.23 : ArgCtxt(A7 B)) - Arg’/{‘ype(A7 B, iny, $) - B(IDA($))

inp(4,inl(x)) = A Lin, (A)(I)
ing(A4,inr((g, h)) = AL Iy, (ayr)(9(I), (1))

Since (A, B,iny, ing) is an object in Earg, Arg,, initiality gives us a morphism
(+, wk) : (Ctxt, Type) — (A, B) such that (++, wk)o([e, =], [¢, IT]) = (ina, ing)o
(Arg,, Argyy)(+, wk). In particular, this means that
+(g) = ina(Args (+, wk)(inl(*))) = ina(inl(x)) = AA. A
+H(I'>0) = ina(Arg, (inr((1;0)))) = ina((+H(I), wk(I',0))))
=M. H ([A) = wk(I,0,A4) .

Thus, we see that A+ e =Aand A+ (I'>0) = (A+I') >wkp(o,A) as
requiredﬂ In the same way, the equations for the weakening operation hold.

2.3 Functors From the Earlier Axiomatisation

In short, the earlier axiomatisation[I5] postulated the existence of a universe
(SP’y, SP) of codes for inductive-inductive sets, together with decoding functions
Argly, Arg; and Indexp. Intuitively, Arg’y gives the domain of the constructor
introa for A, Argl; the domain for the constructor introg for B and Indexf(x)
the index of the type of introg(x). More formally, they have types

Argly i (y4 : SPA)(A : Set)(B: A — Set) — Set
Argp : (74 : SPa)(v5 : SPB(74))
— (A :Set)(By : A — Set)(By : Argly (v4, A, By) — Set)
—...— (B, : ArgXL(yA,A,é(n)) — Set) — Set |
Index;(va,vB, A, Bo, - .., Bn) : i
Arg%(VA,VBa AvBOa IREE] Bn) - + AI‘gXL(’}/A7A’ B(Z)) ’
i=0

where é(i) = (By,...,Bi—1) and ArgX(’yA,A,B(i)) is defined by
Arg’[g(’yA,A, Byy) = A

Argxprl(’yz‘h A, E(n),BTL+1) = AI‘gZ\("YA, —I_ ArgX(’YAv A, E(z))a [B()a [s Bn]]) .
i=0

The axiomatisation then states that we have introduction and elimination
rules, i.e. that for each code v = (ya,vp) there exists is a family A, : Set, B, :
A, — Set with constructors introa : Argy (va, A, By) — A, and introg : (z :
Argys(v, Ay, By, By, ..., By)) = B, (index(x)), and a suitable eliminator (see Sec-
tion|3). Here, B; = Bok; and index(x) = [ko, ..., k,](Indexy (7, 4, Bo, . . ., Bn, 7))
where ko = id and k;,, = introa o Argi ([ko, ..., k], [id,...,id"]).

Given a code v = (v4,vp) and such decoding functions, one can construct two
functors Arg,, , Arg, asin Deﬁnitionby setting Arg,, (A, B):=Arg) (74, A, B)
and Arg, (4, B,c) == (Arg,, (A, B), Arng (A, B, c)) where

AI‘giI/B(A,B,C,JZ) = {y:ArgIEB(fVAaVBaA,B,Bla"'7Bn) | C(:E) = index(y)} :

4 Actually, the order of the arguments is reversed, so we would have to define
A+ Ti=+ (T, A).

In Section (Theorem [3.10), we show that that the original introduction
and elimination rules hold if and only if Earg, Arg, has an initial object.

3 The Elimination Principle

In this section, we introduce the elimination principle for inductive-inductive
definitions and show that it is equivalent to the existence of an initial object.

3.1 Warm-up: a Generic Eliminator for an Inductive Definition

The traditional type-theoretical way of defining recursive functions like the
context concatenation -+ in Section is to define them in terms of eliminators.
Roughly, the eliminator for an F-algebra (A, c) is a term of type

elimp : (P: A — Set) —
(€:(z: F(A)) » Or(P,z) = Plc(z))) —
(x:A) > P(x) .
with computation rule elimg(P,¢, c(x)) = ¢(x,dmapp(P,elim(P,¢),x)). Here,
Or(P) : F(A) — Set is the type of inductive hypothesis for P; it consists of

proofs that P holds at all substructures of z, and dmapy(P) : (z : F(A) —
P(x)) — (z: F(A)) - Or (P, x) takes care of recursive calls.

Ezample 3.1. Let F(X) =1+ X, i.e. F is the functor whose initial algebra is
(N, [0, suc]). We then have

hax (P inl(x)) =1 hax (P, inr(n) = P(n)
so that the eliminator for (N, [0, suc]) becomes

:N — Set) —
foi1 = PO) =
fsuc : () — P(n) — P(suc(n))) —

elim]_ +X

(P
(
(
(

For polynomial functors F', (] can be defined inductively over the structure
of F as is given in e.g. Dybjer and Setzer [7]. However, [1z and dmapy can be
defined for any functor F': Set — Set by defining

Op(P,x) ={y: F(Xz:A. P(2))|F(m)(y) = «}
dmapp(P, ¢, z) = F(Ayy, &(y)))(z) -

We see that indeed [Ny x(P,inl(x)) =~ 1 and 14 x(P,inr(n)) = P(n) as in
Example [3.1]

3.2 The Generic Eliminator for an Inductive-Inductive Definition

Let us now generalise the preceding discussion from inductive definitions (i.e.
endofunctors on Set) to inductive-inductive definitions (i.e. functors (Arg, , Argg)
as in Definition . Since we replace the carrier set A with a carrier family
(A, B), we should also replace the predicate P : A — Set with a “predicate
family” (P, Q) where P: A — Set and Q : (z : A) - B(z) —» P(z) — Set. This
forces us to refine the step function ¢: (z : F(A)) —» Or(P,x) — P(c(z)) into
two functions

¢ (w1 Argy (A, B)) — Oarg, (P, Q, z) = P(c(2))
d: (z: Argy (A4, B)) = (y : Argi(A, B,c,z)) — (: Oarg, (P, Q, 7))
- DArgB (P7Qacv vaayv‘%) - Q(c(x),d(x,y)ﬁ(x,%)) .

As can already be seen in the types of ¢ and Jabove, we replace [Jr with Clarg,
and [arg, of type

Oarg, (P, Q) : Argp (A, B) — Set

Oarg, (P, Q) 1 (¢ (z : Argp (4, B)) = Oarg, (P, Q,2) = P(c(x))) —
: Arg (A, B)) = (y : Argh(A, B, c, 1)) —

:Oarg, (P, Q,) — Set

]

(
(
(

8

and we replace dmapy with dmap Arg s dmap Argp of type

dmapy,, (P,Q): (f:(z:A) - P(z)) —
t(@:A) = (y: Bz)) » Q,y, f(2))) —
t Arg (A, B)) = Oarg, (P, Q, 7)
(2 Argp (A, B)) = Oarg, (P, Q,) — P(c(x))) —
fi(z:A) > Px) -
g:(z:A) > (y:B(x)) - Qz,y, f(2))) —
x: Arg, (A, B)) — (y : Argh(A, B, c, 7))
= arg, (P Q, ¢ 2, y, dmapy,, (P, Q. f,9,7)) .

8

e

(
(
(
dmap s, (P, Q) : (
(
(
(

We can define Oarg, , Carg,, dmapy,,, and dmap,,, for arbitrary functors
representing inductive-inductive definitions. First, define:

Definition 3.2. Let (A, B) € Fam(Set), P : A — Set, Q : (v : A) —» B(z) —
P(x) — Set.

(Z) Deﬁne ZFam(Set) (AaB) (Pa Q) € Fam(set) by

EFam(Set) (A7B) (PaQ) = (2 AP, /\<a,p>EbB(a) Q(G,b,p))

10

(ii) In addition, for (f,q) : (A, B) — (A, B') and
h:(x:A) - P(f(z))
k:(z:A) > (y:B(z)) = Q(f(2), 9(x,y), h(x)) ,
define {(f,g), (h,k)) : (A, B) = Zpam(sery(A’, B') (P, Q) by
{(f,9): (h,k)) = (Az.{f(z), h(2)), A\ry.{g(z,y), k(z,y)))

(iii) For h:(x:A) = P(x) and k: (x: A) = (y : B(x)) = Q(z,y, h(x)), define
(h, k) : (A, B) = Ypum(ser (A, B) (P, Q) by (h, k) := id, (h, k)).

We have (7o, 7) = (70, AZ. T0) : Lpam(set) (4, B) (P, Q) — (A, B) with (o, 7)o
(h, k) = id. This is enough to define [ayg, and dmapy,, :

Definition 3.3. Define Oarg, and dmap s, with types as above by

DATQA (P,Q,.Z‘) = {y : ATgA(ZFam(Set) (A7B) (PaQ)) |ATgA(7TO?ﬂ-6)(y) = LE})
dma'pArgA(P7Q7f7g) = ArgA((fa g)) .

Note that we have an isomorphism

PArg, * ArgA(EFam(Set) (Av B) (P» Q)) - Yu: ArgA(Av B) DAT.{-’;A (P7 Qa (E)
defined by @arg, () = (Arga (o, m9)(2),).
Definition 3.4. Given P, Q, ¢, x, y, T as above, define

(Z) EDialg(Av B,C) (Pv Qva = (EFam(Set) (A7 B) (P7 Q), [C,E] © SDATQA);
(ii) Oarg,(P,Q, ¢, x,y,T) =
{Z : ATg’é((ZDm[g(A,B,C) (P,Q7E)),5f) | ATg%(WO7W6,%7 Z) = ZJ},
(i) dmap ., (P, Q. f,g) = Argp((f,9)).

We can now define what the eliminators for inductive-inductive definitions are:

Definition 3.5. We say that (A, B, c,d) in Earg, Arg, has an eliminator, if there
exist two terms
elimarg, : (P:A— Set)(Q: (x:A) - B(x) — ()—»Set)
(@: (x: Args(A, B)) = Oarg, (P,Q,) x))) —
(d: (z: Arga(A, B)) = (y : Argp(A. B,c, m)) (: Darg, (P.Q, 7))
= Oarg, (P, Q, 6,8, 2,y,7) — Q(c(x), d(z,y), &z, T))) —
A) = P(z)
P:A— Set)(Q:(x:A) - B(x) > P(z) - Set) -
(.’E Ar’gA A B)) _’DATgA(P Q7)_) (())) -
(d: (x: Args(A, B)) > (y - Argp(A, B,c,x)) = (¥ : Oar, (P.Q, 7))
- DA?"gB(Pv Q7) C’ T, Y, I) - Q(C(Z’), d(z7 y)v C(I, %))) -
(37 : A) - (y : B(.I)) - Q(m7ya ehmArgA (P7Qafag7x))

(x:
(

elimarg, :

11

with
elimA’r‘gA (Pa Q7 Ea C’Z; C(.T))
elimarg, (P,Q, ¢ d, c(z),d(z,y))

C(J?, dmaplArgA)

= d(x» Y, dma’plArgAv dmap{ArgB)
where
dmap'ATgA = dmap 4,y (elimarg, (P, Q,¢,d), elimay,, (P, Q,¢,d), x)
dma'piArgB = dma‘pArgB (Ea elimA’rgA (P7 Q) 57 d)a elimATgB(Pa Qa 87 d)a €, y) .

Ezample 3.6 (The eliminator for sorted lists). Recall from Example that
sorted lists were given by the functors Arggy ., Arge, , where

Argerii (A, B) =1+ (X n:N. X 0:A. B(n, {))
Thus, we see that e.g.
Oargey,, (P, Q,inl(x)) = {y: 1+... | (id+...)(y) =inl(*)} =1
Clarsen (P, @ inx((n, £,p)) =
{y: Xn":N.X{ 0y:(XAP). Xp':B(n,£).Q(n', 0',p',0) | X(id, (70, 7p))(y) = {n, £, py}
=~ Y0:P(0).Q(n,L,p,0)

and similarly for []Arg<L, so that the eliminators are equivalent to

elimgortedrList : (P : SortedList — Set) —
(Q: (n:N) — (£: SortedList) » n <, £ — P({) — Set) —
(pnit P(nil)) —
(Peons : (n: N) — (£ : SortedList) — (p:n <, £) — (£ : P(¢))

~

— Q(n,t,p,l) —> P(cons(n,£,p))) —
(Ptriv = (n: N) = Q(n, nil, triv,, pai)) —
(p<» : (m:N) > (n:N) - (£: SortedList) — (p: n <,)
—(g:m<n)— () :m<y) — (L2 P0))
= (F: Q. 0) = (- Q(m, ', 7))
— Q(m, cons(n, ,p), € ¢, >p mn > Peons(n, £,p, 1, D)) —
(¢ : SortedList) — P(¢) ,
elimg, : ... —
(n:N) — (£: SortedList) — (p:n < £)
— Q(n, £, p, elimsortedList (P @, Puil, Peonss Pirivs P £)) -

3.3 The Equivalence Between Having an Eliminator and Being
Initial

We now prove the promised equivalence. In what follows, let (Arg,, Argy) be
functors for an inductive-inductive definition.

12

Lemma 3.7. There is an isomorphism

(‘PATgAa QDAT!]B) : ATgB(EDialg(Aa B, C) (P7 Q, 5))
- EFam(Set)ArgB(A7 B7 C) (DArgA,ATgB (Pa Q7 5))

such that (71'0, Wé)o(‘PArgAa ‘PATgB) = A?”gB(ﬂ'o, 77(1)) and (‘PATgAa ‘PArgB)OArgB((fv g)) =
(dmapArgA(Panfag)admapArgB(Panzvf7g)) . O

Proposition 3.8. Every initial object (A, B,c,d) in Earg, Arg, has an elimina-
tor.

Proof. Let P, Q, ¢, d as in the type signature for elima,g, and elima,g, be
given. Define iny : Argg(Xpiag(4, B, ¢) (P,Q,¢)) = V(Zpiag(A4, B, c) (P,Q,¢))
by iny = [(¢,d), (¢,d)] o (PArg, s PArg,)- This makes YXpiae(A, B, ¢) (P,Q,¢) an
object of Earg, Argy-

Since (A, B, ¢, d) is initial in Earg, Arg,, we get a morphism (h, h') : (A, B) —
Yram(set) (4, B) (P, Q) which makes the top part of the following diagram com-
mute:

(c,d)

Argp (A4, B,c) (A, B)
<>l i(m')
[(c,d),(a,i)b
Argp(X(A, B, c) (P,Q, ”)) — YArgg (A, B, c) (O(P,Q,¢)) — X(A, B) (P,Q)

APArgA PArgpg) ’
ArgB(ﬂ'gﬂré)l / i(m,wg)
0,70

AI’gB(A,B,C) (A7B)

(c.d)

The bottom part commutes by Lemma and calculation. Hence (g, () ©
(h,h') is a morphism in Earg, Arg, and we must have (7o, () o (h, k') = id by ini-
tiality. Thus mpoh : (z: A) - P(x) and w1 (h'(z,y)) : Q(z,y, 71 (h(x))) for x : A,

y : B(x), so we can define elima,,, (P, @, ¢, J) = moh and elima,, (P, @, ¢, cz x,y) =

m (W' (z,y)).
To verify the computation rules, note that since (mg,7() o (h,h’) = id, we
have (h,h') = (w1, 7)o (h, h'). We only show the calculation for Argy:

elimarg, (P, Q. d, c(z))) = m(h(c(x)))
= C(PArg, (ArgA h, h/)(l‘)))

o (

(Parg, (Arga((m1,m1) o (h, h'))(2)))
((1, m1) o (h, 1)) ()
A

Il
or M

x,dmapy,,

~

O
Proposition 3.9. Fvery (A, B,c¢,d) which has an eliminator is weakly initial in

EAT'QmAT'QB .

13

&(w,dmap,,, (elimarg, (P, Q. d), elimarg, (P, Q, %, d),

x))

Proof. Let (A’, B',c,d") be another object in Earg, arg,- Notice that for P(x) =
A, Q(z,y,x) = B'(Z), the usually dependent second projections 71, 7] become
non-dependent and make up a morphism (71, 77) @ Ypamset) (4, B) (P, Q) —
(A’, B'). Since

710 e, o Argy (11, 7) 0 Py 10 Pang, = ¢ 0 Arga(mi,m) |

this lifts to (71, 7]) : Ypiag(4, B, ¢) (P, Q, CloArgA(WlﬂTi)OSDX:gA) — (A, B,).
By currying (f,g) == (¢, d’') o Argg(my, 7)) o (SOArgA,sDArgB)_l)a we get

f (Z‘ : ArgA(A’ B)) - DAFEA (P Q,l‘) - A/
g:(z: Arga(A,B)) = (y : Argg(A, B, ¢, x)) = (T : Oarg, (P, @, 7))
g DArgB(P7chaf7m7y7x) - B (f(.’E,%))

J

so that (h, h') := (elima,g, (P, Q, ¢ d), elimayg, (P, Q,& d)) : (A
We have to check that (h,h') o (c,d) = (', d’) o Argg(h, h').

(h, 1) o (c,d) =

,B) = (A", B').

ehmArgA(P Q f g) ehmArgA(P Q f g)) © (C, d)
) o (dma’pArgA(hv h’)’ dmapArgB (h’ '))

(
=(f.9

= (f,9) © (Parg,» PArg,) © Argg(h, 1)
= (d,d") o Argg(my, 7)) o Argg(h, h')
= (c/,d") o Argg(h,h')

[}

For strictly positive functors, we can say more, since we can argue by induction
over their construction:

Theorem 3.10. The functors Arg,, Argg from the original axiomatisation as
described in Sectzona have eliminators if and only if IEATg Arg,, has an initial
object.

Proof. Putting Proposition [3.8 and Proposition [3.9] together, all that is left to
prove is that given an eliminator, the arrow (h, h’) we construct is actually unique.
Assume that (k, k') is another arrow with (k, k") o (¢,d) = (¢/,d’) o Argg(k, k).

We use the eliminator (and extensionality) to prove that (h,h') = (k, k’); let
P(x) = (h(x) = k(x)) and Q(x,y,Z) = (W' (x,y) = k'(x,y)). It is enough to prove
P(e(x)) and Q(c(z),d(x,y),) for arbitrary x : Args (A, B), y : Argg(A, B, ¢,),
given the induction hypothesis [Jarg, (P, Q) and Carg, (P, Q). By induction on
the buildup of Arg, and Argg, we can prove that [Jarg, (P, Q) and Carg, (P, Q)
give that Argp(h,h') = Argg(k, k) , and hence

(h,h") o (c,d) = (¢',d") o Argg(h,h') = (', d') o Argg(k, k") = (k, k') o (¢, d) .

We conclude that (h,h') = (k, k). o

14

4 Conclusions and Future Work

We have shown how to give a categorical semantics for inductive-inductive
definitions, a principle for defining datatypes in Martin-L6f Type Theory. In
order to do this, we generalised the usual initial algebra semantics to a dialgebra
setting and showed that there is still an equivalence between this semantics and
the more traditional formulation in terms of elimination and computation rules.

Future work includes extending the notion of containers [I] to inductive-
inductive definitions, and generalising this work to a unified setting including
other forms of inductive definitions: let ;G : C — D be functors between
categories that are Categories with Families [BJ12]. If C and D have Y- and
equality types, one can define the concept of an eliminator for F and G and with
some restrictions on C and G (that C admits all finite limits and G is left exact
seems to be enough), one can show that having an eliminator and being initial
in (a subcategory of) Dialg(F,G) is equivalent.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theoretical Computer Science 342(1), 3 — 27 (2005)
2. Chapman, J.: Type theory should eat itself. Electronic Notes in Theoretical Com-
puter Science 228, 21-36 (2009)
3. Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-
recursive family. Lecture Notes in Computer Science 4502, 93—-109 (2007)
4. Dybjer, P.: Inductive families. Formal aspects of computing 6(4), 440-465 (1994)
5. Dybjer, P.: Internal type theory. LNCS 1158, 120-134 (1996)
6. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:
TLCA’99. pp. 129-146 (1999)
7. Dybjer, P., Setzer, A.: Induction-recursion and initial algebras. Annals of Pure and
Applied Logic 124(1-3), 1-47 (2003)
8. Ghani, N., Johann, P.,; Fumex, C.: Fibrational induction rules for initial algebras.
In: Computer Science Logic. LNCS, vol. 6247, pp. 336-350. Springer (2010)
9. Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and
continuous algebras. Journal of the ACM 24(1), 68-95 (1977)
10. Hagino, T.: A Categorical Programming Language. Ph.D. thesis, University of
Edinburgh (1987)
11. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107 — 152 (1998)
12. Hofmann, M.: Syntax and semantics of dependent types. In: Semantics and Logics
of Computation, pp. 79 — 130. Cambridge University Press (1997)
13. Martin-Lof, P.: Intuitionistic type theory. Bibliopolis Naples (1984)
14. Nordstrém, B., Petersson, K., Smith, J.: Programming in Martin-Lo6f’s type theory:
an introduction. Oxford University Press (1990)
15. Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Computer
Science Logic. LNCS, vol. 6247, pp. 454-468. Springer (2010)
16. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)
17. Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras. Electronic
Notes in Theoretical Computer Science 44(1), 289-307 (2001)

15

	A categorical semantics for inductive-inductive definitions

