Containers

Constructing Strictly Positive Types

Michael Abbot®, Thorsten AltenkircR, Neil Ghani®

aDiamond Light Source, Rutherford Appleton Laboratory
bSchool of Computer Science and Information Technology, Nottingham University
“Department of Mathematics and Computer Science, University of Leicester

Abstract

We introduce the notion of Martin-Lof category— a locally cartesian closed category
with disjoint coproducts and initial algebras of container functors (the categorical analogue
of W-types) — and then establish that nested strictly positive inductive and coinductive
types, which we calbtrictly positive typesexist in any Martin-1bf category.

Central to our development are the notions aaintainersand container functors
introduced in Abbott, Altenkirch, and Ghani (2003a). These provide a new conceptual
analysis of data structures and polymorphic functions by exploiting dependent type theory
as a convenient way to define constructions in Martiri-categories. We also show
that morphisms between containers can be full and faithfully interpreted as polymorphic
functions (i.e. natural transformations) and that, in the presence of W-types, all strictly
positive types (including nested inductive and coinductive types) give rise to containers.

Key words: Type Theory, Category Theory, Container Functors, W-Types, Induction,
Coinduction, Initial Algebras, Final Coalgebras.

1 Introduction

One of the strengths of modern functional programming languages like Haskell or
CAML is that they support recursive datatypes such as lists and various forms of
trees. When reasoning about functional programs in many situations it is sufficient
and indeed often easier to restrict ourselves to total functions, thus allowing us
to view types as sets. David Turner (1996) calls this appraacing functional

Email addressestichael®@araneidae. co.uk (Michael Abbott),
txa@cs.nott.ac.uk (Thorsten Altenkirch)ng13@mcs.le.ac.uk (Neil Ghani).

Preprint submitted to Elsevier Science 20 December 2004

programming thoughtotal might have been a better word. Not all recursive types
make sense in this view, for example we can hardly underddet¥dl + (D — D)

as a set. Moreover, even if we restrict ourselves to well behaved types like lists over
A which are a solution to LisA= 1+ A x List A (since every element of a list is
eithernil or acons of an element oA and a list), in the total setting we have to
decide which fixpoint we mean. There are two canonical choices:

Finite lists correspond to the initial algebra of the signature functor, i.e. the functor
corresponding to a datatype declaration, which in the case of listsAagef —
1+ A x X. We write this initial algebra as Ligt = uX. 1+ A x X.

Potentially infinite lists correspond to the terminal coalgebra of the same
signature functor. We write this as LTsh = vX. 1+ A x X.

In this paper we investigatstrictly positive types which we define to be those
types which can be formed using O, %, x, 4+, —, i, v with the restriction

that types on the left side of the arrow have to be closed with respect to type
variables. Examples of strictly positive types are: the natural numbets

uX. 14X, binary trees BTreA = uX. A+ X x X, streams Strealtdi = vX. Ax X,
ordinal notations Orek uX. 14+ X+ (N — X) = uY. 1+Y + ((uX. 1+ X) = Y),

and Rose trees RTree uY. ListY = uY. uX. 1+ X x Y. Intuitively, these types

can be understood as sets of trees (potentially infinitely branching), which have
finite and infinite parts.

Our central insight is that all strictly positive types can be represented as
containers which can be viewed as a normal form for those types. A unary
container is given by a type a¢fhapes Sand a family ofpositiontypes indexed

by Sthus:s: S+ Ps As a container we write this &s: S Ps) or just (S P).

The extensiorof this container is a functdfS > P], which on objects is given by
[S> P]X =y s:S (Ps— X). We say that any functor naturally isomorphic to the
extension of some container icantainer functor

Thus for any typeX an element ofy s: S (Ps— X) is a pair(s, f) wheres: Sis

a shape and : Ps— X is a function assigning an element ¥fto each position

for the corresponding shapts For example List is represented by the container
(n:N > Finn) where Fim = {0,1,...,n—1}: a list is given by the length (its
shape) and a function which assigns an element to each position in the li8t. List
is represented byn: N > Fin'n) whereN® = vX.1+ X is the set of co-natural
numbers extending the usual natural numbers by an infinite elemerit+ c and

Fin’ extends Fin by Fitw = N, that is the positions of an infinite list are the natural
numbers. We show (corollary 6.1) that all strictly positive types can be represented
as containers.

Morphisms between functorial datatypes are polymorphic functions, in categorical
terms natural transformations. We define morphisms between containers which
represent polymorphic functions: given two containégs> P) and (T > Q) a

morphism(S> P) — (T > Q) is given by a paifu,g) where

e U:S— T is a function on shapes,
e g:[]s:S Q(us) — Psis a function which assigns to every position in the target
a position in the source.

Each container morphism gives rise to a natural transformation, and conversely
(theorem 3.4) every natural transformation between containers arises from a unique
container morphism. As an example the reverse list functiog:flegt A — List A

is represented by the container morphi§diy, r) wherer : []n:N. (Finn — Finn)

is defined asrni = n— 1 —1i. The function on positions has to be defined
contravariantly because we can always assign where an element of the target
structure comes from but not vice versa. Consider for example the tail function
on lists which is represented % n. n— 1, Ai. i+ 1) where— is cutoff subtraction.

This can be visualised as

tail of list

B N
O—B=0_~ B0

One of the main applications of containers generic programming: our
representation gives a convenient way to program with or reason about datatypes
and polymorphic functions. We have already exploited this fact in our work on
derivatives of datatypes which uses containers to develop an important idiom in
functional programming to support generic editing operations on datatypes (Abbott
et al., 2003b, 2004c).

We use here the language of extensional Mariifi-Lype Theory (Martin-Iof,

1984) with W-types and a constant inhabititrge # false (MLW &<, see Aczel,
1999) as the internal language of locally cartesian closed categories with disjoint
coproducts and initial algebras of unary container functors — we call tlastn-

Lof categories

The present paper is the journal version of our conference papers Abbott et al.
(20034, 2004a); this paper extends our previous results. We show here that W-types
are sufficient to represeatl strictly positive types allowing arbitrary nestingsof

andv (corollary 5.5). Thus, we improve on our previous results in two ways:

e In Abbott et al. (2003a) we required that the ambient category have infinite
limits and colimits (or at least be accessible), which rules out many interesting
examples including syntactic categories of MartidfLype theory, categories of
w-sets, categories of PERs and realisability toposes.

e In Abbott et al. (2004a) we show that nestedypes can be represented using
W-types, but did not consider-types or M-types.

The extension ta/-types is non-trivial: it follows from proposition 5.2 which is
stronger than the corresponding proposition 6.1 in Abbott et al. (2004a) — here
we show that we have an initial solution and not just an isomorphism — and it
requires the reduction of M-types (the dual of W-types) to W-types, which we do
in proposition 4.1.

1.1 Related work

The termcontainer is commonly used in programming to refer to a type (or its
instances) which can be used to store data. Hoogendijk and de Moor (2000) develop
a theory of container types using a relational categorical setting. We share many
underlying intuitions and motivations but our framework is based on functions and
inspired by intuitionistic Type Theory and it is not clear to us whether there is a
more formal relation between the two approaches.

Our work is clearly related to the work of Joyal (1986) on species and analytical
functors whose relevance for Computer Science has been recently noticed by
Hasegawa (2002). Indeed, if we ignore the fact that analytical functors allow
quotients of positions, i.e. if we consider normal functors, we get a concept which is
equivalent to a container with a countable set of shapes and a finite set of positions.
Hence containers can be considered as a generalisation of normal functors of
arbitrary size.

Dybjer (1997) has shown that non-nested inductive types can be encoded with W-
Types. His construction is a sub-case of corollary 6.1 only covering initial algebras
of strictly positive functors without nested occurrencesuobr v. Apart from
extending this to nested usesgofindv our work also provides a detailed analysis

of the categorical infrastructure needed to derive the result.

Recently Gambino and Hyland (2004) have put our results in a more general
context and indeed their theorem 12 generalises our proposition 5.2 to dependently
typed containers, which they call dependent polynomial functors. Similarly, their
theorem 14 is closely related to our proposition 5.3. We also learnt from their work
that this construction is related to the proof in Moerdijk and Palmgren (2000) that
W-types localise to slice categories.

After learning about our proposition 4.1 that M-types are derivable from W-types,
van den Berg and de Marchi (2004) have given an independent proof of this fact
using a different methodology.

1.2 Plan of the paper

We review the type theoretic and corresponding categorical infrastructure in section
2. Then in section 3 we formally introduce the category of containers and prove
some basic properties such as the representation theorem and closure under
polynomial operations. In section 4 we show that M-types are derivable from W-
types, and finally the core of the paper is section 5 where we show that container
types are closed under and v. We close with conclusions and discuss further
work.

2 Background

2.1 The Categorical Semantics of Dependent Types

This paper can be read in two ways (see proposition 2.5):

(1) as a construction within the extensional type thebiywV X! (see Aczel,
1999) with finite types, W-types, a proof true # false and no universes;

(2) as aconstruction in the internal language of locally cartesian closed categories
with disjoint coproducts and initial algebras of container functors in one
variable — we call thesBlartin-L of categories

The key idea of this dual view is to regard an objBet C/A as afamily of objects

of C indexed by elements @, and to regar@ as thecontextin which B regarded as
atype dependent on i& defined" . The details of this construction can be found in
Seely (1984), Streicher (1991), Hofmann (1994, 1997b), Jacobs (1999) and Abbott
(2003); see also Crole (1993) on internal languages. In particular, Seely (1984)
allows us to treat Martin-&f type theory (without W-types) as the internal language

of a locally cartesian closed category.

Elementsof A (in a contextU) will be represented by morphismsU — A in

C, andsubstitutionof f for A in B is implemented by pulling bacB along f

to f*B € C/U. We start to build the internal language by writiagA - Ba to
expressB as a typedependenbn values inA, and then the result of substitution
along f is written asu:U B(fu). When the variabla:A is clear (and can be
elided) we may writeB instead ofBa, and similarlyB(fu) can be written as*B
whenu is elided — thus linking the type theoretic notation directly back to the

1 Note that an important technicality (Hofmann, 1994) means that aAypeB cannot
strictly be identified with its display magms € C/A, instead a single display map may arise
from many isomorphic types. However, to avoid excessive pedantry, in the presentation of
this paper we will identifyC /A with the equivalent category of types over

underlying categorical interpretation. Thus we can waté\ - Ba or even just
A+ Bfor B e C/A, occasionally omitting variables from the internal language for
conciseness where practical.

Note that substitution by pullback extends to a fundtorC/A — C/U: to simplify

the presentation we will assume that substitution corresponds precisely to a choice
of pullback, but for a more detailed treatment of the issues involved gaali®u
(1985), Hofmann (1994) and Abbott (2003).

Termsof type a: A + Ba correspond taglobal sectionsof B, which is to say
morphismgt: 1 — B in C/A. In the internal language we write A + ta: Bafor
such a morphism if©. We will occasionally writg for ta whena is elided. Given
objectsa: A+ Baanda: A+ Cawe willwrite a: A+~ fa:Ba— Cafor a morphism
in C/A, and similarly we writea: A - fa:Ba= Cafor an isomorphism.

The morphism irC associated witlB € C/A will be written asng: 5 4B — A (this
is also known as theisplay magor B); the transformatioB+— 5 B becomes a left
adjoint functory o 4 73, where pulling back alongg plays the role ofveakening
with respect to a variablb: Ba in contexta:A. In the type theory we will write
> aBe Casy a:ABa or more concisel§ A B, with elements + (t,u):S a:A.Ba
corresponding to elemenitst- t: Aandl” + u:Bt.

The equality type ab:A - a= b is represented as an object©fA x A by the
diagonal morphismda: A — A x A, and more generalli,a,b: A + a=b. Write
refly;:a = a. Note that we work with an extensional type theory where equality
in the type theory coincides with equality of morphismsGn We believe that
our development could also be implemented in an intensional system (Matin-L
1974; Nordstdm et al., 1990) by using setoids (Hofmann, 1997a).

We will write I',a:A/b:Bal C(a,b) or just I,AB + C as a shorthand for
I, (a,b):3aBF C(a,b). For non-dependerii-types we writeA x B = S5 m:B.
Local cartesian closed structure Grallows right adjoints to weakeningx = [a
to be constructed for evefy - A; we write the type expressidnt [a:A.Bbfor
the object” - [B derived from", A - B. For non-depende-types we use the
notationsA — B = [xB and occasionall” = A — B.

Thus we can interpret the language of the dependently typed lambda calculus as the
internal languageof a locally cartesian closed category: this is captured in Abbott
(2003, proposition 3.3.5) and is the basis of the claim in Seely (1984, theorem
6.3) that locally cartesian closed categories are equivalent to Mabfitkeories
(without W-types). As pointed out by Hofmann (1994) this claim is not strictly
accuraté : a more careful treatment requires the machinery of fibrations.

2 The problem is that substitution cannot be identified with taking pullbacks unless this
operation can be made strictly associative, which is not in general possible. The details of
this problem and its solution are covered in detail in Hofmann (1994) and in chapters 2 and

For coproducts in the internal language to behave properly, in particular for
containers to be closed under products, we requirediatvedisjoint coproducts:

the pullback of distinct coprojection&—"'~A+B<""B into a coproduct is
always the initial object 0. When this holds the fundA+B — (C/A) x (C/B)
takingA+B - Cto (A inl*C, B I- inr*C) is an equivalence: write- ¥ — for the
inverse functor. Thus giveA - B andC + D (with display mapstg andnp) we
write A+C + B-¥ D for their disjoint sum, and we can see that , = 7+ 71p as
objects ofC/A+C, whereng + p : 2aAB+ ZcD — A+ C is a sum of morphisms.

For the development of finite disjoint coproducts it is actually sufficient to introduce
only 0 and disjoint Book= 1+ 1 with constantsrue andfalse corresponding to the

two coprojections. In the Type Theory disjointness corresponds to having a constant
disjoint:(true = false) — 0. Given this we can encode arbitrary coproducts as
A+B=3b:Bool.((b=true) — A) x ((b=false) — B).

We write [ie) A and 3¢ Ai for finite products and coproducts (with projections
7 :[lier A — Aj and coprojectionslj : Aj — S Ai for j € 1) indexed by a finite
setl, and we write a disjoint finite sum of families &s-| Ai = Hj¢ Bi.

The following lemma collects together some useful identities which hold in any
category considered in this paper.

Lemma 2.1 For locally cartesian closed with disjoint coproducts the following
isomorphisms holdIC stands forintensional choiceCu for Curry and DC for
disjoint coproducts

ﬂaAZbBa.Cab ZfﬂaABaﬂaACafa) (IC1)
[S b:Bi.Cb= T a:Mic Bi. [, Ci(ma) (IC2)
[]a:A (Ba—C)= ZaABa)—>C (Cul)
Mia®—0=(3,8)—C (Cu2)
(Hi. B) (i) = Ba (DC1)
Ziel Za.Ai.C inlja) = Za:zi@Ai.Ca (DC2) O

We will need to make some explicit use of the machinery of fibrations, so recall
(Bénabou, 1975, 1985; Raand Schumacher, 1978; Borceux, 1994; Jacobs, 1999;
Abbott, 2003) that gsplit) fibration® E over a category is given by assigning

3 of Abbott (2003), and is related to the observations in footnotes 1 and 3.

3 More generally a(cloven) fibrationis defined by relaxing the equations between
reindexing functors to natural isomorphisms together with coherence equations; however,
we can regard all the fibrations in this paper (the catedofibred over itself and it$-

fold productC') as split via the technique described in Hofmann (1994). Similarly we will
without further comment take our fibred functors and natural transformations to be split.

to each object” € C a categoryEr, the fibre overl’, together with for each
morphismy:A — T in C a functory*: Er — E,, the reindexing functorover v,
satisfying equations fd= idc,r and(y-6)* = 6*y*. A fibred functor ED — E
between fibration® andE over C assigns to each € C a functorF-:Dr — Er
such that for eacly: A — I' the equationy*F = Fay* holds. Similarly, afibred
natural transformationa : F — G between fibred functors is a family of natural
transformationsy : i — Gr such thaty* or = aay*.

Given a (finite) index set define[C', C”] to be the category dfbred functors and
natural transformation§€' — C? where the fibre ofC' overl € C is thel-fold
product(C/T")". Of course, whed = 1 we will write this as[C', C]; observe also
that[C',CY) = [C', C]’, and so most of our development can be done With1.

2.2 W-types and M-types

In Martin-Lof’s Type Theory (Martin-bf, 1984; Nordstm et al., 1990) the
building block for inductive constructions is the W-type. Given a family of
constructorsA F B the typeWa: A.Ba (or WaB) should be regarded as the type
of “well founded trees” constructed by regarding eaclA as a constructor of arity
Ba

The standard presentation of W-types in type theory is through one type forming
rule, an introduction rule and an elimination rule, together with an equation. We
refer to Abbott (2003, chapter 2) for the precise rules of the Type Theory we
are using, which are basically standard (see also Aczel, 1999). However, it is
worthwhile to remind the reader of the rules covering W-types, quoting from Abbott
(2003, definition 5.2.1):

Definition 2.2 A type systerhas W-typesff it has a type constructor

rA+-B

T - WaB (W-type)
together with a constructor term

I, a:A f:Ba— WaB F sup(a, f):WaB (sup)

and an elimination rule
I, w:WpaB F Cw
I, a:A f:Ba— WaB, g:[]b:BaC(fb) - h(a, f,g):C(sup(a, f))

wrec
I, w:WaB F wrechw:Cw ()

satisfying the following equation for variablesA and f: Ba— WaB:

wrecp(sup(a, f)) =h(a, f, wrecy-f) ,

where(wrecy, - f)b = wrecp(fb); note that the first argument of this composition is
a dependent function, so this is a special kind of composition.

Note that the elimination rule together with equality types ensuresviteat, is
unique, and it is easy to see that the rule (wrec) impliessthais an initial algebra

on WaB for the functorX — ¥ a:A.(Ba— X); it is not much harder to see that
W-types can be constructed from initial algebras (Abbott, 2003, theorem 5.2.2).
Moerdijk and Palmgren (2000) show that the global version of W-types implies the
existence of W-types in each slice. Functors of this form play a special role in this
paper: the following definition is justified in definition 3.2 and its sequel.

Definition 2.3 A functor F:C — C is a container functoriff it is naturally
isomorphic to a functor of the form X S a:A.(Ba— X), or more concisely
S a(B — X), for some family A- B inC, i.e., objects Ac C and Be C/A.

We consider that the existence of initial algebras for container functors summarises
the essence of Martindf’s Type Theory (without universes) from a categorical
perspective, hence the following definition.

Definition 2.4 A Martin-Lof categoryis a locally cartesian closed category with
disjoint coproducts and initial algebras for container functors, in other words
closed under the formation of W-types.

Thus the relation between Martin3L categories and the syntax of type theory
can be summarized by the following proposition, the proof of which is implicit
in Abbott (2003).

Proposition 2.5 Extensional dependent type theory with Sigma-types, Pi-types, W-
types, a proof ofrue £ false and no universes is the internal language of MartiofL
categories. O

Dually, we introduce M-types as the terminal coalgebras of container functors.
There is no standard representation of M-types in type theory, indeed the elegant
unification of primitive recursion and induction does not dualise easily; thus the
following definition is purely categorical. We will see in proposition 4.1 that every
Martin-Lof category has M-types.

Definition 2.6 A locally cartesian closed category hasl-types iff it has
final coalgebras for container functors. The M-type for a container functor
of the form X— Ya:A.(Ba— X) will be written as MaB with coalgebra
sup~1:MaB — SA(B— MaB).

Note that the M-type coalgebrap~? is, as its name suggests, the inverse of a
constructosup. This means that for both W- and M-types the constructor is written
assup; where it is necessary to distinguish them we will writep" and sup”
respectively.

We know that W-types exist in toposes with a natural numbers object (Moerdijk and
Palmgren, 2000, proposition 3.6) and in categories which are both locally cartesian
closed and locally accessible (Abbott et al., 2003a, theorem 6.8). Moreover, W-
types exist in models of Type Theory based on realisability such as the categories
w-Setof w-sets andPER of partial equivalence relations dw (equivalent to the

full subcategory ofw-Set of modestsets). See Jacobs (1999) for the definitions

of w-Set and PER and the verifications that they are locally cartesian closed
(Jacobs, 1999, ex. 1.2.7); the fact that W-types exist can be seen by modifying
the construction in Altenkirch (1993, pp 79-80). It is easy to see that coproducts in
these categories are disjoint and hence we have:

Proposition 2.7 w-Setand PER are Martin-Lof categories. O

On the other hand, note that both these categories lack coequalisers and most
infinite limits. In particulare-limits do not in general exist im-Setor PER: it’s

easy to see thqll .y 2 must have 2 elements, but all objects PER are countable

so it can't be an object ??ER. The limit in w-Set if it exists, is modest and hence
would correspond to an object RER.

2.3 Strictly positive types

Strictly positive types can be inductively defined as follows.

Definition 2.8 A strictly positive type im variables(Abel and Altenkirch, 2000) is
a type expression (with type variables, X ., X,) built up inductively according to
the following rules:

¢ if Kis aconstant type (i.e. one with no type variables) then K is a strictly positive
type;

e each type variable Xs a strictly positive type;

e if F, G are strictly positive types then so aretFG and Fx G;

e if K is a constant type and F a strictly positive type thenKEF is a strictly
positive type;

e if F is a strictly positive type in A 1 variables theruX. F andvX. F are strictly
positive types in n variables (for X any type variable).

Define anon-inductivestrictly positive type to be built up inductively as above
without any application oft or v: from constant types K, variables X, products
coproductst+ and function types from a constant type-K—.

As we will show, non-inductive strictly positive types can be interpreted in any

locally cartesian closed category with disjoint coproducts (this already follows from
Dybjer, 1997) and (general) strictly positive types can be interpreted in any Martin-
Lof category.

10

3 Basic Properties of Containers

Throughout this section we will take as given a locally cartesian closed catégory
with finite disjoint coproducts. We will now introduce the category of containers
¢ equipped with its interpretation @xtensionfunctor [-]:¥ — [C,C]. When
constructing fixed points it is also necessary to take account of containers with
parameters, so we defifie] : 4 — [C',C] for each parameter index detFor the
purposes of this paper the index $etan be assumed to be finite, but in fact this
makes little difference. Indeed, it is straightforward to generalise the development
in this paper to the case where containers are parameteris@tdogal index
objectsl € C; whenC has enough coproducts nothing is lost by doing this, since
Cc'~cC/ Yiel 1. This generalisation will be important for future developments of
this theory, but is not required in this paper.

Definition 3.1 Given an index set | define theategory of containers in
parameters; as follows:

e Objects are pair{Ac C, B € (C/A)'); write this as(A > B) € 4.
e Morphisms (A> B) — (C»> D) are pairs (u,f) for uuA—C in C and
f:(u)'D—Bin(C/A).

Thus a container in one parameter is just a familiy B, while a container i
parameters consists of a single shapegether with a family of positiona + B;
for eachi €1.

A container(A > B) € ¢ can be written using type theoretic notation as a pak
andi:l,a:A F Bja, and similarly a morphisniu, f): (A> B) — (C > D) can be
written as a pait- u:A— Candi:l,a:AF fia:Dj(ua) — Bja.

Finally, each(A > B) € ¢, thought of as a syntactic presentation of a datatype,
generates a fibred functpA > B]: C' — C which is its semantics.

Definition 3.2 Define the container extension functof—]:% — [C',C] as
follows. Given(A > B) € 4 and X< C' define

A > B]]XEZa:A. Hiel(Bia—>Xi):zA|_|l(B—>X) ,
and for (u,f):(A> B) — (C> D) define[u, f]:[A> B] — [C > D] to be the

natural transformation with componenfs, f]y : [A> B] X — [C > D] X defined
thus:

(@,9):[A> B]X F [u f]x(a,9) = (ua (gi- fi)iel) -

Say that a functoF : C' — C is acontainer functoiif it is naturally isomorphic to
a functor of the fornfA > B] for some containefA > B) (see also definition 2.3).

11

The following proposition follows from the construction df-] as a type
expression: thdt-] is fibred means that for ary - X we can construdt - [F]X,

and that given any substitutign A — I we can writey*([F]X) = [F](y*X). This

is simply a categorical statement of the fairly obvious observation that substitution
through[F] works.

Proposition 3.3 For each container Fe 4 and each container morphism
o :F — G the functor]F] and natural transformatiorfia] are fibred overC. O

By making essential use of the fact that the natural transformatiof® j] are
fibred we can show that is full and faithful.

Theorem 3.4 (Representation)The functorf—]: % — [C',C] is full and faithful.

PROOF. To show that [-] is full and faithful it is sufficient to lift
each natural transformatiorx:[A> B] — [C> D] in [C',C] to a map
(Ug, f) : (A> B) — (C > D) in 4 and show this construction is inverse[te].

Given o: [A> B] — [C > D] definel = (a,idga) : [A > B]B in the contexta: A

— that is to say, construat:1— [A> B]B in the fibre C/A. As the natural
transformationu is fibred, it localises taxg: [A > B]B— [C > D]Bin C/A and
so we can computé - ogl: [C > D]|B = Sc[](D — B); write this asogl =

(Ug, f), Whereuga: C and fga: i (Di(uga) — Bja) in contexta: A.

Thus(uy, fg) can be understood as a morphiéf> B) — (C > D) in 4, so we
have a constructiofC', C]([A > B],[C > D]) — %4 ((A> B), (C > D)); itremains
to show that this is inverse to the action of the fundtej.

For o = [u,], evaluateagl = (ua id-f) = (u, f). In the opposite direction, to

show thato = [ug, f«], letX € C', a: Aandg: []ic (Bia — X;) be given, consider
the diagram

1— . qas gAY Bl a , gx

m laB J/ax inC/[A > B]X

IC > D]]Bm[[c > D] X

and evaluate

ox(a,9) = ox(([A > B]g)¢) = ([C > D] g)(asl) = ([C > D]g)(uaa, fea)
= (Uad, 9 fad) = [Uq, falx (2,9) -

This shows thatr = [ug, fy] as required. O

12

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are pretisely
polymorphic functionsx" — X™: the data typeX" is the containef1 > n) and
hence there is a bijection between polymorphic functigiAs— X™ and functions

m — n. Similarly, any polymorphic function Ligt — ListX can be uniquely
written as a functioru: N — N together with for each natural number N, a
function fp:un— n.

It turns out that eacky; inherits products and coproducts frofh and that]—]
preserves them:

Proposition 3.5 If C has finite products and coproducts thi&nhas finite products
and coproducts and they are preservedby.

PROOF. Since[—] is full and faithful we can reflect the construction of products
and coproducts alonf-], by showing that products and coproducts of objects in
[C',C] in the image of—] are themselves in the image [of].

Products.Let (Ax > By)kek be a family of objects iy and compute

[Miex [A > BAX =[x D @A []icr (Bria— Xi)
Nza Mkek A I_lkeK |_||el By (@) — Xi)

=Y aiflkek A [i <<ZkeK Bk,i(ﬁka)) — Xi)
= [“_lkeKAk > ZkeKOr'j)IBk]] X
showing by reflection alonfy—] that

I_lkeK Ac > B) = (I_lkeKAk > ZkeK nk Bk)
- (a:ﬂkeKAk > ZKGK K nka)>)

Coproducts.Given a family (Ax > By)kex Of objects in% calculate (making
essential use of disjoint coproducts):

D ek [Ac > BAX =5 > atAc [i (Bria— X))
=% e 3 258 [((Hy B i) —)
=Y adkek A [ia ((erK Bk,i> a— xi)
= [SiexAcs (HeBo), [X

showing by reflection alonfy—] that

S rer (A > B = (ZkeKAk > Hyox Bk) . 0

13

Given containerf € 4,1 andG € ¢ we can compose their extensions to construct
the functor

Fpe] = (¢! 198D o e o g IFL ¢y

Writing this equation a§F] [[G]]X = [F] (X, [G] X) we can see that this defines a
form of substitution in one variable.

This substitution lifts to a functor [—]: 411 x 4 — % as follows. For a container
in % 1 write (S>> P,Q) € % 41, whereP € (C/S)! andQ € C/Sand define:

(S> PQ)(A > B) = (s:s f:Qs—A> (Rs+Yq:Qs Bi(fq))i€|> .

In other words, given type constructd?$x Y) andG(X X) this construction defines
the composite type constructefG](X) = F (X, G(X)).

Proposition 3.6 Substitution of containers commutes with substitution of functors
thus:[F] [[G]] = [F[G]].

PROOF. Calculate (for conciseness we write exponentials using superscripts
where convenient and elide the variablé&throughout):

[Se P,Q[[[A > B]]X
= 3s((MeX) < (@~ Ta:A [%™))
=5 s((MMaX?) < (A2 Ma:Q "))
o (X
((
B)|] X

%ZstA el XHQQXIB'fq)
D5y A% I‘I . |+ZqQB. fq)) — X))
~ [(S> P,Q)[(A

As all the above isomorphisms are naturaKinve get the desired isomorphism of
functors. 0

12

This shows how composition of containers captures the composition of container
functors. More generally, it is worth observing that a composition of containers
of the form—o —: % x ¥} — % reflecting composition of functo§’ — C' — C

can also be defined making containers into a bicategory with 0-cells the index sets
| and the category of homs frohto J given by the container categoﬁéj(] (Abbott,

2003, proposition 4.4.4).

A canonical form for terms of typfF| [[G]]|X = [F[G]] X will be helpful later on.
Observe that either side of this isomorphism can be writtethad , g, h) for some

14

suitable and easy to compute isomorphi@mwith components of the following
types:

s:S f:Qs— A g:Ps— X h:19:Qs (B(fq) — X) . (1)
Now we look at the treatment of type variables — this gives us a notion of

weakening of containers as type expressions. First note that every type variable
X; can be regarded as a container.

Proposition 3.7 Every projection functom; : C' — C defined byt X = X; for each
i €l is a container functor.

I

PROOF. [1 > (izj),g]])?%Hjel((i:j)—>xj) X. O

Given a type expressioR (Xy,...,X,) in n variables and a variable renaming
function f:n— m we can construct a type expressi®r{Xiy,...,Xsn) in M
variables. This construction extends to containers in an obvious way.

Proposition 3.8 Each function fl —J lifts to a functor 17:4 — % with
[1TF] X = [F] (X0 f), where we regard X as a functor-3 C.

PROOF. Definelf(A> B) = (A> (ig (fi = j) x Bi)jes) and calculate

[[Tf(A > é)ﬂxzza:A. HJEJ((Ziel(fi:j)xBia> Hx,-)
%Za:A. HjeJl_liel(((fi =j) xBia) — Xj)
=S a:A [(Bia—Xi) =[A> B](Xof) . O

For example, in the special case of weakening a contdier B) in n variables

by adding one variable in the final position we obtaii > B) = (A > B') where

B{ = Bj fori <nandB,, = 0. More generally we can weaken along any inclusion
f:1 — Jof variables transformingA > B) into (A > B') = 17(A > B) whereB}, =

B; and B’j = 0 otherwise. We will normally leave such weakenings implicit.

Similarly, we can writel K = 1l K = (K > 0) € ¢ (where j:0— I) for what can
sensibly be called eonstant container— its extension is a constant functor equal

to K. We can now show that containers are closed under exponentiation by constant
containers.

Proposition 3.9 Containers are closed under exponentiation by constant contain-
ers, and this is preserved ljy-]: given Fe ¢ then[TK — F] X = K — [F] X.

15

PROOF. LetF = (A > B) and calculate

K—>[[F]]X:K—>Za'A I_lleI(Bia_)Xi)
sz K — A |_|k K. |_||e| (Bi(fk) — X)
NZf K — A |_||e| 2k.K.B. fk))—>X.)
=[F:Kk=As (TRKEB(T), X -

If we now definel K — F = (f:K — A (T k:K.Bj(fk));) (or write this as just
K — F) then by reflection alon§i—] and the isomorphismiG] x K = [G x T K]
(for any G € ¢4;) we can see th& — F is the required exponential. a

The following proposition is now an obvious consequence of the constructions and
results in this section; this is basically a reformulation of the main result of Dybjer
(1997) using the language of containers.

Corollary 3.10 Every non-inductive strictly positive type F in n variables can be
interpreted as an n-ary containgfF) € ¢, (and an n-ary functof{(F)]: C" — C)
such thatK) =K, (F+G) = (F) 4+ (G), (F x G) = (F) x (G), (K — F) =K — (F)
and[(X)] (Xg,-..,%Xn) = Xi. O

4 Constructing M-types from W-types

If we assumeC to have enough infinite limits, in particular to be closed under the
formation ofw-limits, then it is easy to see that M-types exist: writihg: [S> P]
construct thew-limit

1< Tl<— =T~ ..~ |im__T", ()

«—neN

then asT preserveswo-limits (indeedT preserves all connected limits since the
functor y 5 also does) it is a well known result (e.g. Paggril992) thatvT =

I|m T"1 is a final coalgebra. This approach was taken in Abbott et al. (2003a)
and Abbott (2003).

In the present treatment we do not wish to assume the existenedimits: recall

that the Martin-16f categoriesw-Set and PER do not haveexternal w-limits of

the form (2), and the same problem applies to the effective topos. One possible
approach is to construct the famity. N + T"1 as a family inC together with

an internal representation of the restriction morphidifisk1 — T"1 and take its
internal limit, which certainly does exist. We do not do this in this paper, as the
necessary machinery is not developed here.

16

However, we can use this (internal) limit construction to understand the
construction in the present paper. Each projectiprv T — T"1 takes a potentially
infinite tree and truncates it to depth such truncated trees can be expressed
as elements of the W-typ&l = puX.14+TX. Writing L and sup for the

two components of the constructor-ITM — M, we can define an inclusion

in: T"1— M inductively withio = L andiny1(s, f) = sup(s, in-).

This means that the family of compositgs 7, can be understood as a morphism
Nx vT — M, or equivalently, a morphiswT — MN: this last morphism turns
out to be a regular monomorphism. Each infinite treerTnis represented as an
evolving family of finite truncated trees, and it is clear thalN — M is in vT only

if fnis atruncation off (n+1). Correctly captured, this turns out to be the defining
equation forvT as a regular subobject 6fY.

Thus we get the following proposition.

Proposition 4.1 Every Martin-Lof category is closed under the formation of M-
types, that is, every unary container functor has a final coalgebra.

PROOF. Let A - B be the family for whichMaB = vX.[A> B]X is to be
constructed,; for conciseness, witX = [A > B] X = ZAXBthroughout this proof.
DefineM = puX. 1+TX, writing L : M andsup: TM — M for the two components
of the initial algebra + TM — M. The idea of this proof is to represent an element
m: MaB by a family of functionsm:N — M where eachm,: M represents the
infinite treem truncated at depth: the value L represents points where the tree
has been cut off.

We can construct @-algebrac : T(MY) — MY by cases ovek:
op(a, f)=_1 onr1(a, f) =sup(a, fn)

with variablesa: A and f :Ba— MY. We definef, = Ab:Ba. (fb)n — it will be
convenient to use this convention for the paramatéroughout this proof. The
morphisma will later restrict to the inverse to the final coalgebra kdxB.

Let f: X — T X be any giverT -coalgebra; writing the components @ as fox: A
andB1x: B(Box) — X constructB : X — MY by induction oveiN:

Box=1 B 1x = sup(Box, B~ B1x) -

17

Observe thaf makes the diagram

TX B X
Tgi lg ©)
T(MY) —5—MN
commute

= sup(Box, (B - BiX)n) = sup(BoX, Bn- B1X) = Br 1% -

Furthermore 8 is the unique morphism making (3) commute: let also satisfy
g=oa-Tg-B, then

gox = ao(Tg(Bx)) = L = Box
On+1X = Ony1(TO(BX)) = onea(T g(ﬁof B1x)) = 0ﬁ1+1(ﬁo><, - B1x)
= sup(BoX, Gn - B1X) = sup(BoX, Bn- B1X) = B 1X -

This shows that for every coalgebfa X — T X there exists a unique morphism
B : X — M satisfying the equatiort - T - B = B.

Note however thatx is not an isomorphism, and in particular there is no suitable

coalgebra oM™: to construct the final coalgebra we need to defihe~ MY to

be the subobject of “well-formed” sequences of trees. To do this we would like to
construct @runcationmorphismN + M — M + 1 with component a: N cutting

off elements oM to depthn — the extra value in the codomain represents the result
of truncating a tree wherg occurs anywhere in the body of the cut off tree.

In practice it is necessary to defie= uX. 1+ T X + 1 with algebra components
written L, sup andx respectively and to construct trurid:— M. This is because
the question of whether occurs at an appropriate depth is in general undecidable,
so the simpler form of trunc as a morphism intb+ 1 discussed above is not
implementable.

Define tunc:M — M by induction oveM andN by the following clauses:

rungXx

1 NGy 1 L = %
trunGy+1 (Sup (f))=sup

(a, trung, - f) truNG, 1% = % .

Note that the construction aftinc is an instance of W-type induction with algebra
[u;v;w] 1+T(MN) +1—M" defined by induction oveR with up = vp(a, f) =
Wo = L, Upp1 = Wni1 =+ andvpp1(a, f) =sup(a, fn).

18

There is an obvious inclusion M — M defined inductively by:
1Ll=1 t(sup(a, f)) =sup(a,t-f) .

Finally define trunc= trunc-1 which therefore satisfies equations:
trungx=1.L trunc,+1(sup(a, f)) =sup(a, trung,-f) .

We can now say thah: MY is “well-formed” iff eachmy, is a truncation to depth
of all the larger treesn, x, which can be captured &n: N. (1my = trung,my1).
So define

M= m:MY. [N (imn = trunca Mh1) 4)

describing a regular subobjectﬁlN. Note that for(a, f): TM the equation above
translates into the equatian f, = trung,-f,.1; this can be used to show that
restricts too.: TM — M, ie t(anX) = trunc,(an1X) for x: T M, thus:

t(op(a, f)) =1L =trung(oy(a, f))
l(an+1(a7 f)) = l(sup(a, fn)) = m<a7 L fn) = m(av trunCh'fn+1)
= trunGy+1(sup(a, fny1)) = trunGry1(ome2(a,)) .

For the rest of this proof we’'ll writex for the restricted morphisre: TM — M.
The morphismB constructed from a coalgebpaalso factors throug — MY:

1(BoX) =1L =truncy(B . 1X)
1(B s 1%) = 1(sup(BoX, By - B1X)) = SUP(BoX, 1 B B1X)
= 5Up(foX, truncy-B ., 1 - B1X) = trunGuya(sup(BoX, By 1 - B1X))
— trunGy; 1By

showing that - B, = trung, By 1. Now writing B : X — M we can see thd is still
the unique solution to the equatifin= o - T3 - B; to complete the proof it remains
to show thatx is an isomorphism.

By definition (4) a termm: M satisfies the equatiorm,, 1 = trung,, 1My, 2; by
disjointness of coproducts and the definition of tryncwe can see that this equa-
tion must be of the formm, 1 =sup(a, trung, - fr+1)) = trunG,+1(sup(a, fny1)) =
trunG, 1 my2 for someaandfy 1. We can therefore writen,, 1 = sup(a, fn) where

f, satisfies the equation f, = trung,- f, 1. By defininga’'m= (a, f) we obtain a
morphisma’: M — TM.

Now o'(a(a, f)) = (d, f') wheresup(d, /) = anr1(a, f) = sup(a, fn), showing
thato' - o = idtm. Conversely, writingx’'m = (a, f) wherem,1 = sup(a, f,) and

19

t- fp =trung,- f, 1 we can show thatt(a’m) = m:

t(op(a’'m)) =1L =trungymy = 1My
t(tne1(@'m) = (onra(a,) = t(sup(a, fn)) =STR(a, 1 - fn))
=sup(a, trunG, - fry1) = trunGy1(sup(a, fry1))
=truUNGy+1Mhy2 = 1My

Thuso/ = a~ and we see tha¥l is a final coalgebra fofA > B]. O

5 Inductive and Coinductive Containers

Throughout this section takéto be a Martin-16f category. Here we will show that
the interpretation of non-inductive strictly positive types in containers (corollary
3.10) extends to the full range of strictly positive types (corollary 5.5). More
generally, we will show that if (X,Y) is a container functoF : C'*1 — C then

the fixed pointuY. F(X,Y) andvY. F(X,Y) are also container functofd — C.

Note that throughout this section we tregaandv as partial operators on functors,
taking an endofunctoF to (the object part of) its initial algebraF and its

final coalgebravF, where these objects exist — note that these constructions
are necessarily functorial. We also indulge in some obvious abuse of notation,
constructing for example a functoi : D — C from a functorF :D x C — C and

using a notation with variables to describe these. It is not until corollary 5.5 that we
link this notation explictly to the syntax of strictly positive types.

Now letF = (S> P,Q) € ¢4 .1 be a container ih+ 1 parameters with extension

[FI(%.Y)=[S> RQJ(X.Y)
=558 ([laPs—%)) x (@s—Y) .

To show thapY. [F] (X,Y) andvY. [F] (X,Y) are container functors with respect
to X we need to computeindexed container@A; > By) and(A, > By) such that

[Au > By X = pY. [F](X,Y) and[A, > B,[X 2 vY.[F](X,Y). Clearly we can
calculate

Ay = [Ay > By 1= pY. [F](LY)=uY. [S> QY = WsQ
Ay = [A, > By 12 VY. [FI(LY) 2 VY. [S> QY =MsQ ,

but the construction oiWWsQ F B, and MsQ B, will involve the inductive

construction of families; we will show how to construct these families using W-
types in proposition 5.2 below.

20

In the rest of this section we will simplify the presentation by ignoring the index
setl and writingP — X for ;¢ (P — Xi). In particular, this means that the family
B € (C/A) will be treated uniformly (as if = 1). It is a straightforward exercise
to generalise the development to arbitrary index sets. We will therefore take

[F](X,Y) ZS S (Ps—X)x(Qs—Y) .
For any containeG = (A > B) we can calculate the substitution
FIGl=(S> PQ)(A> B)]=(s:S f:Qs—Ap Ps+Zq:Q. B(fq)) .

This can be written more concisely €8 A? > P+ 5 o*B), whereg :A° x Q — A
is the evaluation map. Observe now that any fixed pginfS> Q] A= A induces
an isomorphism of positions betweEfG] andG, or equivalently an isomorphism
y:[F[G]]1=[G]1anditis clear that any fixed poiRfG| = G which agrees with
v must be of the fornfy, 1) : F[G] — G for some family of isomorphisms

s:Sf:Qs—AF (ps7f:Ps+Zq:Q. B(fq) = B(y(s f)) . (5)
More generally it will be useful to require théB, ¢) form aninitial family overy.

Definition 5.1 An initial family overa fixed pointy : [S> Q] A= A is defined to
be an initial algebra for the functof/A — C/A taking X toy~*(P+ S e*X).

In other words, a familyA - B is initial over y if it is equipped with a morphism
¢:P+30€"B— y*B, as in (5) above, which is initial in the category of such
families and morphisms. It turns out that such initial families always exist.

Proposition 5.2 Given a container F= (S>> P.Q) € 441 and an object A C
equipped with a fixed pointy:[S> QA= A there exists an initial family
A I Posgy, overy for the functor X— P+ 3 o e*X.

PROOF. Write SAR - ¢:P+3yoe*B— y*B for the initial family to be
constructed. Note that the functBr— P+ Y o€*B is not a container functor, so

we cannot directly appeal to W-types to construct this fixed point; thus the first step
is to create a fixed point equation that w&n solve. Begin by “erasing” the type
dependency oB and construct (observing thihY = Q x Y, etc.)

B=pY. T3 o (P+QxY)=pY. (T(AxP)+ (3 (A% Q)) xY)
= List (3 (A% Q)) x T (A% P) ;
there is no problem in constructing arbitrary listsdrand soB clearly exists.

The task now is to select the “well-formed” elementsBofAn element o can be
thought of as a putative path through a tregih [F] (X,Y); we wantBato be the

21

set of all valid paths t&X-substitutable locations in the tree.

An element ofB can be conveniently written as a list followed by a tuple thus

([(s0, fo,%0); - - -5 (Sn—1, fr—1,0An—1)], (Sn, Fn, P))

fors:S fi:Qs — A qi: Qs andp: Ps,. The condition that this is a well formed
element oB(y(sp, fp)) can be expressed as thequations

figi = y(S41, fira) fori<n,

showing thaB can be captured as a regular subobjec@.oThat this is indeed the
required initial family is shown in Abbott (2003, proposition 5.5.1). O

The details of this sketch proof are given in Abbott (2003), or the result can be
derived as a corollary of Gambino and Hyland (2004, theorem 12) by observing
that the functoX — y~*(P+ 3 o€*X) is a “dependent container functor” (which
they call a “dependent polynomial functor”) and therefore has an initial algebra.

Being initial, ¢ is an isomorphism. Writings = (A > Posy) for the container
associated with an initial family, note that = (v, ¢1) is an isomorphism of
containerso : F[G] = G, and using the decomposition {ff[G]] X of (1), see the
discussion following proposition 3.6, we can write the actiofiafy as

[[O‘]]x (Sa f7g7 h) = (W(Sa f)7 K(g7 h))
whereK(g,h):Pogy(s, f)) — X can be defined by cases thus:

K(g:h)(e(inlp)) =gp K(g,h)(¢(inr(g,b))) = hab . (6)
Above and in the proofs that follow we use the functional programming convention
for brackets thahgb= (hg)b. We can now use initial families to construct initial
and final containers. First initial algebras of containers.

Proposition 5.3 Given a container = (S P Q) € %1 then

[WsQ > Posgpn] X = nY. [F](X,Y) ;

writing uF = (WsQ > Pogs,pe) We can conclude thdiuF] = p [F[—]].

PROOF. For conciseness writd = WsQ, B = Pog,, andG = (A > B) through
this proof. First recall thafF] (X, [G] X) = [F][[C]]X = [F[G]] X and observe
thato = (sup, ¢ 1) :F[G] — Gis anF[—]-algebra.

22

To show that eaca]y generates an initialF] (X, —)-algebra let an algebra
B:[F](X,Y) —Y be given: we need to constryst [G] X — Y uniquely making

F1(X.[6]X) = [FleTX %% g1

[[F]](X,Bﬁ lﬁ ™

[F] (X,Y) B Y

commute. Using equation (1) to write the context&s, f,g,h):[F[G]] X the
corresponding equation can be computed as

s:S f:Qs— A g:Ps— X, h:[19:Qs (B(fq) — X) F
B(sup(s, f),K) = B(s, g, 2. B(fa,hq)) , ®)

where K = K(g,h) is defined as in (6) — we will elide the argumer(ig h)
which are constant through this proof. We can now constﬁquXB —Y by
We-induction by constructing

a:WsQ B(a,—):(Ba— X) =Y

and using the W-induction rule wrec. To apply this rule we need to define the
induction stepH taking induction data and returning a value of the above type.
The following type expression turns out to be the appropriate induction step:

s:S f:Qs— A r:[19:Qs((B(fg) — X) = Y), k:B(sup(s, f)) - X -
H(s, f,rk=B(sTi(k,—), Ta(k,r,—)) ,

whereTy(k, p) = k(@(inlp)) andTa(k,r,q) = rq(Ab.k(¢(inr(g,b)))). In the context
of (8) we can computd (K, p) = gp and Tz(K,r,q) = rq(hq). If we now define
B(a,—) = wrecy a then in this context we can compute

B(sup(s, f), K) =wrecy (sup(s, f))K = H(s, f, wrecy - f)K
= B(s, Ti(K, =), To(K, wrecy - f,—))

= B(s, 9, Aq.wrecy(fa)(ha)) = B(s, 9, Aa.B(fq, hq))

which is precisely equation (8), showing thhis the required initial morphism and
that indeed G| X is an initial algebra. O

Where convenient we will write Pgs= Pog,px and Pos = Pogg,,v. Note that

the proof above thatuF] = u [F] only uses the isomorphisi+ 5 o e* Pog, =

Pos, and makes no use of initiality; this may seem surprising, as we might expect
the isomorphism problem for Pp$o have multiple solutions.

23

This can be explained intuitively by observing that Pa@srresponds to the type

of paths into a finite tree, and consequently there cannot be any infinite paths. This
occurs because the structure of the funter P+ o €*X respects the structure of

the initial algebraup, thereby forcing Pgsto be unique. An example of this occurs

in Wraith’s theorem (Johnstone, 1977, theorem 6.19) which treats the special case
WsQ=N.

The corresponding proof foris more intricate because we now have to exploit the
initiality of the family MsQ F Posyg,,v.

Proposition 5.4 Given a container = (S P Q) € %1 then
[MsQ > Posger [X 2 VY. [F](X,Y) ;

writing vF = (MsQ > Posg,pv) We have[vF] = v [F[—]].

PROOF. Let A = MsQ, B = Pogg,, andG = (A> B) as before and observe
that . F[G] — G exists as above and has an inveese! = (sup™2, ¢). We will
show that eacfa 1], is a final[F] (X, —)-coalgebra. Lef :Y — [F] (X,Y) be

a coalgebra: we will constru@:Y — [G] X uniquely satisfying

B =[alx-IF1(X.B)-B . 9)
Write the coalgebr@ 1Y — 3 5(XP x YQ) asBy = (sy gy, hy) with components
s:Y — S gny:Y.(P(sy — X) fiy:Y.(Q(sy —Y) ,

and similarly writeB : Y — 4 XB asBy = (ay,ky) with components:Y — A and
K:[y:Y.(B(ay) — X). In contexty:Y equation (9) can be computed as:

(ay,ky) = (sup(sy, a- fy), K(gy, k- fy)) (10)

whereK is defined in (6). It is immediately evident thatis fully determined by
the final coalgebra property & = MsQ. To constructk we will need to appeal
to the initial family property oB: we will work backwards to discover the correct
construction.

First observe that can be regarded as a morphigna*B — X in C/Y, and hence
can be transposed to a morphi&nB — [1,X in C/A — this is in the right form

to construct using the initial family property. We can wijtg X using equality in
contexta’ :Aas(yy:Y.ay=a') — X and so we now want to construct

d:AF ky:Bd — ((Sy:Y.ay=4d) —X) ;

24

this will arise by initiality of families from a suitable morphisit

§:5f:Qs — A+ Ps’+Zq:Q§. ((Zy:Y.ay: f'q) — X)
L>((zy:Y.ay:sup(s’,f’))—>X) :

We can defindx(y,e) in contexts’: S, f': Qs — A, y:Y ande:ay=sup(s, f’) by
the following clauses:

p:Ps + K(inlp)(y,e) = gyp
q:Qs,g':(Yy:Y.ay= f'q) — X F K(inr(q,9))(y,€) = g'(fyg,reflsq)

where well typedness follows by equality reasoning: Brstls us thasup(s, f') =
ay = sup(sy, a- fy) and so (asup is an isomorphism§ = syand f’ = a- fy. The
definitions above can now be seen to be well typed by direct computation.

The initial families equation defining now becomek- ¢ = K- (P+ yq&*k), or
writing it out more fully:

R«:‘up(s’,f’)((p(inl p))(y? e) = K(ml p)(yv e) =ayp
Rsup(s’,f’)(qo(inr(cbb)))(y7 e) = R(inr(q7Rf’qb))(y7 e) :Rf’qb(fyqa reﬂf’q) .

Finally reconstruck from k askyb= kayb(y, reflay). These equations then become

ky(o(inlp)) = gyp=K(gy, k- fy)(¢(inlp))
ky(e(inr(q,b)) = k(fyg)b = K(gy, k- fy)(¢(inr(qg,b)))

showing thatk is indeed uniquely determined to satisfy equation (10), thus
establishing thafo~1] , is the desired final coalgebra. O

Note that the construction ofF only usegnitial families, that is to say, initiality
and not finality of Pog is the required defining property. This can be understood
by observing that although an eleménMsQ may represent an infinite tree, any
position in Post represents &nite path intot.

Finally observe thattF is the object of an initial algebra for the substitution functor
F[-]:49 — % and similarly vF is the object of a final coalgebra: this follows
by the reflection of propositions 5.3 and 5.4 aldig]. The following corollary
summarises the results of this section.

Corollary 5.5 In a Martin-Lof category every strictly positive type F in n variables

can be interpreted as an n-ary contain@) € ¢, such that(uXn,1. F) = u(F),
(vXn+1. F) = v(F), and the interpretations of corollary 3.10 hold. O

25

6 Conclusions and Further Work

We can summarise the main results of the paper in the following corollary:

Corollary 6.1 Each strictly positive type F in n variables can be interpreted as
an n-ary containefF) : %,. Given the interpretation of n-ary strictly positive types
(F)= (A B),(G) = (C > D) and n+1-ary strictly positive typgH|) = (S> P,Q),

we have the following translation:

(K)=(K > j—0)
Xh=1> j=(i=])
(F+G)=(A+C > j— Bj+Dj)
(F xG) = ((a,c):AxC > j+ Bja+Djc)
K—F)=(f:K—=Ap> =Y kK. Bj(fk))
(uXnt1- H) = (WsQ > j — PO, supn)
(vXat1. H) = (MsQ > | = POS, supv)

In the special case & 0 this implies that all closed strictly positive types can be
interpreted as objects in any Martindk category. O

The reader will notice that our definition of strictly positive types is restricted to
a simple type discipline even though we work in a dependently typed setting. A
natural extension of the work presented here would allow the definitions of strictly
positive families which can be interpreted as initial algebras of endofunctors on a
given slice category. We are currently working on this and it seems that W-types,
i.e. Martin-LOf categories, are still sufficient to interpret strictly positive families.
This has important consequences for the implementation of systems like Epigram
(McBride and McKinna, 2004; McBride, 2004) which use schematic inductive
definitions. The correctness of the schemes is currently not checked and is a likely
cause of unsoundness. Using our constructiave can translate the schematic
definitions into a fixed core theory whose terms can be easily checked.

Nested datatypes (Altenkirch and Reus, 1999; Bird and Paterson, 1999) provide
another challenge: to treat them we would need to represent higher order functors.
However, it is likely that Martin-Ibf categories are still sufficient as a framework.

Another interesting line is to allow quotients of positions to be able to treat types
like Bags, i.e. finite multisets. Indeed this is already present in Joyal’s definition of
analytic functors and can be easily adapted to the category of containers. We have

4 The constructions in this paper depend essentially on extensional equality, while the
current version of Epigram is intensional. However, McBride and Altenkirch are currently
working on an extensional but decidable implementation of Epigram based on Altenkirch
(1999).

26

presented first results in Abbott et al. (2004b). There is an interesting interaction
with our work on derivatives (Abbott et al., 2003b, 2004c), e.g. using quotients we
should be able to prove a version of Taylor's theorem in a type-theoretic setting.
This construction will take place within a predicative topos with W-types which
extends Martin-bf categories by effective quotients.

Acknowledgements

The content of this paper has greatly benefitted from numerous discussions with
our colleagues, in particular: Conor McBride, Benno van den Berg, Peter Dybijer,
Nicola Gambino, Peter Hancock, Martin Hofmann, Martin Hyland and Federico
De Marchi. We would also like to thank the referees for their comments which
have helped to improve this paper.

References

M. Abbott. Categories of Containerd?hD thesis, University of Leicester, 2003.

M. Abbott, T. Altenkirch, and N. Ghani. Categories of containersPioceedings
of Foundations of Software Science and Computation Strugtuodsme 2620
of Lecture Notes in Computer Scienpages 23-38, 2003a.

M. Abbott, T. Altenkirch, and N. Ghani. Representing nested inductive types
using W-types. Ininternational Colloquium on Automata, Languages and
Programming, ICALPpages 59-71, 2004a.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers.
In 6th International Conference on Typed Lambda Calculi and Applications
volume 2701 ot ecture Notes in Computer Scienpages 16—30, 2003b.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Constructing polymorphic
programs with quotient types. [fth International Conference on Mathematics
of Program Construction (MPC 2004number 3125 in Lecture Notes in
Computer Science, pages 2—-15, February 2004b.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBrided for data. submitted for
publication, February 2004c.

A. Abel and T. Altenkirch. A predicative strong normalisation proof foda
calculus with interleaving inductive types. Tiypes for Proof and Programs,
TYPES '99 volume 1956 ofLecture Notes in Computer Sciengmages 1-18,
2000.

P. Aczel. On relating type theories and set theoriescture Notes in Computer
Science1657:1-18, 1999.

T. Altenkirch. Constructions, Inductive Types and Strong NormalizatiéthD
thesis, University of Edinburgh, November 1993.

27

T. Altenkirch. Extensional equality in intensional type theory1#th Symposium
on Logic in Computer Sciencpages 412-420, 19909.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In J. Flum and M. Rgdez-Artalejo, editors,
CSL'99 volume 1683 ofLecture Notes in Computer Sciengmages 453-468,
1999.

J. Benabou. Fibrations petites et localement petit€s.R. Acad. Sc. Parj281:
A831-A834, 1975.

J. Bénabou. Fibred categories and the foundations of naive category theonyal
of Symbolic Logic50(1):10-37, 1985.

R. Bird and R. Paterson. Generalised folds for nested datatypmaal Aspects
of Computing11(3):200-222, 1999.

F. Borceux. Handbook of Categorical Algebra, olume 51 ofEncyclopedia of
Mathematics Cambridge University Press, 1994.

R. L. Crole. Categories for TypesCambridge University Press, 1993.

P. Dybjer. Representing inductively defined sets by wellorderings in Maiifis-L
type theory.Theoretical Computer Scienck76:329-335, 1997.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial
functors. In S. Berardi, M. Coppo, and F. Damiani, editdnges for Proofs
and Programs (TYPES 20Q3)ecture Notes in Computer Science, pages 210—
225, 2004.

R. Hasegawa. Two applications of analytic functor§.heoretical Computer
Science272(1-2):112-175, 2002.

M. Hofmann. On the interpretation of type theory in locally cartesian closed
categories. Il€Computer Science Logic, CSL$hges 427-441, 1994.

M. Hofmann.Extensional Constructs in Intensional Type The@gringer, 1997a.

M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and
P. Dybjer, editorsSemantics and Logics of Computatienlume 14, pages 79—
130. Cambridge University Press, 1997b.

P. Hoogendijk and O. de Moor. Container types categoricalljournal of
Functional Programming10(2):191-225, 2000.

B. Jacobs.Categorical Logic and Type TheaorlNumber 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier, 1999.

P. T. JohnstoneTopos TheoryAcademic Press, 1977.

A. Joyal. Foncteurs analytiques et esps de structures. I@ombinatoire
Enunérative number 1234 in Lecture Notes in Mathematics, pages 126—159.
Springer, 1986.

P. Martin-Lof. An intuitionistic theory of types: Predicative part. In H. E. Rose and
J. C. Shepherdson, editoRroceedings of the Logic Colloquiymages 73—118.
North-Holland, 1974.

P. Martin-Lof. Intuitionistic Type TheoryBibliopolis, Napoli, 1984.

C. McBride. Epigram: Practical programming with dependent types. Lecture notes
of the Advanced Functional Programming Summerschool in Tartu, Estonia,
2004.

C. McBride and J. McKinna. The view from the leftJournal of Functional

28

Programming 14(1):16-111, 2004.

I. Moerdijk and E. Palmgren. Wellfounded trees in categorfemals of Pure and
Applied Logi¢ 104:189-218, 2000.

B. Nordstom, K. Petersson, and J. M. SmitRrogramming in Martin-Ibf’s Type
Theory Number 7 in International Series of Monographs on Computer Science.
Oxford University Press, 1990.

R. Pagé and D. Schumacher. Abstract families and the adjoint functor theorems. In
P. T. Johnstone and R. Raeditors)ndexed Categories and Their Applications
number 661 in Lecture Notes in Mathematics, pages 1-125. Springer-Verlag,
1978.

A. Poigre. Basic category theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors,Handbook of Logic in Computer Scienceolume 1 of
Handbook of Logic in Computer Sciengeges 413—-640. Oxford University
Press, 1992.

R. A. G. Seely. Locally cartesian closed categories and type thétagh. Proc.
Camb. Phil. S0¢.95:33-48, 1984.

T. Streicher.Semantics of Type Theoryrogress in Theoretical Computer Science.
Birkhauser Verlag, 1991.

D. Turner. Elementary strong functional programming. In R. Plasmeijer and
P. Hartel, editorsFirst International Symposium on Functional Programming
Languages in Educatigmumber 1022 in Lecture Notes in Computer Science,
pages 1-13. Springer, 1996.

B. van den Berg and F. de Marchi. Non-well-founded trees in categories. submitted
for publication, 2004.

29

