When is a function a fold or an unfold?

Jeremy Gibbons Graham Hutton
University of Oxford University of Nottingham

Thorsten Altenkirch
University of Nottingham

April 29, 2002

Abstract

We give a necessary and sufficient condition for when a set-theoretic
function can be written using the recursion operator fold, and a dual
condition for the recursion operator unfold. The conditions are simple,
practically useful, and generic in the underlying datatype.

1 Introduction

The recursion operator fold encapsulates a common pattern for defining pro-
grams that consume values of a least fixpoint type such as finite lists. Dually,
the recursion operator unfold encapsulates a common pattern for defining pro-
grams that produce values of a greatest fixpoint type such as infinite lists or
streams. Theory and applications of fold abound — see [11, 4] for recent
surveys — while in recent years it has become increasingly clear that the less
well-known concept of unfold is just as useful [5, 6, 10, 12, 14].

Given the interest in fold and unfold, it is natural to ask when a program
can be written using one of these operators. Surprisingly little is known
about this question. This article gives a complete answer for the special case
in which programs are total functions between sets. In particular, we give
a necessary and sufficient condition for when a set-theoretic function can
be written using fold, and a dual condition for unfold. The conditions are
simple, practically useful, and generic in the underlying datatype. However,

our proofs are set-theoretic, and make essential use of the Axiom of Choice;
hence the result does not generalize to categories of constructive functions®.

2 Fold and unfold

In this section we review the categorical treatment of fold and unfold in terms
of initial algebras and final coalgebras; for further details see [17, 19, 13, 1].

Suppose that we fix a category C and a functor F' : C — C. An algebra
is pair (A, f) comprising an object A and an arrow f : FA — A, and a
homomorphism h : (A, f) — (B, g) from one such algebra to another is an
arrow h : A — B such that the following square commutes:

FA Eh FB
f g
A - B

An initial algebra is an initial object in the category with algebras as
objects and homomorphisms as arrows. We write (@ F in) for an initial alge-
bra, and fold f for the unique homomorphism h : (uF,in) — (A, f) from the
initial algebra to any other algebra (A, f). That is, fold f is defined as the
unique arrow that makes the following square commute:

F (fold
F(uF)—CD gy
n f

The dual notions of coalgebra, cohomomorphism, and terminal coalge-
bra are defined similarly. We write (vF),out) for a terminal coalgebra, and
unfold f for the unique cohomomorphism h : (A4, f) — (vF,out) from any
coalgebra (A, f) to the terminal coalgebra. That is, unfold f is defined as the
unique arrow that makes the following square commute:

1Such as the effective topos or the category of w-sets.

unfold f

A >vF
f out
FA gy £ F)

In the literature, fold f and unfold f are sometimes written as (f) and
[([f), and called catamorphisms and anamorphisms respectively.

2.1 Example: finite lists

Suppose that we define a functor L : SET — SET by LA = 1+ (N x A)
and L f = idy 4 (idy X f), where N is the set of natural numbers. Then an
algebra is a pair (A, f) comprising a set A and a function f : 1+(Nx A) — A.
Functions of this type can always be uniquely decomposed into the form
f = lg,h] for some other functions g : 1 — Aand h : Nx A — A. A
homomorphism f : (A, [g,h]) — (B, [i, j]) is a function f: A — B such that
frg=vdand f-h =7 - (dyx f).

The functor L has an initial algebra defined by (L, in) = (List(N), [nil, cons]),
where List(A) is the set of all finite lists with elements drawn from A, and
nil : 1 — List(N) and cons : N x List(N) — List(N) are constructor func-
tions for this set. Given any other set A and two functions 7 : 1 — A and
Jj:Nx A — A, the function fold [i, j| : List(N) — A is uniquely defined by
the following two equations:

fold[i, 7] - nil = i
fold [i, j] - cons = j - (idy x fold [z, j])

That is, fold [i, j] processes a list by replacing the nil constructor at the end
of the list by the function 4, and each cons constructor within the list by the
function j. For example, the function sum : List(N) — N that sums a list of
naturals can be defined by sum = fold [zero, plus|, where zero : 1 — N and
plus : N x N — N are given by zero () = 0 and plus (z,y) = = + y.

We will use this datatype in examples later. For notational simplicity, we

will write ‘[]” for nil (), and ‘z : zs’ for cons (z,zs). Thus, we might have
written the above definition of fold more perspicuously as:

(foldli)[] = i

(fold [i, j]) (x : ws) = j(x, (fold [1, j]) xs)

2.2 Example: infinite lists

Suppose that we define a functor S : SET — SET by SA = N x A and
Sf = idy x f. Then a coalgebra is a pair (A, f) comprising a set A and
a function f : A — N x A. Functions of this type can always be uniquely
decomposed into the form f = (g, h) for some other functions g : A — N
and h: A — A. A cohomomorphism f : (A, (g, h)) — (B, (i,7)) is a function
f:A— Bsuchthati- f =gandj - f = f- h.

The functor S has a terminal coalgebra (¢S, out) = (Stream(N), (head, tail)),
where Stream(A) is the set of all streams (infinite lists) with elements drawn
from A, and head : Stream(N) — N and tail : Stream(N) — Stream(N) are
destructor functions for this set. Given any other set A and two functions
g:A— Nandh:A— A, the function unfold (g, h) : A — Stream(N) is
uniquely defined by the following two equations:

head - unfold (g,h) = g
tail - unfold (g,h) = unfold{(g,h) - h

That is, unfold (g, h) produces a stream by using the function g to produce the
head of the stream, and the function h to generate another value that is then
itself unfolded in the same way to produce the tail of the stream. For exam-
ple, the function from : N — Stream(N), which produces a stream of naturals
ascending in steps of one, can be defined by from = unfold (idy, succ) where
succ : N — N is given by succx = x + 1.

3 When is an arrow a fold or an unfold?

The fold operator encapsulates a common pattern for defining an arrow of
type uF' — A. It is natural then to ask when an arrow of this type can be
written using fold. More precisely, when can an arbitrary arrow h : uF’ — A
be written in the form h = fold f for some other arrow f: FA — A?

A technically complete, but nonetheless unsatisfactory, answer to this
question is provided by the universal property of the fold operator [17], which
can be stated as the following equivalence:

h =foldf < h-in=f-Fh

The = direction of this equivalence states that fold f is a homomorphism
from the initial algebra (uF,in) to another algebra (A, f), while the < di-
rection states that any other homomorphism A between these two algebras

4

must be equal to fold f. Taken as a whole, the universal property expresses
the fact that fold f is the unique homomorphism from (uF,in) to (A4, f).

The universal property provides a complete answer to our question — h
can be written in the form fold f precisely when h - in = f - FFh — but
is less helpful than it might be because it requires that we already know
f. Given a specific h, however, the universal property can often be used
to guide the construction of an appropriate f [11], but we do not consider
this a completely satisfactory answer either, because this approach is only a
heuristic, and it is sometimes difficult to apply in practice.

The problem with the universal property is that it concerns an intensional
aspect of h, namely the function f that forms part of its implementation.
Often a condition based on purely extensional aspects is more useful. A
partial answer to our question with purely extensional concerns is that every
left invertible arrow h : uF' — A can be written using fold [19]. Formally, if

we assume that there exists an arrow g : A — pF' such that g - h = id,p,
then the equation h = fold f can be solved for f as follows:
h = fold f

& { universal property }
h-in= f-Fh

& { identities }
hInIdF(MF):th

& { functors }
h-in- F(idy) = f-Fh

& { assumption }
h-in-F(g-h) = f-Fh

& { functors }
h-in-Fg-Fh = f-Fh

&= { composition }
f=h-in-Fg

In summary, we have derived the following implication:
g-h =1idyr = h = fold(h-in- Fyg)

As an example, the function rev : List(N) — List(N) that reverses a list
is its own inverse (rev - rev = idpy)), and hence it is immediate that
rev can be written using fold by the above implication. Note, however, that
this implication only provides a partial answer to our question, because the

converse is not true in general. That is, not every arrow h : ufF — A
that can be written using fold is left invertible. For example, the function
sum : List(N) — N was written using fold in the previous section, but is not
left invertible.

Dually, the unfold operator also satisfies a universal property, which can
be used to show that every right invertible arrow of type A — vF can be
written using unfold [19]. For example, the function evenpos : Stream(N) —
Stream(N) that removes every other element from a stream has a right in-
verse (any function that inserts an element between each adjacent pair in a
stream), and hence it is immediate that evenpos can be written using unfold.
However, not every arrow h : A — vF that can be written using unfold
is right invertible. For example, the function from : N — Stream(N) was
written using unfold in the previous section, but is not right invertible.

As far as we are aware, the invertibility results above are the only known
results that state when arbitrary arrows of the correct type can be written
using fold or unfold. We conclude this section by noting that much more
progress has been made concerning specific kinds of arrows. For example,
the fusion law states that the composition of a homomorphism and a fold can
always be written as a fold, while the banana split law states that two folds
applied to the same argument can always be written as a single fold [19].

4 When is a function a fold?

In this section we give a necessary and sufficient condition for when an arrow
can be written using fold, for the special case of the category SET in which
the arrows are total functions between sets. We dualize the result for unfolds
in the following section.

The result depends on the following definition:

Definition 4.1 The kernel [16] of a function f : A — B is the set of pairs
of elements that are identified by f:

kerf = {(a,d)eAxA|fa=fd}

The main result of this section is a necessary and sufficient condition for
when an arbitrary arrow h : uF' — A in SET can be written in the form
h = fold f for some other arrow f: FFA — A.

Theorem 4.2 Suppose that h: uF" — A. Then

6

(3g: FA— A h=foldg)
< (ker (F'h) C ker (h -in))

The crux of the proof is the well-known observation that inclusion of
kernels is equivalent to the existence of ‘postfactors’:

Lemma 4.3 Suppose that f: A — B and h: A — C. Then
(3g:B—C. h=g-f) & kerfCkerh AN B— C#

Proof The proof is straightforward. For the left-to-right direction, assume
that g : B — C and h = ¢ - f; then clearly B — C # (), and moreover,

(a,a’) € ker f

& { kernels }
fa=fd

= { Leibniz }
g(fa)=g(fa)

& { assumption }
ha=had

& { kernels }
(a,a’) € kerh

Conversely, assume that ker f C kerh and B — C # (), so that either B = ()
or C' # (). When B = 0, let g be the unique function in B — C; note that g
is the ‘empty function’, and so g - f is empty too. Moreover, A = () because
of the type of f, so h is also the empty function and hence equal to g - f.
When C' # (), we define gb for b in the range of f by gb = ha for some a
with f a = b; this is a proper definition, because if there are two choices a, a’
with fa = fa' = b, then ha = had' also by assumption. For b outside the
range of f, we define g b arbitrarily. By construction, this gives ha = g (f a)
for every a. a

Lemma 4.4
pF - A#0=FA— A+
Proof We note that
FA-A#4D0& (A=0=FA=()

and show that the implication A =) = F' A = () holds:

7

A=10
= {uF—A#0}

uF =1

= {in: FuF — uF }
FufF =10

= {wuF=0=A}
FA=

O

Proof of Theorem 4.2 Given the crucial lemma above, the proof of the
theorem is almost embarrassingly simple:

dg: FA— A. h=foldg
& { universal property }
dg: FA—A. h-in=¢g-Fh
& { Lemma 4.3 }
ker (F'h) Cker(h-in) N FA— A#()
& { Lemma 4.4 with h : uFF — A#0 }
ker (F'h) C ker (h - in)

O

Remark 4.5 Note that use of Lemma 4.3 in the proof of Theorem 4.2 actu-
ally involves constructing the body of the fold. We therefore have a similar
result, but explicitly mentioning the fold body: suppose that h : uF" — A;
then

h=fold(h-in-g) < ker(Fh)Cker(h-in) N FA— A#(

where g : FA — FuF is such that h-in- g - F'h. However, this is an
implication, not an equivalence; in particular, it cannot be used to show that
a certain h cannot be expressed as a fold.

Remark 4.6 For the type List(A) of finite lists with elements drawn from
A, with constructors nil : 1 — List(A) and cons : A x List(A) — List(A),
Theorem 4.2 reduces to stating that an arbitrary function h : List(A) — B
can be written directly as a fold precisely when the lists that are identified
by h are closed under cons, in the sense that for all x,

hxs = hys = h(x:xs) = h(x:ys)

Example 4.7 The function sum : List(N) — N of Section 2.1 satisfies the
equations

sum [] = 0
sum (x :xs) = x+ sumazs

A simple calculation verifies that the lists identified by sum are closed under
cons:

sum (z:xs) = sum (x:ys)
& { definition of sum }

T+ sumzxzs = x+ sumys
= { extensionality }

SUm s = sumys

and hence sum can be written directly using fold.

Example 4.8 In contrast, if we define a function stail : List(N) — List(N)
(for ‘safe tail’) by the equations

stail [] =]

stail (x = zs) = zs

then a simple counterexample verifies that the lists identified by stail are
not closed under cons: for example, with zs = [] and ys = 0 : [], we have
stail zs = [] = stail ys, but stail (1 : zs) =[] # 0 : [] = stail (1 : ys).
Therefore stail cannot be written directly as a fold.

Example 4.9 On the datatype List(R) of finite lists of reals, consider the
problem of computing floorsum = floor - rsum, where rsum : List(R) —
R sums a list of reals and floor : R — 7Z rounds a real r down to the
largest integer at most r. Since the result is an integer, one might wonder
whether the computation can be carried out as a fold to integers, thereby
avoiding the computationally more expensive real arithmetic. One cannot:
we have floorsum (0.3 : []) = floorsum (0.6 : []), yet floorsum (0.5: 0.3 : []) #
floorsum (0.5 : 0.6 : []).

On the other hand, the reverse composition rsum - map floor, which floors
every element of the list before summing, can be written as a fold: an argu-
ment similar to that in Example 4.7 applies. This is an instance of deforesta-
tion [23], an efficiency-improving transformation whereby two computations

are combined into one and the intermediate data structure (here of type
List(Z)) eliminated.

Remark 4.10 For the type Tree(A) of binary trees with constructors leaf :
A — Tree(A) and node : Tree(A)x Tree(A) — Tree(A), Theorem 4.2 reduces
to stating that an arbitrary function h : Tree(A) — B can be written directly
as a fold precisely when the trees that are identified by h are closed under
node, in the sense that for all ¢, u,

ht=ht N hu=hu = h(node(t,u)) = h(node(t' u))

Example 4.11 For another example of deforestation, consider flatsum =
sum - flatten, where flatten : Tree(A) — List(A) generates a list of the ele-
ments of a tree. The intermediate list in this computation can be eliminated,
because

flatsum (node (t,u))

= { definition of flatsum }
sum (flatten (node (t,u)))

= { definition of flatten }
sum (flatten t H flatten u)

= { sum distributes over H# }
flatsum t + flatsum u

from which we conclude that trees identified under flatsum are closed under
node. (Here, ‘4’ concatenates two lists.)

Example 4.12 The predicate bal : Tree(A) — B that holds of tree iff it is
balanced (with all the leaves at the same depth) is not a fold: with tree ¢
being balanced and of depth 1, and tree u being balanced and of depth 2,
both ¢ and w are identified by bal (both yielding true), yet bal (node (t,t)) #
bal (node (t,u)).

Example 4.13 However, the function dbal : Tree(A) — N x B that com-
putes a pair, the depth of the tree and whether it is balanced, is a fold.
Because

depth (node (t,u)) = 1+ max (deptht, depthu)
bal (node (t,u)) = balt A balu A deptht = depthu

trees identified by dbal are closed under mode. This is an example of a
mutumorphism [7] or almost homomorphism [3, 8]; transforming a function
into such a form is an important step towards constructing an efficient data-
parallel algorithm for computing it.

10

5 When is a function an unfold?

Dualising Theorem 4.2 to unfold is straightforward. For our purposes, the
appropriate dual of the notion of the kernel of a function is simply its image:

Definition 5.1 The image of a function f : A — B is the set of elements
that are produced by f:

imgf = {beB|3a:A fa=b}

The duality between kernel pairs and images is perhaps not immediately
evident, but is revealed by thinking relationally. In particular, if functions
are viewed as relations in the obvious way, then the relational composition
f¢- f of a function f with its converse f° is precisely the kernel of f, while
the dual composition f - f° is (the identity relation on) the image of f. (A
more elaborate characterization of kernels is needed for relations in general,
but it agrees with this one when restricted to total functions.)

We can now present our result for unfold, which gives a necessary and
sufficient condition for when an arbitrary arrow h: A — vF in SET can be
written in the form h = unfold g for some other arrow g : A — F A.

Theorem 5.2 Suppose that h: A — vF. Then
(3g: A— F'A. h = unfold g)
< img(Fh) Dimg(out- h)
Again, the crux of the proof is a well-known observation, this time about

factoring functions in the other direction.

Lemma 5.3 Inclusion of images is equivalent to the existence of ‘prefactors’:
suppose that f: B — C and h: A — C; then

(3g:A—B. h=f-g) < imgf2Oimgh N A— B#1

Proof From left to right, assume that g : A — B and h = f - g; then clearly
A — B # (), and moreover,

ce€imgh
& { images }
da. ha=c
& { assumption }
da. f(ga)=c
= { images }
ceimgf

11

Conversely, assume that img f D imgh and A — B # (), so that either A = ()
or B # (. When A = (), then h is the empty function; choose g to be the
empty function too, so f- g is also empty and hence equal to h. When B # (),
we define ga for a : A as follows. Let ¢ = ha; by assumption, ¢ € img f too,
so there exists a b: B with fb = ¢, and we define ga to be such a b. If there
is more than one such b, it doesn’t matter which we choose; by construction,
we will have h = f - g. a

We also have the dual to lemma 4.4:

Lemma 5.4
A—-vF#0=A—>FA#()
Proof We note that
A-FA+D& (A£D=FA#0))
and show that the implication A # () = F A # () holds:

A#D

= {A—-FA#0}
vF #£ 0

= {out:vF — FvF }
FvF #1()

We also have that
A4

= { constant function }
vE — A#0D

= { functoriality of F" }
FvEF — FA#()

Putting both results together we obtain:

FA#0

Proof of Theorem 5.2 Again, the proof is simple:

12

dg: A— FA. h=unfoldg
& { universal property }
dg: A— FA. out-h=Fh-g
& { Lemma 5.3 }
img (Fh) Dimg(out-h) N A—FA#(
& { Lemma 5.4 using h: A > vF #0 }
img (F'h) D img (out - h)

O

Remark 5.5 For the type Stream(N) of streams of naturals, with destruc-
tors head : Stream(N) — N and tail : Stream(N) — Stream(N), Theorem 5.2
reduces to stating that an arbitrary function h : A — Stream(N) can be
written as an unfold precisely when the tail of every stream producable by A
is itself producable by h, in the sense that:

img (tail - h) C imgh

Example 5.6 Consider the function from : N — Stream(N) defined in Sec-

tion 2.2. Note that (tail - from)n is the stream [n + 1,n + 2,...], and in
general, img (tail - from) is the set of streams { [n+1,n+2,...] | n € N },
which is in included in img from, the set of streams { [n,n+1,...] | n € N }.

Therefore, from is expressible as an unfold.

Example 5.7 On the other hand, consider the function mults : N — Stream(N)
such that multsn yields the stream of multiples [0,n,n X 2,n x 3,...] of
the natural n. Here, (tail - mults)n is the stream [n,n x 2,...], and so
img (tail - mults) is not included in img mults, which includes only streams
whose head is 0. Therefore, mults cannot be expressed directly as an unfold.

Remark 5.8 For the codatatype CoList(A) of finite and infinite lists with
elements drawn from A, with destructors hd : CoList(A) — 1 + A and
tl : CoList(A) — 1 + CoList(A), Theorem 5.2 reduces to stating that an
arbitrary function h : B — CoList(A) can be written as an unfold precisely
when the tl of every colist producable by h is itself producable by h, in the
sense that:

img (¢l - h) C img(id; + h)

13

Example 5.9 The function rle : CoList(A) — CoList(A x N) performs run-
length encoding: equal adjacent elements of the input are grouped together,
and output as a single element together with an occurrence count. It can be
written as an unfold: a non-empty encoding of a colist (that is, the encoding
of a non-empty colist) has a tail which is itself the encoding of another colist,
namely the one resulting from removing from the original colist all initial
elements equal to the head. (The corresponding function of type List(A) —
List(A x N) is a fold, too; we leave the proof as an exercise.)

Remark 5.10 For the codatatype CoTree(A) of infinite binary trees with el-
ements drawn from A, with destructors root : CoTree(A) — A and left, right :
CoTree(A) — CoTree(A), Theorem 5.2 reduces to stating that an arbitrary
function h : B — CoTree(A) can be written as an unfold precisely when the
children of every cotree producable by h are themselves producable by h, in
the sense that:

img (left - h) C imgh
img (right - h) C imgh

Example 5.11 Consider the position tree, an infinite binary tree in which
every node is labelled its position in the tree, a finite sequence of booleans
recording the left and right turns from the root in order to reach that node.
The function positions : 1 — CoTree(List(B)) that yields this tree is not
an unfold: img positions contains exactly one tree, with the empty sequence
at its root, whereas the left and right children should have singleton lists at
their roots.

On the other hand, the function posfrom : List(B) — CoTree(List(B)),
which generates the position tree starting from a given position, is an unfold:
the left child of posfrom bs is posfrom (true : bs) and so is producable in turn
by posfrom, as is the right child.

6 Conclusion

We have given the first complete results for when an arbitrary arrow can
be written directly as a fold or unfold, for the special case of the category
SET. This is interesting from a theoretical point of view, as it increases our
understanding of these important operators from functional programming.
More importantly, though, we expect it to have practical applications in

14

program optimisation. Various research groups [9, 15, 20] are working on
deforestation. A well-structured program is typically factored into several
phases, each phase generating a data structure consumed by the subsequent
phase; deforestation fuses adjacent phases and eliminates the intermediate
data structure. When performed as a compiler optimisation, it yields efficient
object code without sacrificing the structure and clarity of the source code.
Our results can be used to determine that two phases cannot be fused to a
fold or an unfold. It might be possible to harness a testing framework like
QuickCheck [2] to the task of finding counterexamples to the appropriate
inclusions.

In future work we will investigate whether the results can be generalised
to other categories, but at present it is not clear how this can be done. In
particular, our proofs seem to make essential use of the axiom of choice, and
so do not carry through to computational categories such as CPO. This does
not rule out all interesting categories, though; although our proof does not
carry through to P fun or REL, it may be that the theorem itself or some
variation on it does. Another fruitful direction for future work is to extend
these results to other patterns of recursion, such as primitive (co-)recursion
[18, 21] and course-of-value (co-)iteration [22].

Acknowledgements

We are grateful to Lambert Meertens, who pointed out to us that the crucial
lemmas (Lemma 4.3 and Lemma 5.3) were equivalences, not just implications,
thereby simplifying our proofs considerably. Graham Hutton and Thorsten
Altenkirch are supported by ESPRIT Working Group Applied Semantics.
During part of this work, Graham Hutton was also supported by EPSRC
grant Structured Recursive Programming.

References

[1] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[2] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random
testing of Haskell programs. In Proc. 5th ACM SIGPLAN International
Conference on Functional Programming, September 2000.

15

3]

[4]

[10]

[11]

[12]

M. Cole. Parallel programming with list homomorphisms. Parallel Pro-
cessing Letters, 5(2):191-203, 1995.

J. Gibbons. Calculating functional programs. In Summer School and
Workshop on Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, Oxford, April 2000.

J. Gibbons and G. Hutton. Proof methods for structured corecursive
programs. In Proc. 1st Scottish Functional Programming Workshop,
Stirling, Scotland, August 1999.

J. Gibbons and G. Jones. The under-appreciated unfold. In Proc. 3rd
ACM SIGPLAN International Conference on Functional Programming,
Baltimore, Maryland, September 1998.

M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Univer-
siteit Twente, 1992.

S. Gorlatch. Extracting and implementing list homomorphisms in paral-
lel program development. Science of Computer Programming, 33:1-27,
1999.

Z. Hu, H. Iwasaki and M. Takeichi. Deriving structural hylomorphisms
from recursive definitions. In Proc. 1st ACM SIGPLAN International
Conference on Functional Programming, 1996.

G. Hutton. Fold and unfold for program semantics. In Proc. 3rd ACM
SIGPLAN International Conference on Functional Programming, Bal-
timore, Maryland, September 1998.

G. Hutton. A tutorial on the universality and expressiveness of fold.
Journal of Functional Programming, 9(4):355-372, July 1999.

B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Proc. of the
First Workshop on Coalgebraic Methods in Computer Science. Elsevier

Science B.V., 1998. Electronic Notes in Theoretical Computer Science
Volume 11.

B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.

Bulletin of the European Association for Theoretical Computer Science,
62:222-259, 1997.

16

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

B. Jacobs and J. Rutten, editors. Proc. of the Second Workshop on
Coalgebraic Methods in Computer Science. Elsevier Science B.V., 1999.
Electronic Notes in Theoretical Computer Science Volume 19.

J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from
recursive definitions. In Proc. Conference on Functional Programming
Languages and Computer Architecture, ACM Press, 1995.

S. Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

G. Malcolm. Algebraic data types and program transformation. Science
of Computer Programming, 14(2-3):255-280, September 1990.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413—
424, 1992.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
Proc. Conference on Functional Programming and Computer Architec-
ture, number 523 in LNCS. Springer-Verlag, 1991.

A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
Proc. Conference on Functional Programming Languages and Computer

Architecture, ACM Press, 1995.

V. Vene and T. Uustalu. Functional programming with apomor-
phisms (corecursion). Proceedings of the Estonian Academy of Sciences:
Physics, Mathematics, 47(3):147-161, 1998.

V. Vene. Clategorical Programming with Inductive and Coinductive
Types. PhD thesis, Universitity of Tartu, 2000.

P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231-248, 1990.

17

