
Containers

Constructing Strictly Positive Types

Michael Abbotta, Thorsten Altenkirchb, Neil Ghanic

aDiamond Light Source, Rutherford Appleton Laboratory
bSchool of Computer Science and Information Technology, Nottingham University

cDepartment of Mathematics and Computer Science, University of Leicester

Abstract

We introduce the notion of aMartin-Löf category— a locally cartesian closed category
with disjoint coproducts and initial algebras of container functors (the categorical analogue
of W-types) — and then establish that nested strictly positive inductive and coinductive
types, which we callstrictly positive types, exist in any Martin-L̈of category.

Central to our development are the notions ofcontainersand container functors,
introduced in Abbott, Altenkirch, and Ghani (2003a). These provide a new conceptual
analysis of data structures and polymorphic functions by exploiting dependent type theory
as a convenient way to define constructions in Martin-Löf categories. We also show
that morphisms between containers can be full and faithfully interpreted as polymorphic
functions (i.e. natural transformations) and that, in the presence of W-types, all strictly
positive types (including nested inductive and coinductive types) give rise to containers.

Key words: Type Theory, Category Theory, Container Functors, W-Types, Induction,
Coinduction, Initial Algebras, Final Coalgebras.

1 Introduction

One of the strengths of modern functional programming languages like Haskell or
CAML is that they support recursive datatypes such as lists and various forms of
trees. When reasoning about functional programs in many situations it is sufficient
and indeed often easier to restrict ourselves to total functions, thus allowing us
to view types as sets. David Turner (1996) calls this approachstrong functional

Email addresses:michael@araneidae.co.uk (Michael Abbott),
txa@cs.nott.ac.uk (Thorsten Altenkirch),ng13@mcs.le.ac.uk (Neil Ghani).

Preprint submitted to Elsevier Science 20 December 2004

programming, thoughtotal might have been a better word. Not all recursive types
make sense in this view, for example we can hardly understandD ∼= 1+(D→ D)
as a set. Moreover, even if we restrict ourselves to well behaved types like lists over
A which are a solution to ListA∼= 1+ A×List A (since every element of a list is
eithernil or a cons of an element ofA and a list), in the total setting we have to
decide which fixpoint we mean. There are two canonical choices:

Finite lists correspond to the initial algebra of the signature functor, i.e. the functor
corresponding to a datatype declaration, which in the case of lists overA is X 7→
1+A×X. We write this initial algebra as ListA = µX. 1+A×X.

Potentially infinite lists correspond to the terminal coalgebra of the same
signature functor. We write this as List∞ A = νX. 1+A×X.

In this paper we investigatestrictly positive types which we define to be those
types which can be formed using 0, 1,+, ×, +, →, µ, ν with the restriction
that types on the left side of the arrow have to be closed with respect to type
variables. Examples of strictly positive types are: the natural numbersN ≡
µX. 1+X, binary trees BTreeA≡ µX. A+X×X, streams StreamA≡ νX. A×X,
ordinal notations Ord≡ µX. 1+X +(N→ X) = µY. 1+Y +((µX. 1+X)→Y),
and Rose trees RTree≡ µY. List Y = µY. µX. 1+X×Y. Intuitively, these types
can be understood as sets of trees (potentially infinitely branching), which have
finite and infinite parts.

Our central insight is that all strictly positive types can be represented as
containers, which can be viewed as a normal form for those types. A unary
container is given by a type ofshapes Sand a family ofposition types indexed
by S thus:s: S ` Ps. As a container we write this as(s: S . Ps) or just (S . P).
Theextensionof this container is a functorJS . PK, which on objects is given by
JS . PKX = ∑s: S.(Ps→ X). We say that any functor naturally isomorphic to the
extension of some container is acontainer functor.

Thus for any typeX an element of∑s: S.(Ps→ X) is a pair(s, f) wheres: S is
a shape andf : Ps→ X is a function assigning an element ofX to each position
for the corresponding shapePs. For example List is represented by the container
(n:N . Finn) where Finn = {0,1, . . . ,n− 1}: a list is given by the length (its
shape) and a function which assigns an element to each position in the list. List∞

is represented by(n : N∞ . Fin′n) whereN∞ ≡ νX.1+ X is the set of co-natural
numbers extending the usual natural numbers by an infinite element∞ = 1+∞ and
Fin′ extends Fin by Fin′∞≡N, that is the positions of an infinite list are the natural
numbers. We show (corollary 6.1) that all strictly positive types can be represented
as containers.

Morphisms between functorial datatypes are polymorphic functions, in categorical
terms natural transformations. We define morphisms between containers which
represent polymorphic functions: given two containers(S . P) and (T . Q) a

2

morphism(S . P)→ (T . Q) is given by a pair(u,g) where

• u: S→ T is a function on shapes,
• g : ∏s: S.Q(us)→ Ps is a function which assigns to every position in the target

a position in the source.

Each container morphism gives rise to a natural transformation, and conversely
(theorem 3.4) every natural transformation between containers arises from a unique
container morphism. As an example the reverse list function revA : List A→ List A
is represented by the container morphism(idN, r) wherer : ∏n:N.(Finn→ Finn)
is defined asrni ≡ n− 1− i. The function on positions has to be defined
contravariantly because we can always assign where an element of the target
structure comes from but not vice versa. Consider for example the tail function
on lists which is represented by(λn. n−̇1, λ i. i +1) where−̇ is cutoff subtraction.
This can be visualised as

tail of list

/.-,()*+x0 /.-,()*+x1 /.-,()*+x2 7→ /.-,()*+x1
�xx /.-,()*+x20ff .

One of the main applications of containers isgeneric programming: our
representation gives a convenient way to program with or reason about datatypes
and polymorphic functions. We have already exploited this fact in our work on
derivatives of datatypes which uses containers to develop an important idiom in
functional programming to support generic editing operations on datatypes (Abbott
et al., 2003b, 2004c).

We use here the language of extensional Martin-Löf Type Theory (Martin-L̈of,
1984) with W-types and a constant inhabitingtrue 6= false (MLW ext, see Aczel,
1999) as the internal language of locally cartesian closed categories with disjoint
coproducts and initial algebras of unary container functors — we call theseMartin-
Löf categories.

The present paper is the journal version of our conference papers Abbott et al.
(2003a, 2004a); this paper extends our previous results. We show here that W-types
are sufficient to representall strictly positive types allowing arbitrary nestings ofµ

andν (corollary 5.5). Thus, we improve on our previous results in two ways:

• In Abbott et al. (2003a) we required that the ambient category have infinite
limits and colimits (or at least be accessible), which rules out many interesting
examples including syntactic categories of Martin-Löf type theory, categories of
ω-sets, categories of PERs and realisability toposes.
• In Abbott et al. (2004a) we show that nestedµ-types can be represented using

W-types, but did not considerν-types or M-types.

3

The extension toν-types is non-trivial: it follows from proposition 5.2 which is
stronger than the corresponding proposition 6.1 in Abbott et al. (2004a) — here
we show that we have an initial solution and not just an isomorphism — and it
requires the reduction of M-types (the dual of W-types) to W-types, which we do
in proposition 4.1.

1.1 Related work

The termcontainer is commonly used in programming to refer to a type (or its
instances) which can be used to store data. Hoogendijk and de Moor (2000) develop
a theory of container types using a relational categorical setting. We share many
underlying intuitions and motivations but our framework is based on functions and
inspired by intuitionistic Type Theory and it is not clear to us whether there is a
more formal relation between the two approaches.

Our work is clearly related to the work of Joyal (1986) on species and analytical
functors whose relevance for Computer Science has been recently noticed by
Hasegawa (2002). Indeed, if we ignore the fact that analytical functors allow
quotients of positions, i.e. if we consider normal functors, we get a concept which is
equivalent to a container with a countable set of shapes and a finite set of positions.
Hence containers can be considered as a generalisation of normal functors of
arbitrary size.

Dybjer (1997) has shown that non-nested inductive types can be encoded with W-
Types. His construction is a sub-case of corollary 6.1 only covering initial algebras
of strictly positive functors without nested occurrences ofµ or ν . Apart from
extending this to nested uses ofµ andν our work also provides a detailed analysis
of the categorical infrastructure needed to derive the result.

Recently Gambino and Hyland (2004) have put our results in a more general
context and indeed their theorem 12 generalises our proposition 5.2 to dependently
typed containers, which they call dependent polynomial functors. Similarly, their
theorem 14 is closely related to our proposition 5.3. We also learnt from their work
that this construction is related to the proof in Moerdijk and Palmgren (2000) that
W-types localise to slice categories.

After learning about our proposition 4.1 that M-types are derivable from W-types,
van den Berg and de Marchi (2004) have given an independent proof of this fact
using a different methodology.

4

1.2 Plan of the paper

We review the type theoretic and corresponding categorical infrastructure in section
2. Then in section 3 we formally introduce the category of containers and prove
some basic properties such as the representation theorem and closure under
polynomial operations. In section 4 we show that M-types are derivable from W-
types, and finally the core of the paper is section 5 where we show that container
types are closed underµ and ν . We close with conclusions and discuss further
work.

2 Background

2.1 The Categorical Semantics of Dependent Types

This paper can be read in two ways (see proposition 2.5):

(1) as a construction within the extensional type theoryMLW ext (see Aczel,
1999) with finite types, W-types, a proof oftrue 6= false and no universes;

(2) as a construction in the internal language of locally cartesian closed categories
with disjoint coproducts and initial algebras of container functors in one
variable — we call theseMartin-L öf categories.

The key idea of this dual view is to regard an objectB∈C/A as afamilyof objects
of C indexed by elements ofA, and to regardA as thecontextin whichB regarded as
a type dependent on Ais defined1 . The details of this construction can be found in
Seely (1984), Streicher (1991), Hofmann (1994, 1997b), Jacobs (1999) and Abbott
(2003); see also Crole (1993) on internal languages. In particular, Seely (1984)
allows us to treat Martin-L̈of type theory (without W-types) as the internal language
of a locally cartesian closed category.

Elementsof A (in a contextU) will be represented by morphismsf :U → A in
C, and substitutionof f for A in B is implemented by pulling backB along f
to f ∗B ∈ C/U . We start to build the internal language by writinga: A ` Ba to
expressB as a typedependenton values inA, and then the result of substitution
along f is written asu:U ` B(f u). When the variablea: A is clear (and can be
elided) we may writeB instead ofBa, and similarlyB(f u) can be written asf ∗B
whenu is elided — thus linking the type theoretic notation directly back to the

1 Note that an important technicality (Hofmann, 1994) means that a typeA ` B cannot
strictly be identified with its display mapπB ∈C/A, instead a single display map may arise
from many isomorphic types. However, to avoid excessive pedantry, in the presentation of
this paper we will identifyC/A with the equivalent category of types overA.

5

underlying categorical interpretation. Thus we can writea: A ` Ba or even just
A ` B for B∈ C/A, occasionally omitting variables from the internal language for
conciseness where practical.

Note that substitution by pullback extends to a functorf ∗ :C/A→ C/U : to simplify
the presentation we will assume that substitution corresponds precisely to a choice
of pullback, but for a more detailed treatment of the issues involved see Bénabou
(1985), Hofmann (1994) and Abbott (2003).

Termsof type a: A ` Ba correspond toglobal sectionsof B, which is to say
morphismst : 1→ B in C/A. In the internal language we writea: A ` ta : Ba for
such a morphism inC. We will occasionally writet for ta whena is elided. Given
objectsa: A ` Baanda: A ` Cawe will write a: A ` f a: Ba→Ca for a morphism
in C/A, and similarly we writea: A ` f a: Ba∼= Ca for an isomorphism.

The morphism inC associated withB∈C/A will be written asπB : ∑AB→ A (this
is also known as thedisplay mapfor B); the transformationB 7→∑ABbecomes a left
adjoint functor∑A a π∗B, where pulling back alongπB plays the role ofweakening
with respect to a variableb : Ba in contexta: A. In the type theory we will write
∑AB∈C as∑a: A.Ba, or more concisely∑AB, with elementsΓ ` (t,u) :∑a: A.Ba
corresponding to elementsΓ ` t : A andΓ ` u: Bt.

The equality type a,b: A ` a = b is represented as an object ofC/A×A by the
diagonal morphismδA : A→ A×A, and more generallyΓ,a,b: A ` a = b. Write
refla :a = a. Note that we work with an extensional type theory where equality
in the type theory coincides with equality of morphisms inC. We believe that
our development could also be implemented in an intensional system (Martin-Löf,
1974; Nordstr̈om et al., 1990) by using setoids (Hofmann, 1997a).

We will write Γ,a: A,b: Ba ` C(a,b) or just Γ,A,B ` C as a shorthand for
Γ,(a,b) : ∑AB ` C(a,b). For non-dependentΣ-types we writeA×B ≡ ∑Aπ∗AB.
Local cartesian closed structure onC allows right adjoints to weakeningπ∗A a∏A
to be constructed for everyΓ ` A; we write the type expressionΓ ` ∏a: A.Bb for
the objectΓ ` ∏AB derived fromΓ,A ` B. For non-dependent∏-types we use the
notationsA→ B≡∏Aπ∗AB and occasionallyBA≡ A→ B.

Thus we can interpret the language of the dependently typed lambda calculus as the
internal languageof a locally cartesian closed category: this is captured in Abbott
(2003, proposition 3.3.5) and is the basis of the claim in Seely (1984, theorem
6.3) that locally cartesian closed categories are equivalent to Martin-Löf theories
(without W-types). As pointed out by Hofmann (1994) this claim is not strictly
accurate2 : a more careful treatment requires the machinery of fibrations.

2 The problem is that substitution cannot be identified with taking pullbacks unless this
operation can be made strictly associative, which is not in general possible. The details of
this problem and its solution are covered in detail in Hofmann (1994) and in chapters 2 and

6

For coproducts in the internal language to behave properly, in particular for
containers to be closed under products, we require thatC havedisjoint coproducts:
the pullback of distinct coprojectionsA inl //A+B Binroo into a coproduct is
always the initial object 0. When this holds the functorC/A+B→ (C/A)× (C/B)
takingA+B ` C to (A ` inl∗C, B ` inr∗C) is an equivalence: write− ◦+− for the
inverse functor. Thus givenA ` B andC ` D (with display mapsπB andπD) we
write A+C ` B ◦+D for their disjoint sum, and we can see thatπB ◦+D

∼= πB+πD as
objects ofC/A+C, whereπB +πD : ΣAB+ΣCD→ A+C is a sum of morphisms.

For the development of finite disjoint coproducts it is actually sufficient to introduce
only 0 and disjoint Bool= 1+1 with constantstrue andfalse corresponding to the
two coprojections. In the Type Theory disjointness corresponds to having a constant
disjoint :(true = false)→ 0. Given this we can encode arbitrary coproducts as
A+B = ∑b: Bool.((b = true)→ A)× ((b = false)→ B).

We write ∏i∈I Ai and∑i∈I Ai for finite products and coproducts (with projections
π j : ∏i∈I Ai → A j and coprojectionsinl j : A j → ∑i∈I Ai for j ∈ I) indexed by a finite
setI , and we write a disjoint finite sum of families as∑i∈I Ai ` ◦

∐
i∈I Bi .

The following lemma collects together some useful identities which hold in any
category considered in this paper.

Lemma 2.1 For locally cartesian closedC with disjoint coproducts the following
isomorphisms hold (IC stands forintensional choice, Cu for Curry and DC for
disjoint coproducts):

∏a: A. ∑b: Ba. C(a,b)∼= ∑ f : ∏a: A.Ba. ∏a: A. C(a, f a) (IC1)

∏i∈I ∑b: Bi . Cib∼= ∑a: ∏i∈I Bi . ∏i∈I Ci(πia) (IC2)

∏a: A. (Ba→C)∼=
(
∑a: A. Ba

)
→C (Cu1)

∏i∈I (Bi →C)∼=
(
∑i∈I Bi

)
→C (Cu2)(

◦
∐

i∈I
Bi

)
(inli a)∼= Bia (DC1)

∑i∈I ∑a: Ai . C(inli a)∼= ∑a: ∑i∈I Ai . Ca (DC2) 2

We will need to make some explicit use of the machinery of fibrations, so recall
(Bénabou, 1975, 1985; Paré and Schumacher, 1978; Borceux, 1994; Jacobs, 1999;
Abbott, 2003) that a(split) fibration3 E over a categoryC is given by assigning

3 of Abbott (2003), and is related to the observations in footnotes 1 and 3.
3 More generally a(cloven) fibration is defined by relaxing the equations between
reindexing functors to natural isomorphisms together with coherence equations; however,
we can regard all the fibrations in this paper (the categoryC fibred over itself and itsI -
fold productCI) as split via the technique described in Hofmann (1994). Similarly we will
without further comment take our fibred functors and natural transformations to be split.

7

to each objectΓ ∈ C a categoryEΓ, the fibre over Γ, together with for each
morphismγ : ∆→ Γ in C a functorγ∗ :EΓ→ E∆, the reindexing functorover γ,
satisfying equations id∗Γ = idC/Γ and(γ · δ)∗ = δ ∗γ∗. A fibred functor F:D→ E
between fibrationsD andE overC assigns to eachΓ ∈ C a functorFΓ :DΓ→ EΓ
such that for eachγ : ∆→ Γ the equationγ∗FΓ = F∆γ∗ holds. Similarly, afibred
natural transformationα : F →G between fibred functors is a family of natural
transformationsαΓ : FΓ→GΓ such thatγ∗αΓ = α∆γ∗.

Given a (finite) index setI define[CI ,CJ] to be the category offibred functors and
natural transformationsCI → CJ where the fibre ofCI over Γ ∈ C is the I -fold
product(C/Γ)I . Of course, whenJ = 1 we will write this as[CI ,C]; observe also
that[CI ,CJ]∼= [CI ,C]J, and so most of our development can be done withJ = 1.

2.2 W-types and M-types

In Martin-Löf’s Type Theory (Martin-L̈of, 1984; Nordstr̈om et al., 1990) the
building block for inductive constructions is the W-type. Given a family of
constructorsA ` B the typeWa: A.Ba (or WAB) should be regarded as the type
of “well founded trees” constructed by regarding eacha:A as a constructor of arity
Ba.

The standard presentation of W-types in type theory is through one type forming
rule, an introduction rule and an elimination rule, together with an equation. We
refer to Abbott (2003, chapter 2) for the precise rules of the Type Theory we
are using, which are basically standard (see also Aczel, 1999). However, it is
worthwhile to remind the reader of the rules covering W-types, quoting from Abbott
(2003, definition 5.2.1):

Definition 2.2 A type systemhas W-typesiff it has a type constructor

Γ,A ` B
Γ ` WAB

(W-type)

together with a constructor term

Γ, a: A, f : Ba→WAB ` sup(a, f) :WAB (sup)

and an elimination rule

Γ, w :WAB ` Cw
Γ, a: A, f : Ba→WAB, g: ∏b: Ba.C(f b) ` h(a, f ,g) :C(sup(a, f))

Γ, w :WAB ` wrechw :Cw
(wrec)

satisfying the following equation for variables a: A and f: Ba→WAB:

wrech(sup(a, f)) = h(a, f , wrech · f) ,

8

where(wrech · f)b≡ wrech(f b); note that the first argument of this composition is
a dependent function, so this is a special kind of composition.

Note that the elimination rule together with equality types ensures thatwrech is
unique, and it is easy to see that the rule (wrec) implies thatsup is an initial algebra
on WAB for the functorX 7→ ∑a: A.(Ba→ X); it is not much harder to see that
W-types can be constructed from initial algebras (Abbott, 2003, theorem 5.2.2).
Moerdijk and Palmgren (2000) show that the global version of W-types implies the
existence of W-types in each slice. Functors of this form play a special role in this
paper: the following definition is justified in definition 3.2 and its sequel.

Definition 2.3 A functor F:C→ C is a container functoriff it is naturally
isomorphic to a functor of the form X7→ ∑a: A.(Ba→ X), or more concisely
∑A(B→ X), for some family À B in C, i.e., objects A∈ C and B∈ C/A.

We consider that the existence of initial algebras for container functors summarises
the essence of Martin-L̈of’s Type Theory (without universes) from a categorical
perspective, hence the following definition.

Definition 2.4 A Martin-Löf categoryis a locally cartesian closed category with
disjoint coproducts and initial algebras for container functors, in other words
closed under the formation of W-types.

Thus the relation between Martin-Löf categories and the syntax of type theory
can be summarized by the following proposition, the proof of which is implicit
in Abbott (2003).

Proposition 2.5 Extensional dependent type theory with Sigma-types, Pi-types, W-
types, a proof oftrue 6= false and no universes is the internal language of Martin-Löf
categories. 2

Dually, we introduce M-types as the terminal coalgebras of container functors.
There is no standard representation of M-types in type theory, indeed the elegant
unification of primitive recursion and induction does not dualise easily; thus the
following definition is purely categorical. We will see in proposition 4.1 that every
Martin-Löf category has M-types.

Definition 2.6 A locally cartesian closed category hasM-types iff it has
final coalgebras for container functors. The M-type for a container functor
of the form X 7→ ∑a: A.(Ba→ X) will be written as MAB with coalgebra
sup−1 :MAB→ ∑A(B→MAB).

Note that the M-type coalgebrasup−1 is, as its name suggests, the inverse of a
constructorsup. This means that for both W- and M-types the constructor is written
as sup; where it is necessary to distinguish them we will writesupµ and supν

respectively.

9

We know that W-types exist in toposes with a natural numbers object (Moerdijk and
Palmgren, 2000, proposition 3.6) and in categories which are both locally cartesian
closed and locally accessible (Abbott et al., 2003a, theorem 6.8). Moreover, W-
types exist in models of Type Theory based on realisability such as the categories
ω-Setof ω-sets andPER of partial equivalence relations onN (equivalent to the
full subcategory ofω-Set of modestsets). See Jacobs (1999) for the definitions
of ω-Set and PER and the verifications that they are locally cartesian closed
(Jacobs, 1999, ex. 1.2.7); the fact that W-types exist can be seen by modifying
the construction in Altenkirch (1993, pp 79–80). It is easy to see that coproducts in
these categories are disjoint and hence we have:

Proposition 2.7 ω-SetandPER are Martin-Löf categories. 2

On the other hand, note that both these categories lack coequalisers and most
infinite limits. In particularω-limits do not in general exist inω-Setor PER: it’s
easy to see that∏n∈N 2 must have 2N elements, but all objects inPER are countable
so it can’t be an object ofPER. The limit in ω-Set, if it exists, is modest and hence
would correspond to an object inPER.

2.3 Strictly positive types

Strictly positive types can be inductively defined as follows.

Definition 2.8 A strictly positive type inn variables(Abel and Altenkirch, 2000) is
a type expression (with type variables X1, . . . ,Xn) built up inductively according to
the following rules:

• if K is a constant type (i.e. one with no type variables) then K is a strictly positive
type;

• each type variable Xi is a strictly positive type;
• if F, G are strictly positive types then so are F+G and F×G;
• if K is a constant type and F a strictly positive type then K→ F is a strictly

positive type;
• if F is a strictly positive type in n+1 variables thenµX. F andνX. F are strictly

positive types in n variables (for X any type variable).

Define anon-inductivestrictly positive type to be built up inductively as above
without any application ofµ or ν : from constant types K, variables X, products×,
coproducts+ and function types from a constant type K→−.

As we will show, non-inductive strictly positive types can be interpreted in any
locally cartesian closed category with disjoint coproducts (this already follows from
Dybjer, 1997) and (general) strictly positive types can be interpreted in any Martin-
Löf category.

10

3 Basic Properties of Containers

Throughout this section we will take as given a locally cartesian closed categoryC
with finite disjoint coproducts. We will now introduce the category of containers
G equipped with its interpretation orextensionfunctor J−K :G → [C,C]. When
constructing fixed points it is also necessary to take account of containers with
parameters, so we defineJ−K :GI → [CI ,C] for each parameter index setI . For the
purposes of this paper the index setI can be assumed to be finite, but in fact this
makes little difference. Indeed, it is straightforward to generalise the development
in this paper to the case where containers are parameterised byinternal index
objectsI ∈ C; whenC has enough coproducts nothing is lost by doing this, since
CI ' C/∑i∈I 1. This generalisation will be important for future developments of
this theory, but is not required in this paper.

Definition 3.1 Given an index set I define thecategory of containers inI
parametersGI as follows:

• Objects are pairs
(
A∈ C, B∈ (C/A)I

)
; write this as(A . B) ∈ GI .

• Morphisms (A . B) → (C . D) are pairs (u, f) for u: A→C in C and
f : (u∗)ID→ B in (C/A)I .

Thus a container in one parameter is just a familyA ` B, while a container inI
parameters consists of a single shapeA together with a family of positionsA ` Bi

for eachi ∈ I .

A container(A . B) ∈ GI can be written using type theoretic notation as a pair` A
and i : I , a: A ` Bia, and similarly a morphism(u, f) : (A . B)→ (C . D) can be
written as a pair̀ u: A→C andi : I , a: A ` fia: Di(ua)→ Bia.

Finally, each(A . B) ∈ GI , thought of as a syntactic presentation of a datatype,
generates a fibred functorJA . BK :CI → C which is its semantics.

Definition 3.2 Define the container extension functorJ−K :GI → [CI ,C] as
follows. Given(A . B) ∈ GI and X∈ CI define

JA . BKX ≡∑a: A. ∏i∈I (Bia→ Xi) = ∑A∏I (B→ X) ,

and for (u, f) : (A . B)→ (C . D) define Ju, f K : JA . BK→ JC . DK to be the
natural transformation with componentsJu, f KX : JA . BKX→ JC . DKX defined
thus:

(a,g) : JA . BKX ` Ju, f KX (a,g)≡ (ua, (gi · fi)i∈I) .

Say that a functorF :CI → C is acontainer functorif it is naturally isomorphic to
a functor of the formJA . BK for some container(A . B) (see also definition 2.3).

11

The following proposition follows from the construction ofJ−K as a type
expression: thatJFK is fibred means that for anyΓ ` X we can constructΓ ` JFKX,
and that given any substitutionγ : ∆→ Γ we can writeγ∗(JFKX) = JFK(γ∗X). This
is simply a categorical statement of the fairly obvious observation that substitution
throughJFK works.

Proposition 3.3 For each container F∈ GI and each container morphism
α : F →G the functorJFK and natural transformationJαK are fibred overC. 2

By making essential use of the fact that the natural transformations in[CI ,C] are
fibred we can show thatT is full and faithful.

Theorem 3.4 (Representation)The functorJ−K :GI → [CI ,C] is full and faithful.

PROOF. To show that J−K is full and faithful it is sufficient to lift
each natural transformationα : JA . BK→ JC . DK in [CI ,C] to a map
(uα , fα) : (A . B)→ (C . D) in GI and show this construction is inverse toJ−K.

Given α : JA . BK→ JC . DK define` ≡ (a, idBa) : JA . BKB in the contexta: A
— that is to say, construct̀ : 1→ JA . BKB in the fibre C/A. As the natural
transformationα is fibred, it localises toαB : JA . BKB→ JC . DKB in C/A and
so we can computeA ` αB` : JC . DKB = ∑C ∏I (D→ B); write this asαB` =
(uα , fα), whereuαa:C and fαa: ∏i∈I (Di(uαa)→ Bia) in contexta: A.

Thus(uα , fα) can be understood as a morphism(A . B)→ (C . D) in GI , so we
have a construction[CI ,C](JA . BK ,JC . DK)→GI ((A . B), (C . D)); it remains
to show that this is inverse to the action of the functorJ−K.

For α = Ju, f K, evaluateαB` = (ua, id · f) = (u, f). In the opposite direction, to
show thatα = Juα , fαK, let X ∈ CI , a: A andg : ∏i∈I (Bia→ Xi) be given, consider
the diagram

1 ` //

(uαa, fαa) ''PPPPPPPPPPPPPP JA . BKB
JA . BKg //

αB
��

JA . BKX

αX
��

JC . DKB
JC . DKg

// JC . DKX

in C/JA . BKX

and evaluate

αX(a,g) = αX((JA . BKg)`) = (JC . DKg)(αB`) = (JC . DKg)(uαa, fαa)
= (uαa, g· fαa) = Juα , fαKX (a,g) .

This shows thatα = Juα , fαK as required. 2

12

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are preciselynm

polymorphic functionsXn→ Xm: the data typeXn is the container(1 . n) and
hence there is a bijection between polymorphic functionsXn→ Xm and functions
m→ n. Similarly, any polymorphic function ListX → ListX can be uniquely
written as a functionu:N→ N together with for each natural numbern : N, a
function fn : un→ n.

It turns out that eachGI inherits products and coproducts fromC, and thatJ−K
preserves them:

Proposition 3.5 If C has finite products and coproducts thenGI has finite products
and coproducts and they are preserved byJ−K.

PROOF. SinceJ−K is full and faithful we can reflect the construction of products
and coproducts alongJ−K, by showing that products and coproducts of objects in
[CI ,C] in the image ofJ−K are themselves in the image ofJ−K.

Products.Let (Ak . Bk)k∈K be a family of objects inGI and compute

∏k∈K JAk . BkKX = ∏k∈K ∑a: Ak. ∏i∈I (Bk,ia→ Xi)
∼= ∑a: ∏k∈K Ak. ∏k∈K ∏i∈I (Bk,i(πka)→ Xi)

∼= ∑a: ∏k∈K Ak. ∏i∈I

((
∑k∈K Bk,i(πka)

)
→ Xi

)
=

r
∏k∈K Ak . ∑k∈K(π∗k)IBk

z
X

showing by reflection alongJ−K that

∏k∈K(Ak . Bk)∼=
(
∏k∈K Ak . ∑k∈K(π∗k)IBk

)
=

(
a: ∏k∈K Ak . ∑k∈K Bk(πka)

)
.

Coproducts.Given a family (Ak . Bk)k∈K of objects in GI calculate (making
essential use of disjoint coproducts):

∑k∈K JAk . BkKX = ∑k∈K ∑a: Ak. ∏i∈I (Bk,ia→ Xi)

∼= ∑k∈K ∑a: Ak. ∏i∈I

((
◦

∐
k′∈K

Bk′,i

)
(inlk a)→ Xi

)
∼= ∑a: ∑k∈K Ak. ∏i∈I

((
◦

∐
k∈K

Bk,i

)
a→ Xi

)
=

r
∑k∈K Ak .

(
◦

∐
k∈K

Bk,i

)
i∈I

z
X

showing by reflection alongJ−K that

∑k∈K(Ak . Bk)∼=
(
∑k∈K Ak . ◦

∐
k∈K

Bk

)
. 2

13

Given containersF ∈GI+1 andG∈GI we can compose their extensions to construct
the functor

JFK [JGK]≡ (CI (idCI ,JGK) //CI ×C∼= CI+1 JFK //C) .

Writing this equation asJFK [JGK]~X = JFK(~X,JGK~X) we can see that this defines a
form of substitution in one variable.

This substitution lifts to a functor−[−] :GI+1×GI → GI as follows. For a container
in GI+1 write (S . P,Q) ∈ GI+1, whereP∈ (C/S)I andQ∈ C/Sand define:

(S . P,Q)[(A . B)]≡
(

s: S, f : Qs→ A .
(
Pis+∑q: Qs. Bi(f q)

)
i∈I

)
.

In other words, given type constructorsF(~X,Y) andG(~X) this construction defines
the composite type constructorF [G](~X)≡ F(~X,G(~X)).

Proposition 3.6 Substitution of containers commutes with substitution of functors
thus:JFK [JGK]∼= JF [G]K.

PROOF. Calculate (for conciseness we write exponentials using superscripts
where convenient and elide the variables: S throughout):

JS . ~P,QK
[
JA . BK

]
X

= ∑S

((
∏i∈I XPi

i

)
×

(
Q→∑a: A. ∏i∈I XBia

i

))
∼= ∑S

((
∏i∈I XPi

i

)
×

(
∑ f : AQ. ∏q: Q. ∏i∈I XBi(f q)

i

))
∼= ∑S∑ f : AQ. ∏i∈I

(
XPi

i ×∏q: Q. XBi(f q)
i

)
∼= ∑S∑ f : AQ. ∏i∈I

((
Pi +∑q: Q. Bi(f q)

)
→ Xi

)
∼= J(S . ~P,Q)[(A . B)]KX .

As all the above isomorphisms are natural inX we get the desired isomorphism of
functors. 2

This shows how composition of containers captures the composition of container
functors. More generally, it is worth observing that a composition of containers
of the form−◦− :GI ×G I

J → GJ reflecting composition of functorsCJ→ CI → C
can also be defined making containers into a bicategory with 0-cells the index sets
I and the category of homs fromI to J given by the container categoryG J

I (Abbott,
2003, proposition 4.4.4).

A canonical form for terms of typeJFK [JGK]X ∼= JF [G]KX will be helpful later on.
Observe that either side of this isomorphism can be written asθ(s, f ,g,h) for some

14

suitable and easy to compute isomorphismθ , with components of the following
types:

s: S f : Qs→ A g: Ps→ X h: ∏q: Qs.(B(f q)→ X) . (1)

Now we look at the treatment of type variables — this gives us a notion of
weakening of containers as type expressions. First note that every type variable
Xi can be regarded as a container.

Proposition 3.7 Every projection functorπi :CI → C defined byπi~X ≡ Xi for each
i ∈ I is a container functor.

PROOF.
q
1 . (i = j) j∈I

y
~X ∼= ∏ j∈I ((i = j)→ Xj)∼= Xi . 2

Given a type expressionF(X1, . . . ,Xn) in n variables and a variable renaming
function f : n→m we can construct a type expressionF(Xf 1, . . . ,Xf n) in m
variables. This construction extends to containers in an obvious way.

Proposition 3.8 Each function f: I → J lifts to a functor ↑ f :GI → GJ withq
↑ f F

y
X ∼= JFK(X ◦ f), where we regard X as a functor J→ C.

PROOF. Define↑ f (A . ~B)≡ (A . (∑i∈I (f i = j)×Bi) j∈J) and calculate

r
↑ f (A . ~B)

z
X = ∑a: A. ∏ j∈J

((
∑i∈I (f i = j)×Bia

)
→ Xj

)
∼= ∑a: A. ∏ j∈J ∏i∈I (((f i = j)×Bia)→ Xj)
∼= ∑a: A. ∏i∈I (Bia→ Xf i) = JA . ~BK(X ◦ f) . 2

For example, in the special case of weakening a container(A . B) in n variables
by adding one variable in the final position we obtain↑(A . B) = (A . B′) where
B′i ≡ Bi for i ≤ n andB′n+1≡ 0. More generally we can weaken along any inclusion
f : I � J of variables transforming(A . B) into (A . B′)≡↑ f (A . B) whereB′f i =
Bi andB′j = 0 otherwise. We will normally leave such weakenings implicit.

Similarly, we can write↑K ≡ ↑¡I K ∼= (K . 0) ∈ GI (where ¡I : 0→ I) for what can
sensibly be called aconstant container— its extension is a constant functor equal
to K. We can now show that containers are closed under exponentiation by constant
containers.

Proposition 3.9 Containers are closed under exponentiation by constant contain-
ers, and this is preserved byJ−K: given F∈ GI thenJ↑K→ FKX ∼= K→ JFKX.

15

PROOF. Let F = (A . B) and calculate

K→ JFKX = K→∑a: A. ∏i∈I (Bia→ Xi)
∼= ∑ f : K→ A. ∏k : K. ∏i∈I (Bi(f k)→ Xi)
∼= ∑ f : K→ A. ∏i∈I

((
∑k : K. Bi(f k)

)
→ Xi

)
=

r
f : K→ A .

(
∑k : K. Bi(f k)

)
i∈I

z
X .

If we now define↑K→ F ≡
(

f : K→ A . (∑k : K.Bi(f k))i∈I

)
(or write this as just

K → F) then by reflection alongJ−K and the isomorphismJGK×K ∼= JG×↑KK
(for anyG∈ GI) we can see thatK→ F is the required exponential. 2

The following proposition is now an obvious consequence of the constructions and
results in this section; this is basically a reformulation of the main result of Dybjer
(1997) using the language of containers.

Corollary 3.10 Every non-inductive strictly positive type F in n variables can be
interpreted as an n-ary containerLFM ∈ Gn (and an n-ary functorJLFMK :Cn→ C)
such thatLKM = K, LF +GM = LFM+LGM, LF×GM = LFM×LGM, LK→FM = K→ LFM
andJLXiMK(X1, . . . ,Xn) = Xi . 2

4 Constructing M-types from W-types

If we assumeC to have enough infinite limits, in particular to be closed under the
formation ofω-limits, then it is easy to see that M-types exist: writingT ≡ JS . PK
construct theω-limit

1 T1oo · · ·oo Tn1oo · · ·oo lim←−n∈N Tn1 ,oo (2)

then asT preservesω-limits (indeedT preserves all connected limits since the
functor ∑S also does) it is a well known result (e.g. Poigné, 1992) thatνT ≡
lim←−n∈N Tn1 is a final coalgebra. This approach was taken in Abbott et al. (2003a)
and Abbott (2003).

In the present treatment we do not wish to assume the existence ofω-limits: recall
that the Martin-L̈of categoriesω-Set andPER do not haveexternalω-limits of
the form (2), and the same problem applies to the effective topos. One possible
approach is to construct the familyn:N ` Tn1 as a family inC together with
an internal representation of the restriction morphismsTn+k1→ Tn1 and take its
internal limit, which certainly does exist. We do not do this in this paper, as the
necessary machinery is not developed here.

16

However, we can use this (internal) limit construction to understand the
construction in the present paper. Each projectionπn : νT→ Tn1 takes a potentially
infinite tree and truncates it to depthn; such truncated trees can be expressed
as elements of the W-typêM ≡ µX. 1+TX. Writing ⊥ and sup for the
two components of the constructor 1+TM̂→ M̂, we can define an inclusion
in : Tn1 � M̂ inductively with i0≡⊥ andin+1(s, f)≡ sup(s, in · f).

This means that the family of compositesin ·πn can be understood as a morphism
N×νT→ M̂, or equivalently, a morphismνT→ M̂N: this last morphism turns
out to be a regular monomorphism. Each infinite tree inνT is represented as an
evolving family of finite truncated trees, and it is clear thatf :N→ M̂ is in νT only
if f n is a truncation off (n+1). Correctly captured, this turns out to be the defining
equation forνT as a regular subobject of̂MN.

Thus we get the following proposition.

Proposition 4.1 Every Martin-L̈of category is closed under the formation of M-
types, that is, every unary container functor has a final coalgebra.

PROOF. Let A ` B be the family for whichMAB ≡ νX. JA . BKX is to be
constructed; for conciseness, writeTX≡ JA . BKX = ∑AXB throughout this proof.
DefineM̂ ≡ µX. 1+TX, writing⊥ : M̂ andsup : TM̂→ M̂ for the two components
of the initial algebra 1+TM̂→ M̂. The idea of this proof is to represent an element
m : MAB by a family of functionsm:N→ M̂ where eachmn : M̂ represents the
infinite treem truncated at depthn: the value⊥ represents points where the tree
has been cut off.

We can construct aT-algebraα : T(M̂N)→ M̂N by cases overN:

α0(a, f)≡⊥ αn+1(a, f)≡ sup(a, fn) ,

with variablesa: A and f : Ba→ M̂N. We definefn ≡ λb: Ba.(f b)n — it will be
convenient to use this convention for the parametern throughout this proof. The
morphismα will later restrict to the inverse to the final coalgebra forMAB.

Let β : X→ TX be any givenT-coalgebra; writing the components ofβx asβ0x:A
andβ1x : B(β0x)→ X constructβ : X→ M̂N by induction overN:

β 0x≡⊥ β n+1x≡ sup(β0x, β n ·β1x) .

17

Observe thatβ makes the diagram

TX

Tβ
��

X
βoo

β
��

T(M̂N)
α

// M̂N

(3)

commute:

α0(Tβ (βx)) =⊥= β 0x

αn+1(Tβ (βx)) = αn+1(Tβ (β0x,β1x)) = αn+1(β0x, β ·β1x)

= sup(β0x,(β ·β1x)n) = sup(β0x, β n ·β1x) = β n+1x .

Furthermore,β is the uniquemorphism making (3) commute: letg also satisfy
g = α ·Tg·β , then

g0x = α0(Tg(βx)) =⊥= β 0x
gn+1x = αn+1(Tg(βx)) = αn+1(Tg(β0x,β1x)) = αn+1(β0x, g·β1x)

= sup(β0x, gn ·β1x) = sup(β0x, β n ·β1x) = β n+1x .

This shows that for every coalgebraβ : X→ TX there exists a unique morphism
β : X→M satisfying the equationα ·Tβ ·β = β .

Note however thatα is not an isomorphism, and in particular there is no suitable
coalgebra onM̂N: to construct the final coalgebra we need to defineM ↪→ M̂N to
be the subobject of “well-formed” sequences of trees. To do this we would like to
construct atruncationmorphismN ` M̂→ M̂ +1 with component atn :N cutting
off elements ofM̂ to depthn — the extra value in the codomain represents the result
of truncating a tree where⊥ occurs anywhere in the body of the cut off tree.

In practice it is necessary to defineM ≡ µX. 1+TX+1 with algebra components
written⊥, sup and? respectively and to construct trunc :M̂→M

N
. This is because

the question of whether⊥ occurs at an appropriate depth is in general undecidable,
so the simpler form of trunc as a morphism intôM + 1 discussed above is not
implementable.

Define trunc :M→M
N

by induction overM andN by the following clauses:

trunc0x≡⊥ truncn+1⊥≡ ?

truncn+1(sup(a, f))≡ sup(a, truncn · f) truncn+1?≡ ? .

Note that the construction of trunc is an instance of W-type induction with algebra
[u;v;w] : 1+T(MN)+1→M

N
defined by induction overN with u0 ≡ v0(a, f) ≡

w0≡⊥, un+1≡ wn+1≡ ? andvn+1(a, f)≡ sup(a, fn).

18

There is an obvious inclusionι : M̂ ↪→M defined inductively by:

ι⊥≡⊥ ι(sup(a, f))≡ sup(a, ι · f) .

Finally define trunc≡ trunc·ι which therefore satisfies equations:

trunc0x = ι⊥ truncn+1(sup(a, f)) = sup(a, truncn · f) .

We can now say thatm: M̂N is “well-formed” iff eachmn is a truncation to depthn
of all the larger treesmn+k, which can be captured as∀n:N.(ιmn = truncnmn+1).
So define

M ≡∑m: M̂N. ∏n:N. (ιmn = truncnmn+1) , (4)

describing a regular subobject of̂MN. Note that for(a, f) : TM the equation above
translates into the equationι · fn = truncn · fn+1; this can be used to show thatα

restricts toα : TM→M, ie ι(αnx) = truncn(αn+1x) for x : TM, thus:

ι(α0(a, f)) = ι⊥= trunc0(α1(a, f))
ι(αn+1(a, f)) = ι(sup(a, fn)) = sup(a, ι · fn) = sup(a, truncn · fn+1)

= truncn+1(sup(a, fn+1)) = truncn+1(αn+2(a, f)) .

For the rest of this proof we’ll writeα for the restricted morphismα : TM→M.
The morphismβ constructed from a coalgebraβ also factors throughM ↪→ M̂N:

ι(β 0x) = ι⊥= trunc0(β n+1x)

ι(β n+1x) = ι(sup(β0x, β n ·β1x)) = sup(β0x, ι ·β n ·β1x)

= sup(β0x, truncn ·β n+1 ·β1x) = truncn+1(sup(β0x, β n+1 ·β1x))

= truncn+1(β n+2x)

showing thatι ·β n = truncn ·βn+1. Now writing β : X→M we can see thatβ is still
the unique solution to the equationβ = α ·Tβ ·β ; to complete the proof it remains
to show thatα is an isomorphism.

By definition (4) a termm: M satisfies the equationιmn+1 = truncn+1mn+2; by
disjointness of coproducts and the definition of truncn+1 we can see that this equa-
tion must be of the formιmn+1 = sup(a, truncn · fn+1)) = truncn+1(sup(a, fn+1)) =
truncn+1mn+2 for someaand fn+1. We can therefore writemn+1 = sup(a, fn) where
fn satisfies the equationι · fn = truncn · fn+1. By definingα ′m≡ (a, f) we obtain a
morphismα ′ : M→ TM.

Now α ′(α(a, f)) = (a′, f ′) wheresup(a′, f ′n) = αn+1(a, f) = sup(a, fn), showing
thatα ′ ·α = idTM. Conversely, writingα ′m= (a, f) wheremn+1 = sup(a, fn) and

19

ι · fn = truncn · fn+1 we can show thatα(α ′m) = m:

ι(α0(α ′m)) = ι⊥= trunc0m1 = ιm0

ι(αn+1(α ′m)) = ι(αn+1(a, f)) = ι(sup(a, fn)) = sup(a, ι · fn))
= sup(a, truncn · fn+1) = truncn+1(sup(a, fn+1))
= truncn+1mn+2 = ιmn+1 .

Thusα ′ = α−1 and we see thatM is a final coalgebra forJA . BK. 2

5 Inductive and Coinductive Containers

Throughout this section takeC to be a Martin-L̈of category. Here we will show that
the interpretation of non-inductive strictly positive types in containers (corollary
3.10) extends to the full range of strictly positive types (corollary 5.5). More
generally, we will show that ifF(~X,Y) is a container functorF :CI+1→ C then
the fixed pointsµY. F(~X,Y) andνY. F(~X,Y) are also container functorsCI → C.

Note that throughout this section we treatµ andν as partial operators on functors,
taking an endofunctorF to (the object part of) its initial algebraµF and its
final coalgebraνF , where these objects exist — note that these constructions
are necessarily functorial. We also indulge in some obvious abuse of notation,
constructing for example a functorµF :D→ C from a functorF :D×C→ C and
using a notation with variables to describe these. It is not until corollary 5.5 that we
link this notation explictly to the syntax of strictly positive types.

Now letF = (S . P,Q) ∈ GI+1 be a container inI +1 parameters with extension

JFK(~X,Y)≡ JS . P,QK(~X,Y)

= ∑s: S.
(
∏i∈I (Pis→ Xi)

)
× (Qs→Y) .

To show thatµY. JFK(~X,Y) andνY. JFK(~X,Y) are container functors with respect
to ~X we need to computeI -indexed containers(Aµ . Bµ) and(Aν . Bν) such thatq
Aµ . Bµ

y
~X ∼= µY. JFK(~X,Y) andJAν . BνK~X ∼= νY. JFK(~X,Y). Clearly we can

calculate

Aµ
∼=

q
Aµ . Bµ

y
1∼= µY. JFK(1,Y)∼= µY. JS . QKY ∼= WSQ

Aν
∼=

q
Aν . Bν

y
1∼= νY. JFK(1,Y)∼= νY. JS . QKY ∼= MSQ ,

but the construction ofWSQ ` Bµ and MSQ ` Bν will involve the inductive
construction of families; we will show how to construct these families using W-
types in proposition 5.2 below.

20

In the rest of this section we will simplify the presentation by ignoring the index
setI and writingP→ X for ∏i∈I (P→ Xi). In particular, this means that the family
B∈ (C/A)I will be treated uniformly (as ifI = 1). It is a straightforward exercise
to generalise the development to arbitrary index sets. We will therefore take

JFK(X,Y)≡∑s: S. (Ps→ X)× (Qs→Y) .

For any containerG≡ (A . B) we can calculate the substitution

F [G] = (S . P,Q)[(A . B)] =
(
s: S, f : Qs→ A . Ps+∑q: Q. B(f q)

)
.

This can be written more concisely as
(
S,AQ . P+∑Qε∗B

)
, whereε : AQ×Q→ A

is the evaluation map. Observe now that any fixed pointψ : JS . QKA∼= A induces
an isomorphism of positions betweenF [G] andG, or equivalently an isomorphism
ψ : JF [G]K1∼= JGK1 and it is clear that any fixed pointF [G]∼= G which agrees with
ψ must be of the form(ψ,ϕ−1) : F [G]→G for some family of isomorphisms

s: S, f : Qs→ A ` ϕs, f : Ps+∑q: Q. B(f q)∼= B(ψ(s, f)) . (5)

More generally it will be useful to require that(B,ϕ) form aninitial family overψ.

Definition 5.1 An initial family over a fixed pointψ : JS . QKA∼= A is defined to
be an initial algebra for the functorC/A→ C/A taking X toψ−1∗(P+∑Qε∗X).

In other words, a familyA ` B is initial overψ if it is equipped with a morphism
ϕ : P+∑Qε∗B→ ψ∗B, as in (5) above, which is initial in the category of such
families and morphisms. It turns out that such initial families always exist.

Proposition 5.2 Given a container F≡ (S . P,Q) ∈ GI+1 and an object A∈ C
equipped with a fixed pointψ : JS . QKA∼= A there exists an initial family
A ` PosP,ψ overψ for the functor X7→ P+∑Qε∗X.

PROOF. Write S,AQ ` ϕ : P+∑Qε∗B→ ψ∗B for the initial family to be
constructed. Note that the functorB 7→ P+ ∑Qε∗B is not a container functor, so
we cannot directly appeal to W-types to construct this fixed point; thus the first step
is to create a fixed point equation that wecan solve. Begin by “erasing” the type
dependency ofB and construct (observing that∑QY ∼= Q×Y, etc.)

B̂≡ µY. ∑S∑AQ (P+Q×Y)∼= µY.
(
∑S(A

Q×P)+
(
∑S(A

Q×Q)
)
×Y

)
∼= List

(
∑S(A

Q×Q)
)
×∑S(A

Q×P) ;

there is no problem in constructing arbitrary lists inC and soB̂ clearly exists.

The task now is to select the “well-formed” elements ofB̂. An element of̂B can be
thought of as a putative path through a tree inµY. JFK(X,Y); we wantBa to be the

21

set of all valid paths toX-substitutable locations in the tree.

An element ofB̂ can be conveniently written as a list followed by a tuple thus

([(s0, f0,q0), . . . ,(sn−1, fn−1,qn−1)],(sn, fn, p))

for si : S, fi : Qsi → A, qi : Qsi and p : Psn. The condition that this is a well formed
element ofB(ψ(s0, f0)) can be expressed as then equations

fiqi = ψ(si+1, fi+1) for i < n ,

showing thatB can be captured as a regular subobject ofB̂. That this is indeed the
required initial family is shown in Abbott (2003, proposition 5.5.1). 2

The details of this sketch proof are given in Abbott (2003), or the result can be
derived as a corollary of Gambino and Hyland (2004, theorem 12) by observing
that the functorX 7→ ψ−1∗(P+∑Qε∗X) is a “dependent container functor” (which
they call a “dependent polynomial functor”) and therefore has an initial algebra.

Being initial, ϕ is an isomorphism. WritingG ≡ (A . PosP,ψ) for the container
associated with an initial family, note thatα ≡ (ψ,ϕ−1) is an isomorphism of
containersα : F [G]∼= G, and using the decomposition ofJF [G]KX of (1), see the
discussion following proposition 3.6, we can write the action ofJαKX as

JαKX (s, f ,g,h) = (ψ(s, f),K(g,h))

whereK(g,h) : Pos(ψ(s, f))→ X can be defined by cases thus:

K(g,h)(ϕ(inl p))≡ gp K(g,h)(ϕ(inr(q,b)))≡ hqb . (6)

Above and in the proofs that follow we use the functional programming convention
for brackets thathqb= (hq)b. We can now use initial families to construct initial
and final containers. First initial algebras of containers.

Proposition 5.3 Given a container F≡ (S . P,Q) ∈ GI+1 then

q
WSQ . PosP,supµ

y
~X ∼= µY. JFK(~X,Y) ;

writing µF ≡ (WSQ . PosP,supµ) we can conclude thatJµFK∼= µ JF [−]K.

PROOF. For conciseness writeA≡WSQ, B≡ PosP,sup andG≡ (A . B) through
this proof. First recall thatJFK(X,JGKX) = JFK [JGK]X ∼= JF [G]KX and observe
thatα ≡ (sup,ϕ−1) : F [G]→G is anF [−]-algebra.

22

To show that eachJαKX generates an initialJFK(X,−)-algebra let an algebra
β : JFK(X,Y)→Y be given: we need to constructβ : JGKX→Y uniquely making

JFK(X,JGKX) ∼= JF [G]KX
JαKX //

JFK(X,β)
��

JGKX

β

��
JFK(X,Y)

β
//Y

(7)

commute. Using equation (1) to write the context asθ(s, f ,g,h) : JF [G]KX the
corresponding equation can be computed as

s: S, f : Qs→ A, g: Ps→ X, h: ∏q: Qs.(B(f q)→ X) `
β (sup(s, f),K) = β (s, g, λq. β (f q,hq)) , (8)

where K ≡ K(g,h) is defined as in (6) — we will elide the arguments(g,h)
which are constant through this proof. We can now constructβ : ∑AXB→Y by
W-induction by constructing

a:WSQ ` β (a,−) : (Ba→ X)→Y

and using the W-induction rule wrec. To apply this rule we need to define the
induction stepH taking induction data and returning a value of the above type.
The following type expression turns out to be the appropriate induction step:

s: S, f : Qs→ A, r : ∏q: Qs.((B(f q)→ X)→Y), k : B(sup(s, f))→ X `
H(s, f , r)k≡ β (s,T1(k,−),T2(k, r,−)) ,

whereT1(k, p)≡ k(ϕ(inl p)) andT2(k, r,q)≡ rq(λb.k(ϕ(inr(q,b)))). In the context
of (8) we can computeT1(K, p) = gp andT2(K, r,q) = rq(hq). If we now define
β (a,−)≡ wrecH a then in this context we can compute

β (sup(s, f), K) = wrecH(sup(s, f))K = H(s, f , wrecH · f)K
= β (s, T1(K,−), T2(K, wrecH · f ,−))

= β (s, g, λq.wrecH(f q)(hq)) = β (s, g, λq.β (f q,hq))

which is precisely equation (8), showing thatβ is the required initial morphism and
that indeedJGKX is an initial algebra. 2

Where convenient we will write Posµ ≡ PosP,supµ and Posν ≡ PosP,supν . Note that
the proof above thatJµFK ∼= µ JFK only uses the isomorphismP+∑Qε∗Posµ ∼=
Posµ and makes no use of initiality; this may seem surprising, as we might expect
the isomorphism problem for Posµ to have multiple solutions.

23

This can be explained intuitively by observing that Posµ corresponds to the type
of paths into a finite tree, and consequently there cannot be any infinite paths. This
occurs because the structure of the functorX 7→P+∑Qε∗X respects the structure of
the initial algebrasup, thereby forcing Posµ to be unique. An example of this occurs
in Wraith’s theorem (Johnstone, 1977, theorem 6.19) which treats the special case
WSQ = N.

The corresponding proof forν is more intricate because we now have to exploit the
initiality of the family MSQ ` PosP,supν .

Proposition 5.4 Given a container F≡ (S . P,Q) ∈ GI+1 then

q
MSQ . PosP,supν

y
~X ∼= νY. JFK(~X,Y) ;

writing νF ≡ (MSQ . PosP,supν) we haveJνFK∼= ν JF [−]K.

PROOF. Let A ≡ MSQ, B ≡ PosP,sup and G ≡ (A . B) as before and observe
that α : F [G]→G exists as above and has an inverseα−1 = (sup−1,ϕ). We will
show that each

q
α−1

y
X is a finalJFK(X,−)-coalgebra. Letβ :Y→ JFK(X,Y) be

a coalgebra: we will constructβ :Y→ JGKX uniquely satisfying

β = JαKX · JFK(X,β) ·β . (9)

Write the coalgebraβ :Y→ ∑S(XP×YQ) asβy = (sy,gy,hy) with components

s:Y −→ S g: ∏y:Y.(P(sy)→ X) f : ∏y:Y.(Q(sy)→Y) ,

and similarly writeβ :Y→ ∑AXB asβy = (ay,ky) with componentsa:Y→ A and
k : ∏y:Y.(B(ay)→ X). In contexty:Y equation (9) can be computed as:

(ay,ky) = (sup(sy, a· f y), K(gy, k · f y)) (10)

whereK is defined in (6). It is immediately evident thata is fully determined by
the final coalgebra property ofA = MSQ. To constructk we will need to appeal
to the initial family property ofB: we will work backwards to discover the correct
construction.

First observe thatk can be regarded as a morphismk : a∗B→ X in C/Y, and hence
can be transposed to a morphismk : B→∏aX in C/A — this is in the right form
to construct using the initial family property. We can write∏aX using equality in
contexta′ : A as(∑y:Y.ay= a′)→ X and so we now want to construct

a′ : A ` ka′ : Ba′ −→
((

∑y:Y. ay= a′
)
→ X

)
;

24

this will arise by initiality of families from a suitable morphismK

s′ : S, f ′ : Qs′→ A ` Ps′+∑q: Qs′.
((

∑y:Y. ay= f ′q
)
→ X

)
K //

((
∑y:Y. ay= sup(s′, f ′)

)
→ X

)
.

We can defineKx(y,e) in contexts′ : S, f ′ : Qs′→ A, y:Y ande: ay= sup(s′, f ′) by
the following clauses:

p: Ps′ ` K(inl p)(y,e)≡ gyp

q: Qs′, g′ : (∑y:Y.ay= f ′q)→ X ` K(inr(q,g′))(y,e)≡ g′(f yq, refl f ′q)

where well typedness follows by equality reasoning: firste tells us thatsup(s′, f ′) =
ay= sup(sy, a · f y) and so (assup is an isomorphism)s′ = syand f ′ = a · f y. The
definitions above can now be seen to be well typed by direct computation.

The initial families equation definingk now becomesk ·ϕ = K · (P+ ∑Qε∗k), or
writing it out more fully:

ksup(s′, f ′)(ϕ(inl p))(y,e) = K(inl p)(y,e) = gyp

ksup(s′, f ′)(ϕ(inr(q,b)))(y,e) = K(inr(q,k f ′qb))(y,e) = k f ′qb(f yq, refl f ′q) .

Finally reconstructk from k askyb= kayb(y, reflay). These equations then become

ky(ϕ(inl p)) = gyp= K(gy, k · f y)(ϕ(inl p))
ky(ϕ(inr(q,b)) = k(f yq)b = K(gy, k · f y)(ϕ(inr(q,b)))

showing thatk is indeed uniquely determined to satisfy equation (10), thus
establishing that

q
α−1

y
X is the desired final coalgebra. 2

Note that the construction ofνF only usesinitial families, that is to say, initiality
and not finality of Posν is the required defining property. This can be understood
by observing that although an elementt : MSQ may represent an infinite tree, any
position in Posν t represents afinitepath intot.

Finally observe thatµF is the object of an initial algebra for the substitution functor
F [−] :GI → GI and similarlyνF is the object of a final coalgebra: this follows
by the reflection of propositions 5.3 and 5.4 alongJ−K. The following corollary
summarises the results of this section.

Corollary 5.5 In a Martin-Löf category every strictly positive type F in n variables
can be interpreted as an n-ary containerLFM ∈ Gn such thatLµXn+1. FM = µLFM,
LνXn+1. FM = νLFM, and the interpretations of corollary 3.10 hold. 2

25

6 Conclusions and Further Work

We can summarise the main results of the paper in the following corollary:

Corollary 6.1 Each strictly positive type F in n variables can be interpreted as
an n-ary containerLFM : Gn. Given the interpretation of n-ary strictly positive types
LFM =(A . B), LGM =(C . D) and n+1-ary strictly positive typeLHM =(S . P,Q),
we have the following translation:

LKM = (K . j 7→ 0)
LXiM = (1 . j 7→ (i = j))

LF +GM = (A+C . j 7→ B j
◦+D j)

LF×GM = ((a,c) : A×C . j 7→ B ja+D jc)
LK→ FM =

(
f : K→ A . j 7→∑k : K. B j(f k)

)
LµXn+1. HM = (WSQ . j 7→ PosPj ,supµ)
LνXn+1. HM = (MSQ . j 7→ PosPj ,supν)

In the special case n= 0 this implies that all closed strictly positive types can be
interpreted as objects in any Martin-Löf category. 2

The reader will notice that our definition of strictly positive types is restricted to
a simple type discipline even though we work in a dependently typed setting. A
natural extension of the work presented here would allow the definitions of strictly
positive families which can be interpreted as initial algebras of endofunctors on a
given slice category. We are currently working on this and it seems that W-types,
i.e. Martin-Löf categories, are still sufficient to interpret strictly positive families.
This has important consequences for the implementation of systems like Epigram
(McBride and McKinna, 2004; McBride, 2004) which use schematic inductive
definitions. The correctness of the schemes is currently not checked and is a likely
cause of unsoundness. Using our construction4 we can translate the schematic
definitions into a fixed core theory whose terms can be easily checked.

Nested datatypes (Altenkirch and Reus, 1999; Bird and Paterson, 1999) provide
another challenge: to treat them we would need to represent higher order functors.
However, it is likely that Martin-L̈of categories are still sufficient as a framework.

Another interesting line is to allow quotients of positions to be able to treat types
like Bags, i.e. finite multisets. Indeed this is already present in Joyal’s definition of
analytic functors and can be easily adapted to the category of containers. We have

4 The constructions in this paper depend essentially on extensional equality, while the
current version of Epigram is intensional. However, McBride and Altenkirch are currently
working on an extensional but decidable implementation of Epigram based on Altenkirch
(1999).

26

presented first results in Abbott et al. (2004b). There is an interesting interaction
with our work on derivatives (Abbott et al., 2003b, 2004c), e.g. using quotients we
should be able to prove a version of Taylor’s theorem in a type-theoretic setting.
This construction will take place within a predicative topos with W-types which
extends Martin-L̈of categories by effective quotients.

Acknowledgements

The content of this paper has greatly benefitted from numerous discussions with
our colleagues, in particular: Conor McBride, Benno van den Berg, Peter Dybjer,
Nicola Gambino, Peter Hancock, Martin Hofmann, Martin Hyland and Federico
De Marchi. We would also like to thank the referees for their comments which
have helped to improve this paper.

References

M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.
M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. InProceedings

of Foundations of Software Science and Computation Structures, volume 2620
of Lecture Notes in Computer Science, pages 23–38, 2003a.

M. Abbott, T. Altenkirch, and N. Ghani. Representing nested inductive types
using W-types. InInternational Colloquium on Automata, Languages and
Programming, ICALP, pages 59–71, 2004a.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers.
In 6th International Conference on Typed Lambda Calculi and Applications,
volume 2701 ofLecture Notes in Computer Science, pages 16–30, 2003b.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Constructing polymorphic
programs with quotient types. In7th International Conference on Mathematics
of Program Construction (MPC 2004), number 3125 in Lecture Notes in
Computer Science, pages 2–15, February 2004b.

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride.∂ for data. submitted for
publication, February 2004c.

A. Abel and T. Altenkirch. A predicative strong normalisation proof for aλ -
calculus with interleaving inductive types. InTypes for Proof and Programs,
TYPES ’99, volume 1956 ofLecture Notes in Computer Science, pages 1–18,
2000.

P. Aczel. On relating type theories and set theories.Lecture Notes in Computer
Science, 1657:1–18, 1999.

T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, November 1993.

27

T. Altenkirch. Extensional equality in intensional type theory. In14th Symposium
on Logic in Computer Science, pages 412–420, 1999.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In J. Flum and M. Rodrı́guez-Artalejo, editors,
CSL’99, volume 1683 ofLecture Notes in Computer Science, pages 453–468,
1999.

J. Bénabou. Fibrations petites et localement petites.C. R. Acad. Sc. Paris, 281:
A831–A834, 1975.

J. Bénabou. Fibred categories and the foundations of naive category theory.Journal
of Symbolic Logic, 50(1):10–37, 1985.

R. Bird and R. Paterson. Generalised folds for nested datatypes.Formal Aspects
of Computing, 11(3):200–222, 1999.

F. Borceux. Handbook of Categorical Algebra 2, volume 51 ofEncyclopedia of
Mathematics. Cambridge University Press, 1994.

R. L. Crole.Categories for Types. Cambridge University Press, 1993.
P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s

type theory.Theoretical Computer Science, 176:329–335, 1997.
N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial

functors. In S. Berardi, M. Coppo, and F. Damiani, editors,Types for Proofs
and Programs (TYPES 2003), Lecture Notes in Computer Science, pages 210–
225, 2004.

R. Hasegawa. Two applications of analytic functors.Theoretical Computer
Science, 272(1-2):112–175, 2002.

M. Hofmann. On the interpretation of type theory in locally cartesian closed
categories. InComputer Science Logic, CSL94, pages 427–441, 1994.

M. Hofmann.Extensional Constructs in Intensional Type Theory. Springer, 1997a.
M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and

P. Dybjer, editors,Semantics and Logics of Computation, volume 14, pages 79–
130. Cambridge University Press, 1997b.

P. Hoogendijk and O. de Moor. Container types categorically.Journal of
Functional Programming, 10(2):191–225, 2000.

B. Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier, 1999.

P. T. Johnstone.Topos Theory. Academic Press, 1977.
A. Joyal. Foncteurs analytiques et espèces de structures. InCombinatoire

Énuḿerative, number 1234 in Lecture Notes in Mathematics, pages 126–159.
Springer, 1986.

P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and
J. C. Shepherdson, editors,Proceedings of the Logic Colloquium, pages 73–118.
North-Holland, 1974.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
C. McBride. Epigram: Practical programming with dependent types. Lecture notes

of the Advanced Functional Programming Summerschool in Tartu, Estonia,
2004.

C. McBride and J. McKinna. The view from the left.Journal of Functional

28

Programming, 14(1):16–111, 2004.
I. Moerdijk and E. Palmgren. Wellfounded trees in categories.Annals of Pure and

Applied Logic, 104:189–218, 2000.
B. Nordstr̈om, K. Petersson, and J. M. Smith.Programming in Martin-L̈of ’s Type

Theory. Number 7 in International Series of Monographs on Computer Science.
Oxford University Press, 1990.

R. Paŕe and D. Schumacher. Abstract families and the adjoint functor theorems. In
P. T. Johnstone and R. Paré, editors,Indexed Categories and Their Applications,
number 661 in Lecture Notes in Mathematics, pages 1–125. Springer-Verlag,
1978.

A. Poigńe. Basic category theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 1 of
Handbook of Logic in Computer Science, pages 413–640. Oxford University
Press, 1992.

R. A. G. Seely. Locally cartesian closed categories and type theory.Math. Proc.
Camb. Phil. Soc., 95:33–48, 1984.

T. Streicher.Semantics of Type Theory. Progress in Theoretical Computer Science.
Birkhäuser Verlag, 1991.

D. Turner. Elementary strong functional programming. In R. Plasmeijer and
P. Hartel, editors,First International Symposium on Functional Programming
Languages in Education, number 1022 in Lecture Notes in Computer Science,
pages 1–13. Springer, 1996.

B. van den Berg and F. de Marchi. Non-well-founded trees in categories. submitted
for publication, 2004.

29

