
Chapter 1

Epigram Reloaded:
A Standalone Typechecker for ETT

James Chapman1, Thorsten Altenkirch1, Conor McBride1

Abstract Epigram, a functional programming environment with dependent types,
interacts with the programmer via an extensible high level language of program-
ming constructs whichelaboratesincrementally into Epigram’s Type Theory,
ETT, a rather spartanλ-calculus with dependent types, playing the rôle of a ‘core
language’. We implement a standalone typechecker for ETT in Haskell, allowing
us to reload existing libraries into the system safely without re-elaboration.

Rather than adopting a rewriting approach to computation, we use aglued
representation of values, pairing first-order syntax with a functional representation
of its semantics, computedlazily. This approach separatesβ-reductionfrom βη-
conversion. We consequently can not only allow theη-laws forλ-abstractions and
pairs, but also collapse each of the unit and empty types.

1.1 INTRODUCTION

Epigram2 [21, 4] is at the same time a functional programming language with
dependent types and a type-driven, interactive program development system. Its
type system is strong enough to express a wide range of program properties, from
basic structural invariants to full specifications. Types assist interactive program-
ming and help to keep track of the constraints an evolving program has to satisfy.

Epigram interacts with the programmer in an extensible high level language of
programming constructs which iselaboratedincrementally into Epigram’s Type
Theory, ETT. ETT is a rather spartanλ-calculus with dependent types, based on
Luo’s UTT (Unified Type Theory) [15] and more broadly on Martin-Löf’s Type
Theory [17]. It plays the r̂ole of a ‘core language’: it can be evaluated symbol-
ically; it can also be compiled into efficient executable code, exploiting a new

1University of Nottingham,{jmc,txa,ctm }@cs.nott.ac.uk
2The Epigram system and its documentation are available fromwww.e-pig.org .

1

potential for optimisations due to the presence of dependent types [6].
Elaboration issupposedto generate well typed terms in ETT, but here we

implement a standalone typechecker for ETT in Haskell. Why do we need this?
Firstly, elaboration is expensive. We want to reload existing libraries into the
system without re-elaborating their high-level source. However, to preserve safety
and consistency, we should make sure that the reloaded code does typecheck.

Secondly, consumers may want to check mobile Epigram code before running
it. A secure run-time system need not contain the elaborator: an ETT checker is
faster, smaller and more trustworthy. McKinna suggested such a type theory for
trading in ‘deliverables’ [22], programs paired with proofs, precisely it combines
computation and logic, with a single compact checker. More recent work on
proof-carrying code [23] further emphasizes minimality of the ‘trusted code base’.

Thirdly, as Epigram evolves, the elaborator evolves with it; ETT is much more
stable. The present work provides an implementation of ETT which should accept
the output of any version of the elaborator and acts as a target language reference
for anyone wishing to extend or interoperate with the system.

We hope this paper will serve as a useful resource for anyone curious about
how dependent typechecking can be done, especially as the approach we take is
necessarily quite novel. Our treatment of evaluation in ETT takes crucial advan-
tage of Haskell’s laziness to deliver considerable flexibility in how much or little
computation is done. Rather than adopting a conventional rewriting approach to
computation, we use aglued representation of values, pairing first-order syntax
with a functional representation of its semantics, computedas required.

This semantic approach readily separatesβ-reduction from βη-conversion.
We support more liberal notions of ‘conversion up to observation’ by allowing not
only theη-laws forλ-abstractions and pairs, but also identifying all elements of
the unit type,1. We further identify all elements of the empty type,O, thus mak-
ing all types representing negative propositionsP→ O proof irrelevant! These
rules are new to Epigram—the definition [21] considers onlyβ-equality. Adding
them makes the theory more extensional, accepting more sensible programs and
simplifying elaboration by allowing general solutions to more type constraints. It
is also a stepping stone towards an Observational Type Theory based on [2]. The
laws for1 andO do not fit with Coquand and Abel’s syntax-directed approach to
conversion checking [1], but require a type-directed algorithm like ours.

Acknowledgments We gratefully acknowledge the support of EPSRC grant
EP/C512022/1 ‘Observational Equality for Dependently Typed Programming’.
We also thank James McKinna, Edwin Brady and Peter Morris for many useful
discussions, and the anonymous referees for their helpful advice.

1.2 DEPENDENT TYPES AND TYPECHECKING

The heart of dependent type theory is the typing rule for application:

Γ ` f : Πx:S.T Γ ` s : S
Γ ` f s : [x 7→ s:S]T

`
Γ ` S : ?
Γ;x:S`

Γ ` s : S
Γ;x 7→ s:S`

FIGURE 1.1. Context validity rules Γ `

The usual notion of function typeS→ T is generalised to the dependent function
typeΠx:S.T, whereT may mention, hencedependonx. We may still writeS→T
if x does not appear inT. Π-types can thus indicate some relationship between the
input of a function and its output. The type of our application instantiatesT with
the value of the arguments, by means of local definition. An immediate conse-
quence is thattermsnow appear in the language oftypes. Moreover, we take types
to be a subset of terms, with type?, so thatΠ can also express polymorphism.

Once we have terms in types, we can express many useful properties of data.
For example, considervectortypes given byVec : Nat→ ?→ ?, where a natural
number fixes thelengthof a vector. We can now give concatenation the type

vconc : ΠX :?. Πm:Nat. Πn:Nat. Vec mX→ Vec n X→ Vec (m+n) X

When we concatenate two vectors of length 3, we acquire a vector of length 3+3;
it would be most inconvenient if such a vector could not be used in a situation
calling for a vector of length 6. That is, the arrival of terms in types brings with
it, the need forcomputationin types. The computation rules for ETT do not only
explain how to run programs, they play a crucial rôle in determining which types
are considered the same. A key typing rule isconversion, which identifies the
types of terms up to ETT’s judgemental equality, not just syntactic equality.

Γ ` s : S Γ ` S' T : ?
Γ ` s : T

Formally, ETT is a system of inference rules for judgements of three forms

context validity typing equality
Γ ` Γ ` t : T Γ ` t1 ' t2 : T

We work relative to acontextof parameters and definitions, which must have
valid types and values—this is enforced by the context validity rules (figure 1.1).
The empty context is valid and we may only extend it according to the two rules,
introducing a parameter with a valid type or a well typed definition. In the imple-
mentation, we check each extension to the context as it happens, so we only ever
work in valid contexts. In the formal presentation, we follow tradition in making
context validity a precondition for each atomic typing rule.

Figure 1.2 gives the typing rules for ETT. We supply a unit type,1, an empty
type O, dependent function typesΠx : S. T and dependent pair typesΣx : S. T,
abbreviated byS∧T in the non-dependent case. We annotateλ-terms with their
domain types and pairs with their range types in order to ensure that types can be

Declared and defined variables

Γ `
Γ ` x : S

x:S∈ Γ Γ `
Γ ` x : S

x 7→ s:S∈ Γ

Universe

Γ `
Γ ` ? : ?

Conversion

Γ ` s : S Γ ` S' T : ?
Γ ` s : T

Local definition

Γ;x 7→ s:S` t : T
Γ ` [x 7→ s:S]t : [x 7→ s:S]T

Type formation, introduction, and elimination

Γ `
Γ ` 1 : ?

Γ `
Γ ` 〈〉 : 1

Γ `
Γ ` O : ?

Γ ` z : O
Γ ` zŒ : ΠX :?.X

Γ;x:S` T : ?
Γ `Πx:S.T : ?

Γ;x:S` t : T
Γ ` λx:S. t : Πx:S.T

Γ ` f : Πx:S.T
Γ ` s : S

Γ ` f s : [x 7→ s:S]T

Γ;x:S` T : ?
Γ ` Σx:S.T : ?

Γ ` s : S
Γ;x:S` T : ?
Γ ` t : [x 7→ s:S]T
Γ ` 〈s;t〉T : Σx:S.T

Γ ` p : Σx:S.T
Γ ` pπ0 : S
Γ ` pπ1 : [x 7→ pπ0 :S]T

FIGURE 1.2. Typing rules Γ ` t : T

synthesised, not just checked. We writeO’s eliminator, Œ (‘naught E’), andΣ-
type projections,π0 andπ1 postfix like application—-the eliminator forΠ-types.

The equality rules (figure 1.3)3 includeβ-laws which allow computations and
expand definitions, but we also addη-laws and proof-irrelevance for certain types,
justified by the fact that some terms are indistinguishable by observation. A proof-
irrelevant type has,as far as we can tell, at most one element; examples are the
unit type1 and the empty typeO. These rules combine to identify all inhabitants
of (A→ 1)∧ (B→ O), for example.

Equality (hence type-) checking is decidable if all computations terminate. A
carefully designed language can achieve this by executing only trusted programs
in types, but we do not address this issue here. Indeed, our current implementa-
tion uses? : ? and hence admits non-termination due to Girard’s paradox [10].
Here, we deliver the core functionality of typechecking. Universe stratification
and positivity of inductive definitions are well established[14, 15] and orthogonal
to the subject of this article.

1.3 EPIGRAM AND ITS ELABORATION

Epigram’s high-level source code iselaboratedincrementally into ETT. The elab-
orator produces the detailed evidence which justifies high-level programming con-

3We have omitted a number of trivial rules here, e.g. the rules stating that' is an
equivalence and a number of congruence rules.

definition lookup and disposal

Γ `
Γ ` x ' s : S

x 7→ s:S∈ Γ Γ ` s' s′ : S Γ;x 7→ s:S` t ' t′ : T
Γ ` [x 7→ s:S]t ' [x 7→ s′ :S]t′ : [x 7→ s:S]T

structural rules for eliminations

Γ ` u ' u′ : O
Γ ` uŒ' u′Œ : Πx:?.x

Γ ` f ' f ′ : Πx:S.T Γ ` s' s′ : S
Γ ` f s' f ′ s′ : [x 7→ s:S]T

Γ ` p ' p′ : Σx:S.T
Γ ` pπ0 ' p′π0 : S

Γ ` p ' p′ : Σx:S.T
Γ ` pπ1 ' p′π1 : [x 7→ (pπ0) :S]T

β-rules

Γ ` λx:S. t : Πx:S.T Γ ` s : S
Γ ` (λx:S. t)s' [x 7→ s:S]t : [x 7→ s:S]T

Γ ` 〈s;t〉T : Σx:S.T
Γ ` 〈s;t〉T π0 ' s : S

Γ ` 〈s;t〉T : Σx:S.T
Γ ` 〈s;t〉T π1 ' t : [x 7→ s:S]T

observational rules

Γ ` u : 1 Γ ` u′ : 1
Γ ` u ' u′ : 1

Γ ` z : O Γ ` z′ : O
Γ ` z' z′ : O

Γ;x:S` f x ' f ′ x : T
Γ ` f ' f ′ : Πx:S.T

Γ ` pπ0 ' p′π0 : S
Γ ` pπ1 ' p′π1 : [x 7→ (pπ0) :S]T

Γ ` p ' p′ : Σx:S.T

FIGURE 1.3. Equality rules Γ ` t ' t′ : T

veniences, such as the kind of ‘filling in the blanks’ we usually associate with type
inference. For example, we may declareNat andVec as follows:

data
Nat : ?

where
zero : Nat

n : Nat
suc n : Nat

data n : Nat ; X : ?
Vec n X : ?

where
vnil : Vec zero X

x : X ; xs : Vec n X
vcons x xs : Vec (suc n) X

The elaborator fleshes out the implicit parts of programs. Elaboration makes
hidden quantifiers and their instances explicit. The above yields:

Nat : ? Vec : Πn:Nat.ΠX :?. ?
zero : Nat vnil : ΠX :?.VeczeroX
suc : Nat → Nat vcons : ΠX :?.Πn:Nat. X → VecnX → Vec (sucn)X

For each datatype, the elaborator overloads the operator elim(postfix in ETT)
with the standard induction principle. Forn : Nat andxs : VecnX, we acquire

n elimNat : xselimVec :
ΠP : Nat→ ?.
P zero→
(Πn′ :Nat.
P n′→ P (suc n′))→

P n

ΠP : Πn:Nat.Πxs:VecnX. ? .
Pzero (vnil X)→
(Πn′ :Nat.Πx:X.Πxs′ :Vecn′X.
Pn′ xs′→ P(sucn′) (vconsXn′ xxs′))→

Pnxs

These types are read as schemes for constructing structurally recursive pro-
grams. Epigram has no hard-wired notion of pattern matching—rather, if you
invoke an eliminator via the ‘by’ construct⇐, the elaborator reads off the appro-
priate patterns from its type. If we have an appropriate definition of+, we can
define concatenation for vectors using elim(prefix in Epigram source) as follows:

let x,y : Nat
x+y : Nat

x+y ⇐ elimx
zero +y ⇒y
sucx′+y ⇒suc (x′+y)

let xs : VecmX ; ys : VecnX
vconcxsys: Vec (m+n)X

vconcxsys⇐ elimxs
vconcvnil ys⇒ys
vconc(vconsxxs′) ys⇒vconsx(vconcxs′ ys)

The elaborator then generates this lump of ETT, inferring the ‘P’ argument to
xselimVec and constructing the other two from the branches of the program.

vconc 7→ λX :?.λm:Nat.λn:Nat.λxs:VecmX.λys:VecnX.
xselimVec (λm:Nat.λxs:VecmX.Πn:Nat. VecnX→ Vec (m+n)X)
(λn:Nat.λys:VecnX.ys)
(λm′ :Nat.λx:X.λxs′ :Vecm′X. λh:Πn:Nat. VecnX→ Vec (m′+n)X.
λn:Nat.λys:VecnX.vconsX (m′+n)x(hnys))

nys

The elaborator works even harder in more complex situations, like this:

let
xs : Vec (sucn)X
vtail xs : VecnX

vtail xs⇐ elimxs
vtail (vconsxxs′)⇒xs′

Here, the unification on lengths which eliminates thevnil case and specialises the
vcons case rests on a noConfusiontheorem—constructors disjoint and injective—
proven by the elaborator for each datatype, and on the substoperator—replacing
equal with equal. These techniques are detailed in [18, 19], but their effect is to
deliver a large dull term which justifies the dependent case analysis.

vtail 7→ λn:Nat.λX :?.λxs:Vec (sucn)X.xselimVec
(λm:Nat.λys:VecmX.Πn:Nat.Πxs:Vec (sucn)X.Πq:m= sucn.Πq′ :ys=xs.VecnX)
(λn:Nat.λxs:Vec (sucn)X.λq:zero= sucn.λq′ :vnil=xs.qnoConfusionNat (VecnX))
(λn′ :Nat.λx:X.λxs′ :Vecn′.
λh:Πn:Nat.Πxs:Vec (sucn)X.Πq:n′= sucn.Πq′ :xs′=xs.VecnX.
λn:Nat.λxs:Vec (sucn)X.λq:sucn′= sucn.λq′ :vconsXn′ xxs′=xs.
qnoConfusionNat (VecnX)
(λq:n′=n.qsubst

(λn:Nat.Πxs′ :Vecn′ X.Πh:Πn:Nat.Πxs:Vec (sucn)X.Πq:n′= sucn.Πq′ :xs′=xs.VecnX.
Πxs:Vec (sucn)X.Πq′ :vconsXn′ xxs′=xs.VecnX)

(λxs′ :Vecn′ X.λh:Πn:Nat.Πxs:Vec (sucn)X.Πq:n′= sucn.Πq′ :xs′=xs.VecnX.
λxs:Vec (sucn′)X.λq′ :vconsXn′ xxs′=xs.q′ subst(λxs:Vec (sucn′)X.Vecn′ X)xs′)

xs′ hxsq′))
(sucn)xs(reflNat (sucn)) (refl (Vec (sucn)X)xs)

Merely checkingall these details is much simpler than inferring them in the
first place. Reloading ETT involves none of the complexity of implicit syntax han-
dling or dependent pattern matching. Meanwhile, our observational equality rules
help the elaborator by allowing more type constraints to have general solutions.

1.4 ETT SYNTAX IN HASKELL

We now implement ETT in Haskell. We first represent its syntax.

data Term = R Reference -- free variable (carries definition)
| V Int -- bound variable (de Bruijn index)
| Pi Type Scope -- Πx:S.T
| Si Type Scope -- Σx:S.T
| L Type Scope -- λx:S. t
| P Term (Term,Scope) -- 〈s;t〉T
| Term :$ Elim Term -- elimination form
| C Const -- constant
| Let (Term,Type) Scope -- [x 7→ s:S]t

type Type = Term -- types are just a subset of terms
data Scope = (:.){advice::String,body::Term}
data Elim t = A t | P0 | P1 | OE -- − t,−π0,−π1,−Œ
data Const = Star | One | Void | Zero -- ?, 1, 〈〉, O

As in [20], we explicitly separate free variables from bound, using a de Bruijn
index [12] representation for the latter. Each time we bind a variable, the indices
shift by one; we wrap up the term in scope of the new bound variable in the
datatypeScope. This distinction helps to avoid silly mistakes, supports useful
overloading and allows us to cache a string used only for display-name generation.

Correspondingly aλ-term carries aType for its domain and aScope for its
body.Σ andΠ types are represented similarly. PairsP Term (Term,Scope) carry
the range of theirΣ-type—you cannot guess this from the type of the second
projection, which gives only its instance for the value of the first projection.

We gather the constants inConst. We also collect the elimination forms
Term :$ Elim Term, so that we can define their computational behaviour in one
place.Elim is an instance ofFunctor in the obvious way. By way of example, the
‘twice’ function, λX :?. λf :X→ X. λx:X. f (f x) becomes the following:

twice= L (C Star) ("X" :. L (Pi (V 0) ("x" :.V 1)) ("f" :.
L (V 1) ("x" :. V 1 :$A (V 1 :$A (V 0)))))

In section 1.6, we shall equip this syntax with a semantics, introducing the type
Value which pairs these first-order terms with a functional representation ofScopes.
We exploit this semantics in the free variablesR Reference, which include both
parameters and global definitions. AReference carries itsName but also caches
its type, and in the case of a definition, its value.

type Reference = Name :=Typed Object
data Typed x = (:∈){ trm :: x, typ::Value}
data Object = Para | Defn Value

It is easy to extendObject with tagged constructor objects andElim with datatype
eliminators which switch on the tags—constructing their types is explained in [20].

1.4.1 Navigation under binders

The operations// and\\ provide a means to navigate into and out of binders.

(//) ::Scope→ Value→ Term
-- instantiates the bound variable of aScope with aValue

(\\) :: (Name,String)→ Term→ Scope
-- binds a variable free in aTerm to make aScope

Namespace management uses the techniques of [20].Names are backward lists
of Strings, resembling long names in module systems.

type Name = BList String
data BList x = B0 | BList x :/x deriving Eq

Our work is always relative to a root name: we define aChecking monad which
combines the threading of this root and the handling of errors. For this presenta-
tion we limit ourselves toMaybe for errors.

newtype Checking x = MkChecking{runChecking::Name→Maybe x}
instance Monad Checking where

return x= MkChecking$λ → return x
MkChecking f >>=g = MkChecking$λname→ do

a← f name
runChecking(g a) name

User name choices never interfere with machineName choices. Moreover, we
ensure that different tasks never choose clashing names by locally extending the
root name of each subtask with a different suffix.

(�) ::String→ Checking x→ Checking x
name� (MkChecking f) = MkChecking$λroot→ f (root :/name)
root ::Checking Name
root = MkChecking return

Whether we really need to or not, we uniformly give every subcomputation a dis-
tinct local name, trivially guaranteeing the absence of name clashes. In particular,
we can usex� root to generate a fresh name for a fresh variable if we ensure that
x is distinct from the other local names.

1.5 CHECKING TYPES

In this section, we shall show how to synthesise the types of expressions and check
that they are correct. Typechecking makes essential use of the semantics of terms.
We defer our implementation of this semantics until section 1.6: here we indicate
our requirementsfor our representation ofValues.

The typing rules are realized by three functionsinfer, synthandcheck. Firstly,
infer infers the type of its argument in a syntax-directed manner.

infer ::Term→ Checking Value

Secondly,synthcalls infer to check that its argument has a type and,safe in this
knowledge, returns both its value and the inferred type.

synth::Term→ Checking (Typed Value)
synth t= do

ty← "ty" � infer t
return(val t :∈ ty)

val ::Term→ Value -- must only be used with well-typed terms
syn::Value→ Term -- recovers the syntax from aValue

Note that"ty" � infer t performs the inference in the namespace extended by
"ty" ensuring that name any name choices made byinfer t are local to the new
namespace. Thirdly,checktakes aValue representing arequiredtype and aTerm.
It synthesises the value and type of the latter, then checks that types coincide, in
accordance with the conversion rule.

check::Value→ Term→ Checking Value
check ty t= do

(tv :∈ sty)← "sy" � synth t
"eq" � areEqual((ty,sty) :∈ vStar)
return tv

Type checking will require us to ask the following questions about values:

areEqual::Typed (Value,Value)→ Checking ()
isZero::Value→ Checking ()
isPi, isSi::Value→ Checking (Value,ScoVal)

We have just seen that we need to check when types are equal. We also need to
determine whether a type matches the right pattern for a given elimination form,
extracting the components in the case ofΠ- andΣ-types. TheScoVal type gives
the semantics ofScopes, withval andsyncorrespondingly overloaded, as we shall
see in section 1.6.

In order to synthesise types, we shall need to construct values from checked
components returned byinfer, synthand check, isPi and isSi. We thus define
‘smart constructors’ which assembleValues from the semantic counterparts of
the corrrespondingTerm constructors.

vStar,vAbsurd::Value
vStar = val (C Star)
vAbsurd= val (Pi (C Star) ("T" :.V 0))
vPi,vSi ::Value→ ScoVal→ Value
vLet ::Typed Value→ ScoVal→ Value
vdefn ::Typed (Name,Value)→ Value
vpara :: (Typed Name)→ Value

1.5.1 Implementing the Typing Rules

We will now defineinfer in accordance with the typing rules from figure 1.2.
We match on the syntax of the term and in each case implement the rule with
the corresponding conclusion, performing the checks in the hypotheses, then con-
structing the type from checked components. The base cases are easy: references
cache their types and constants have constant types—we just give the case for?.

infer (R (:=(:∈ ty))) = return ty
infer (C Star) = return vStar

The case for bound variablesV i never arises. We always work withclosedterms,
instantiating a bound variable as we enter itsScope, abstracting it when we leave.
Local definition is a case in point:

infer (Let (s,sty) t) = do
styv← "sty" � check vStar sty
sv ← "s" � check styv s
x ← "x" � root
ttyv← "tty" � infer (t//vdefn((x,sv) :∈ styv))
return(vLet(sv:∈ styv) (val ((x,advice t)\\syn ttyv)))

We check thatty is a type and thats inhabits it. The rules achieve this indirectly
via context validity at each leaf of the typing derivation; we perform the check
once, beforevdefncreates the reference value which realises the extension of
the context. The new variable gets its fresh name from"x" � root, and the
corresponding value is used to instantiate the bound variable oft. Once we have
t’s type, ttyv, we usevLet to build the type of the whole thing from checked
components.Values do not support the(\\) operation, so we abstractx from
the syntax ofttyv, then generate a semantic scope withval. Checking aΠ-type
requires a similar journey under a binder, but the resulting type is a simple?.

infer (Pi dom ran) = do
domv← "dom" � check vStar dom
x ← "x" � root

← "ran" � check vStar(ran//vpara(x :∈ domv))
return vStar

We check thatdomis a type, then create a fresh variable and instantiate the range,
ensuring that it also is a type. Checking aΣ-type works the same way. Meanwhile,
to typecheck aλ, we must use the type inferred under the binder to generate the
Π-type of the function, abstracting a scope from its syntax as we did forLet.

infer (L dom t) = do
domv← "dom" � check vStar dom
x ← "x" � root
ranv ← "ran" � infer (t//vpara(x :∈ domv))
return(vPi domv(val ((x,advice t)\\syn ranv)))

To infer the type of an application we check that the ‘function’ actually has aΠ-
type, revealing the domain type for which to check the argument. If all is well we
let-bind the return type, corresponding to the rule exactly.

infer (f :$ A a) = do
fty← "f" � infer f
(dom, ran)← isPi fty
av← "a" � check dom a
return(vLet(av :∈ dom) ran)

Here is how we infer the type of pairs:

infer (P s(t, ran)) = do
tys@(sv:∈ domv)← "s" � synth s
x ← "x" � root

← "ran" � check vStar(ran//vpara(x :∈ domv))
← "t" � check(vLet tys(val ran)) t

return(vSi domv(val ran))

First, we ensure thats is well typed yielding the domain of theΣ-type. Next,
we check that the supplied rangeran is a type in the context extended with the
parameter of the domain type. Then we checkt in the appropriately let bound
range. We then deliver theΣ-type. Meanwhile, projections are straightforward.

infer (p:$ P0) = do
pty ← "p" � infer p
(dom,)← isSi pty
return dom

infer (p:$ P1) = do
pty ← "p" � infer p
(dom, ran)← isSi pty
return(vLet((val (p:$ P0)) :∈ dom) ran)

Finally, eliminating the empty type always yields absurdity!
infer (z:$ OE) = do

zty← "z" � infer z
isZero zty
return vAbsurd

1.6 FROM SYNTAX TO SEMANTICS

We shall now give a definition ofValue which satsfies the requirements of our
checker. Other definitions are certainly possible, but this one has the merit of
allowing considerable control over which computations happen.

data Glued t w = (:⇓){syn:: t,sem:: w}
type Value = Glued Term Whnf
type ScoVal = Glued Scope (Value→Whnf)

A Value glues aTerm to a functional representation of its weak head normal form
(Whnf). The semantic counterpart of aScope is aScoVal, which affixes a Haskell
function, delivering the meaning of the scope with its bound variable instantiated.

Just as in ‘normalisation-by-evaluation’ [5], the behaviour of scopes (forΠ and
Σ, not justλ) is delivered by the implementation language, but if we want to read
aValue, we just project its syntax.Whnfs are given as follows:

data Whnf = WR Reference (BList (Elim Value)) -- Spine
| WPi Value ScoVal |WSi Value ScoVal -- Π-type,Σ-type
| WL ScoVal |WP Value Value -- λ-abstraction, pair
| WC Const -- Constant

The only elimination forms we need to represent are those which operate on an
inert parameter, hence we pack them together, with theWR constructor. Bound
variables do not occur, except within theScope part of aScoVal. We drop the type
annotations onλ-abstractions and pairs as they have no operational use. With this
definition, operations such asisPi, isSiandisZerocan be implemented directly by
pattern matching onWhnf. Meanwhile, the computational behaviour ofValues is
given by the overloaded $$ operator:

class Eliminable t where
($$) :: t→ (Elim Value)→ t

instance Eliminable Value where
t $$e= (syn t:$ fmap syn e) :⇓ (sem t$$e)

instance Eliminable Whnf where
WL (:⇓ f)$$A v = f v -- β-reduction by Haskell application
WP x $$P0 = sem x -- projections
WP y $$P1 = sem y
WR x es $$e = WR x (es:/e) -- inert computations

We shall now use $$ to deliver the functionevalwhich makes values from checked
syntax. This too is overloaded, and its syntactic aspect relies on the availability of
substitution ofclosedterms for bound variables.

type Env = BList Value
bproj::BList x→ Int→ x

class Close t where
close:: t→ Env→ Int→ t -- theInt is the first bound variable to replace

class Close t⇒Whnv t w | t→ w where
whnv:: t→ Env→ w
eval:: t→ Env→ Glued t w
eval tγ = (close tγ 0) :⇓ (whnv tγ)
val :: t→ Glued t w
val t = t :⇓ whnv tB0

We exportval, for closed terms, to the typechecker. However,eval andwhnv,
defined mutually, thread an environmentγ explaining the bound variables. By
separatingScope from Term, we can say how to go under a binder once, for all.

instance Close Scope where
close(s:. t) γ i = s:.close tγ (i +1) -- startγ further out

instance Whnv Scope (Value→Whnf) where
whnv(:. t) γ = λx→ whnv t(γ :/x) -- extend the environment

Meanwhile,whnvfor Term traverses the syntax, delivering the semantics.

instance Whnv Term Whnf where
whnv(R (:=(Defn v :∈))) = sem v
whnv(R r) = WR r B0
whnv(V i) γ = sem(bproj γ i)
whnv(Pi d r) γ = WPi (eval dγ) (eval r γ)
whnv(Si d r) γ = WSi (eval dγ) (eval r γ)
whnv(L r) γ = WL (eval r γ)
whnv(P x (y,)) γ = WP (eval xγ) (eval yγ)
whnv(t :$ e) γ = whnv tγ $$fmap(‘eval‘γ) e
whnv(C c) = WC c
whnv(Let (t,) s) γ = whnv sγ (eval tγ)

Defined free variables are expanded; parameters gain an empty spine;γ explains
bound variables. We interpret(:$) with ($$). Lets directly exploit the their bodies’
functional meaning. Everything else is structural.

Thecloseoperation just substitutes the environment for the bound variables,
without further evaluation. TheInt counts the binders crossed, hence the number
of variables which should stay bound. We give only the interesting cases:

instance Close Term where
close t B0 = t
close(V j) γ i = if j < i then V j else syn(bproj γ (j− i))

1.7 CHECKING EQUALITY

Our equality algorithm does ‘on-the-fly’η-expansion on weak-headβ-normal
forms, directed by their types. The observational rules for elements ofΠ and
Σ-types perform theη-expansion to yieldη-long normal forms at ground type
(?,1 or Zero). We now defineareEqualskipping the structural cases for constant
types,WPi, WSi, and going straight to the interaction between the the observa-
tional rules and checking equality on spines.

We do not need to look at elements of type1 to know that they are equal to〈〉.
Elements ofO (hypothetical, of course) are also equal. We compare functions by
applying them to a fresh parameter and pairs by comparing their projections.

areEqual::Typed (Value,Value)→ Checking ()
areEqual(:∈ (:⇓WC One)) = return()
areEqual(:∈ (:⇓WC Zero)) = return()
areEqual((f ,g) :∈ (:⇓WPi dom ran)) = do

x← "x" � root
let v = vpara(x :∈ dom)
"ran" � areEqual((f $$A v, f $$A v) :∈ vLet(v :∈ dom) ran)

areEqual((p,q) :∈ (:⇓WSi dom ran)) = do
"fst" � areEqual((p$$P0,q$$P0) :∈ dom)
"snd" � areEqual((p$$P1,q$$P1) :∈ (vLet(p$$P0 :∈ dom) ran))

For ground terms of types other than1 andO, we can only have inert references
with spines, which we compare in accordance with the structural rules. We rebuild
the type of a spine as we process it, in order to compare its components correctly.

areEqual((:⇓WR r1 as, :⇓WR r2 bs) :∈) = do
guard(r1≡ r2)
← spineEq r1(as,bs)

return()
spineEq:∈ Reference→ (Elim Value,Elim Value)→ Checking Value

We peel eliminators until we reach the reference, whose type we pass back.

spineEq(r :=(:∈ ty)) (B0,B0) = return ty

For applications, we check that preceding spines are equal and analyse theΠ-type
they deliver; we then confirm that the arguments are equal elements of its domain
and pass on the instantiated range.

spineEq r(as:/A a,bs:/A b) = do
sty← spineEq r(as,bs)
(dom, ran)← isPi sty
"eqargs" � areEqual((a,b) :∈ dom)
return(vLet(a :∈ dom) ran)

For like projections from pairs we analyse theΣ-type from the preceding spines
and pass on the appropriate component, instantiated if need be.

spineEq r(as:/P0,bs:/P0) = do
sty← spineEq r(as,bs)
(dom,)← isSi sty
return dom

spineEq r(as:/P1,bs:/P1) = do
sty← spineEq r(as,bs)
(dom, ran)← isSi sty
return(vLet((spine r(as:/P0)) :∈ dom) ran) where

spine rB0 = val (R r)
spine r(es:/e) = spine r es$$e

For ‘naught E’, we need look no further!

spineEq (as:/OE,bs:/OE) = return vAbsurd

1.8 RELATED WORK

Type checking algorithms for dependent types are at the core of systems like Lego
[16] and Coq [8] (which have onlyβ-equality) and Agda [9], for which Coquand’s
simple algorithm withβη-equality forΠ-types [11] forms the core; he and Abel
have recently extended this toΣ-types [1]. Our more liberal equality makes it easy
to import developments from these systems, but harder to export to them.

Coquand’s and Abel’s algorithms are syntax-directed: comparison proceeds
structurally onβ-normal forms, except when comparingλx. t with some variable-
headed (or ‘neutral’)f , which gets expanded toλx. f x. Also, when comparing
〈s, t〉 with neutralp, the latter expands to〈pπ0,pπ1〉. Leaving two neutral func-
tions or pairs unexpanded cannot make them appear different, so this ‘tit-for-tat’
η-expansion suffices. However, there is no such syntactic cue for1 or O: appar-
ently distinct neutral terms can be equal, if they have a proof-irrelevant type.

We have taken type-directedη-expansion from normalisation-by-evaluation [5,
3], fusing it with the conversion check. Ourwhnvis untyped and lazy, but compi-
lation in the manner of Gregoire and Leroy [13] would certainly pay off for heavy
type-level computations, especially if enhanced by Brady’s optimisations [6, 7].

1.9 CONCLUSIONS AND FURTHER WORK

The main deliverable of our work is a standalone typechecker for ETT which
plays an important r̂ole in the overall architecture of Epigram. We have addressed
a number of challenges in implementing a stronger conversion incorporating ob-
servational rules. These simplify elaboration and will play a vital rôle in our
project to implement an Observational Type Theory whose equality judgement
remains computational, but which supportsreasoningup to observation as in [2].

REFERENCES

[1] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s
logical framework with surjective pairs. InTyped Lambda Calculus and Applications,
pages 23–38, 2005.

[2] Thorsten Altenkirch. Extensional equality in intensional type theory. InLICS 99,
1999.

[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical recon-
struction of a reduction free normalization proof. In David Pitt, David E. Rydeheard,
and Peter Johnstone, editors,Category Theory and Computer Science, LNCS 953,
pages 182–199, 1995.

[4] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types
matter. Manuscript, available online, April 2005.

[5] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional
for typedλ–calculus. In R. Vemuri, editor,Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211. IEEE Computer Science
Press, Los Alamitos, 1991.

[6] Edwin Brady. Practical Implementation of a Dependently Typed Functional Pro-
gramming Language. PhD thesis, University of Durham, 2005.

[7] Edwin Brady, Conor McBride, and James McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferrucio Damiani, editors,
Types for Proofs and Programs, Torino, 2003, volume 3085 ofLNCS, pages 115–129.
Springer-Verlag, 2004.

[8] L’ Équipe Coq. The Coq Proof Assistant Reference Manual.
http://pauillac.inria.fr/coq/doc/main.html, 2001.

[9] Catarina Coquand and Thierry Coquand. Structured Type Theory. InWorkshop on
Logical Frameworks and Metalanguages, 1999.

[10] Thierry Coquand. An analysis of Girard’s paradox. InProceedings of the First IEEE
Symposium on Logic in Computer Science, Cambridge, Massachussetts, pages 227–
236, 1986.

[11] Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet
and Gordon Plotkin, editors,Logical Frameworks. CUP, 1991.

[12] Nicolas G. de Bruijn. Lambda Calculus notation with nameless dummies: a tool for
automatic formula manipulation.Indagationes Mathematicæ, 34:381–392, 1972.

[13] Benjamin Gŕegoire and Xavier Leroy. A compiled implementation of strong reduc-
tion. In International Conference on Functional Programming 2002, pages 235–246.
ACM Press, 2002.

[14] Robert Harper and Randy Pollack. Type checking with universes.Theoretical Com-
puter Science, 89:107–136, 1991.

[15] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

[16] Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User’s Manual.
Technical Report ECS-LFCS-92-211, LFCS, 1992.

[17] Per Martin-L̈of. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.

[18] Conor McBride. Elimination with a Motive. In Paul Callaghan, Zhaohui Luo, James
McKinna, and Robert Pollack, editors,Types for Proofs and Programs (Proceedings
of the International Workshop, TYPES’00), volume 2277 ofLNCS. Springer-Verlag,
2002.

[19] Conor McBride, Healfdene Goguen, and James McKinna. A Few Constructions
on Constructors. InTypes for Proofs and Programs, Paris, 2004, LNCS. Springer-
Verlag, 2005. accepted; to appear.

[20] Conor McBride and James McKinna. Functional Pearl: I am not a Number: I am a
Free Variable. In Henrik Nilsson, editor,Proceedings of the ACM SIGPLAN Haskell
Workshop 2004, Snowbird, Utah. ACM, 2004.

[21] Conor McBride and James McKinna. The view from the left.Journal of Functional
Programming, 14(1), 2004.

[22] James McKinna.Deliverables: A Categorical Approach to Program Development in
Type Theory. PhD thesis, LFCS, 1992.

[23] George C. Necula. Proof-carrying code. InProceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 106–119,
Paris, January 1997.

