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Abstract. We investigate a A calculus with positive inductive and coin-
ductive types , which we call A**” using logical relations. We show that
parametric theories have the strong categorical properties, that the rep-
resentable functors and natural transformations have the expected prop-
erties. Finally we apply the theory to show that terms of functorial type
are almost canonical and that monotone inductive definitions can be
reduced to positive in some cases.

1 Introduction

We investigate a A calculus with positive inductive and coinductive types, which
we call MY  using logical relations. Here p is used to construct the usual
datatypes as initial algebras, where v-types are used for lazy types as termi-
nal coalgebras.

A calculus related to A\*¥ has for example been investigated by Geuvers
[Geu92], but he does not consider nested p-types. Loader introduces the strictly
positive fragment (and only p-types) in [Loa97] and shows that the theory of
the PER model is maximal consistent. The restriction to the strict positive
fragment gives rise to a predicative theory closely related to the theory ID.,
known from proof theory. The precise strength of the system of positive inductive
definitions is unknown but can hardly be called predicative. Note that a proof by
Buchholz [Buc81] that positive inductive definitions are conservative over strictly
positive ones, does not apply to theories with parameters, i.e. to pu-types with free
type-variables. The contribution of v-types to the strength of the system seems
peripheral but we shall not be concerned with this issue here. v-Types certainly
have an important role for representing infinite structures in programming.

Logical relations have been well investigated in the context of System F
to model Reynold’s notion of parametricity [Rey83]. In his stimulating paper
[Wad89] shows how to obtain free theorems and in [AP93] this is made precise
by presenting a logic for parametricity. In particular it is shown show that para-
metricity entails that the 2nd order encodings of p and v-types are strong, i.e.
have the expected categorical properties. Several authors have presented cate-
gorical versions of parametricity [MR91,RR94,Has90]

The system we present here can be encoded in System F. However, we be-
lieve that it is of independent interest since inductive and coinductive definitions



should be considered as more primitive than 2nd order quantification. In particu-
lar it is very straightforward to identify a predicative subsystem by restricting to
strictly positive definitions. We present a notion of logical relations for inductive
and coinductive types using least and greatest fixpoints on the metalevel, which
means that the metatheory for the strict positive fragment itself is predicative
and does not require 2nd order quantification.

One question which caused some confusion in the context of System F are
the prerequisites for parametricity, i.e. the question whether Wadler’s theorems
are really free. I.e. the 2nd order encodings are not strong in the initial theory
(not even if you restrict yourselves to closed terms), although it seems naively
parametric. We say that a theory is parametric iff the identity extension prop-
erty (not lemma) holds and show that all parametric theories are strong in the
categorical sense.

We apply the theory to a question which came up in the work by Ralph
Matthes [Mat98] on monotone inductive types, which is an apparent generalisa-
tion of positive. Matthes conjectured that good monotonicity witnesses can be
already recognised by just testing the first functor law. It turns out that we can
prove this conjecture rather easily using the theory of logical relations developed
here. We also show that in the positive fragment the functions expressible with
monotone inductive types are the same as in the standard theory. Everything
dualises easily to the coinductive case. Another application of logical relations is
the verification of the functor laws for the canonical map-terms. It relies on the
fact that all terms with the type of a natural transformation are indeed natural
which again can be easily verified using logical relations.

2 The calculus A\*¥

Our starting point is simply typed A-calculus over an infinite set of type variables
vy,

Let S = {+, —} with the operation — € S — S satisfying —(+) = —, —(-) =
+. We simultaneously define the set of types Ty and the relation OC CSx
V¥ x Ty of positive and negative occurrence:

Xevly o,7 €Ty X0OCC'o
X €Ty oc—o>1,0xT,0+71€Ty pX.o,vX.o €Ty

X£Y
Xocctx XOCC'Y
XO0OCC %o XO0cCcC’r XOCC’c XO0CC’r
XOCC%s = 1 XOCC’o x 71 XOCC?c + 71

XOCC’c¢ YOCC"o
XO0CC*’uY.o XOCC*vY.o
We write XOCC?c if X = X3,...,X, s.t. forall 1 <i <n: X;0CC’0.




The strictly positive system can be obtained by defining —(—) = — instead,
or alternatively by changing the rule for — to

X ¢FVe  XOCCtr
XOCCto > 71

The definition of OCC™ can then be omitted.
Given a type o we say o € Ty(X) if all free type variables in ¢ are included
in the finite sequence X. We write Tm(o) for the set of closed terms of type o.
Inspired by categorical notation we define

1, =Xz :0x
and given f:p—>T1,9:0 =2 p

fog=Xdx:o.f(gx)

We may drop type annotations whenever they are uniquely determined from the
context.

We write o(X) for a type in which the variable X appears freely and then
in the same context o(7) for the substitution ¢[X := 7]. This is extended to
sequences, i.e. 0(X) and o(7) = o[X := 7] = 0[X1 := 7, ..., Xy := 7] where
we silently assume that the sequences involved have the right length.

Given o,7,0 € Ty(X) and p(X) € Ty(X,X) with XOCC*p(X) we intro-
duce the following (families of) constants:

" i (oXT) 2o
e (0 XT)>T
pair®” 10 =7 = (0 X T)
0= (c+7)
iy T (o +71)
case” ™ (0 5 0) = (1=0) = (0+7) =0
Cx.px) : p(pX.p) = pX.p
Itk., : (plo) = o) = (pX.p) = o
Dx.,x) : vX.p = p(vX.p)
Co%k p(x) : (0 = p(0)) = 0 = (vX.p)
We define the empty type § = puX.X and the unit type 1 = vX.X and
* = Cox.x lg_glp : 1 as the canonical inhabitant of 1. We write 2 =1 + 1 for
the type of booleans and true = i; *,false =iy .
We are now going to define internal functors (or map terms) for positive

and negative type abstractions. Given XOCC* p(X;Y),YOCC p(X,Y), for
1<i<|X]|: fi:o; > ojand for 1 <j <[Y|: g; : 7; — 7] we define

p(f;9) : plo; ') = p(o’;T)



by induction over the structure of p:

Xi(f;9)=fi
Z(f;9) =1z
(p—=p")(F;9) =2g-p'(f;9)0g0p(g; f)
(px p")(f;9) = Ap-pair(p(f; 9)(m1 p))(p'(£;9) (72 p))
(p+0")(f;9) = As.case (i1 o p(f;9))(i2 0 p'(£;9))
(uX.p)(f;9) =Ttx, (Cop(1, f;g))
(vX.p)(f;9) = Cox.,,(p(1, f;g) o D)

A theory ~ is a family of equivalence relations ~,C Tm(o) x Tm(o) which
is a congruence for application and closed under 8': (A\z : o.t)u ~ t[z = u].
Additionally we assume the following equivalences:

7" (pair”” tt') ~ t
7y (pair”” t t') ~t'
(case t u) oi; ~t
(case t u) oiy ~ u
(Itx.pt) o Cx.p ~ to p(Itx.,pt)
Dix o (Coxpt) ~ p(Cox.,t) ot

In general we assume that a theory is consistent, i.e. not all well typed equa-
tions on closed terms hold. The initial or least theory is denoted by ~7.

For ~P a strongly normalising and confluent term rewriting system can be
found. These properties can be verified by developing the notion of logical pred-
icates corresponding to the logical relations presented below, see [Mat98]. The
main corollary of this is:

Proposition 1. ~P is decidable for typed terms.

2.1 Examples

We can embed System T by defining Nat = 4 X.14+ X with 0 = Cx 14 x(i1%),s =
Cx.14x oia. From It we can derive the standard iterator for Nat. Also a recursor
R :0 — (Nat X 0 = o) = Nat — o is definable using the iterator. R does not
satisfy the usual equations for a recursor. However, it can be shown that this
encoding is correct in extensional theories, to be defined below.

Using v-types we can define the conatural numbers Nat' = vX.1 4+ X, which
intuitively are the natural numbers extended by w = CoX- 1+ i,x.

Other examples are: lists over o:

L’ =pX1+0xX,

! Note that we do not include ¢ or 7, i.e. our starting point is an extension of typed
combinatory logic. Later we will introduce extensional theories which are closed
under ¢ and 7 for all type formers.



infinite streams over o:
S” =vX.o x X,

finitely branching trees:
F = puX.LX.

The last definition is interesting because it uses a u-type with a free type vari-
able. We call this an inductive definition with parameters®. It seems that the
counterpart of inductive definition with parameters is (intentionally ?) excluded
from the standard definitions of ID, e.g.[Buc81].

We define the type of trees branching over o:

T =pXl+o0—> X,
e.g. T2 are binary trees. Using T we can define a hierarchy of tree types:
To=0
Tn+1 = TT"

The hierarchy of trees exhausts the proof-theoretic strength of ID ., however
in the presence of non-strict positive definitions with parameters, we can define

T = pX. T

This type may raise some doubts in whether this system is predicative (i.e. proof
theoretically conservative over the strict positive system).

3 Logical Relations

We consider here n-ary relations on closed terms which have to be closed under
~P. Given & = 0y, ...,0, a sequence of closed types, we write R € Rel(a) for
R C Tm(oy)X...xTm(o,). We define an operator 7# (—) which to any sequence
R=R,...,R, with R; € Rel(o;) assigns

7 (R) € Rel(7(o1),...,7(0m))

At the same time we have to verify that if X;OCC"(OCC™)p then p#(—) is
monotone(antitone) in its sth argument.
We extend application to tuples:

tu=t1 ul,...,tn Un

and
CU=CUL,---,CUp
where ¢ is a constant.

2 [Mat98] calls this interleaving inductive definitions.



Projection

X#*(R)t:«< R; t

k3

(0 = 17)#(R) t: <= Yu.o" (R)u = 7 (R)(t u)

(0 x T)#(R) t: <= o (R)(mt) A% (R)(myt)
+ (01 + 02)#(R) is the least relation generated by
ol (R)u
(01 + 02)*(R)(ix u)

p Given uX.p we know that XOCCTp and hence p# (R, —) is monotone. We
define (uX.p)# as the least relation closed under

#

p* (R, (uX.p)*) t
X F(Cxpt) |

v Given vX.p we know that XOCC"p and hence p# (R, —) is monotone. We
define (vX.p)# as the greatest relation closed under

#

(vX.p)* t

v
p*(R,(vX.p)*) (Dx., t)

Proposition 2 (Fundamental property of logical relations). Given
o(X) e Ty(X) , t(X):0(X) and R: T1...Tm we have that

o#(R) (t(11),...,t(Tm))

Proof. To simplify notation we consider only the binary case here (and use infix
notation for the relation). The proof proceeds by induction on (the derivation
of) t(X) : 6(X). Since the proof for simply typed A terms is standard (we only
have to check combinatory logic), we concentrate on the new constants:

x,4+ We just do +: The case for iy, follows directly from +#. Assume f (o} —
6)#(R) fi, and t(o1 + 02)# (R)t'. By the definition of (o1 + 02)# (R) we have
that ¢ ~ iy u, t ~ i u' and uaf(R)u’. Using case fi fo(ixu) ~ fr u (and
analogously for f;,u') we get case fif2(ixu)6% (R)case f{ f3(iru') and hence
the property for case.
usv The case for C follows directly from p#. Assume f(p(c) — o)#(R)f' define
R € Rel(uX.p(X,7), uX.p(X,7")) by tRt' : < Tt f to# (R)It f' t'. Using
the B-equality for p it is easy to see that R is closed under u#. Hence by
minimality we have that ¢(uX.p)# (R)t' implies tRt' which directly entails
the correctness for It. The case for v is an easy dualisation.
O



4 Extensional Theories

Using logical relations we show properties of extensional theories, that is theories
in which semantically equivalent terms are identified. We show that parametric
theories have the universal categorical properties.

Definition 1 (Strong Theories). We call a theory strong iff it satisfies the
usual universal properties of function spaces, products, coproducts, initial alge-
bras and terminal coalgebras. Equivalently the theory ~ has to be closed under
the usual £, and —,, rules and:

n
pair (m1 t) (mat) ~t

Note that there is no £x because the appropriate equality follows from the fact
that application is a congruence.

1 3
(case iy iy) ~ 1 " uo (case t; ta) ~ case (uoty) (uoty) "
fop(r) =
g:plo) = o
N h:Tt—=0

hof ~gop(h)
ho(lt fy~Tt g
fir—p(r)

g:0— p(o)
v h:oc—=T

fohnp(h)og
(Co foh~Coyg

We here define parametric theories using n-ary relations.

It}X'pCX.p ~1

I

COX.pr_p ~1

&

Definition 2 (Parametric theories). We define the n-diagonal as
Ag = {(tl, . ,tn) | V1< 1, <n.d;~ tj} € Rel(an)
We call o theory parametric iff it satisfies the identity extension property,
that is for any 7(X) € Ty(X) we have:
(A, A5,) = AT
In the case n = 2 this is just
tr# (~o )t = t~gn) t

Definition 3 (Observational equivalence). We define the observational
equivalence by

t~ Oy = Vp:o—=2pt~Ppu



The following proposition is folklore and goes back to Statman for simply
type A calculus and Moggi [Mog] in the case of System F. In fact it can be
extended to all theories which have a type of booleans with a polymorphic if.

Proposition 3. The observational congruence is the greatest consistent theory,
that is if t ~ u in any (consistent) theory then t ~°" y

Proof. To see that obs is actually a theory note that ¢ ~°P5 ¢t/ — tu ~°P ¢’y and
symmetrically. It is easy to see that obs is closed by the defining equations for
~P . To see that ~°P% is consistent use 1 to see that true 76°bs false.

Given any consistent theory with ¢ ~, t'. Assume that thereisa p: o — 2
st.pt £% pt. Wlo.g assume p t ~% true and p t ~° false but then true ~
pt~pt ~ false and hence ~ is not consistent. O

In the following we use ~ for any parametric equality.

5 Main results

Givent : 0 — 7 we define the graph of t: t# : 0 <= Tbyut# u': < u' ~ tu.
We show at once the graph theorem, naturality of certain functions and the
functor law, because all these results depend upon each other — the situation
is very different from System F [AP93].

Proposition 4 (Map properties). Assume

XOCC*tp(X;Y,Z),YOCC p(X,Y,Z).

~

p*(f# g% i) = p(fi05~)
2. Fort(X): p(X) = p'(X), f:0 — 7 it holds:

t(r) o p(f) ~ p'(f) o t(0)

The n-rules are valid.

the p-rules are valid.

p(la) ~ 1p(a')

p(f o g;hok) ~ p(f;k)op(g;h)

Proof. We show 1-6 by parallel induction over the size of p, p’. We only consider
the case of single argument covariant functors here.

S G Lo

1. The cases for the basic type constructors —, x,+ are straightforward. We
discuss the case for p in some detail: Let p(X) = uY.0(Y, X). We have to
show:

(a) zp*(f#)y — zp(f)*y
We show that

2% (p())*, F#)y = (C 2)p(H)*(C y) (1)



Ut

From this the proposition above follows from the fact that p# (f#) is the
least relation with this property. To show 1 assume z6% (p(f)#, f#)y
which by ind.hyp. implies y ~ 8(p(f), f) ©. We want to show

(C z)p(f)*(C y)

which is equivalent to

Cy~p(f)(Ca)
~Cob(1,f)o8(p(f),1)
~Cob(p(f), f)

which follows from the assumption.

(b) zp(f)#y — zp¥ (f#)y
We show that P(z) = xp# (f#)p(f) x is closed under the condition for
(unary) logical predicates, that is p# (P)(cz) — P x using the closure
condition for p# (f#).

. Parametricity implies

zp? (f*)y = (o) zp* (f#)a(o) =

Using 1. we obtain:

p'(f) o a(o) ~ a(r) o p(f)

. We just show 7,: We show that R = (It¥” C)# is closed under p#. Hence

assume zp* (R)y. We have to show C z R C y that is (It C)(Cz) ~ (Cy). We
note that (It C)(Cz) ~ C(p(It C)z) and hence we can reduce the problem to
the hypothesis. Using the minimality of u# we conclude z ~y - It Cz ~ y
and hence It C ~ 1.

. Similar to the previous case.
. Follows directly from the n-rules.
. For —,+ and x the composition laws follow directly from the &-rules. How-

ever for p and v the situation is more complicated. Let’s consider p(X) =
pwY.8(X,Y),g:01 = 09, f : 09 = 03,

p(fog) ~Tt(Cob(p(as), fog)
p(f) o p(g) ~ (Tt(C o 8(p(a3), f))) o (It(C 0 8(p(02), 9)))

Let h = It(C 0 8(p(o3), f)) To show that both sides are equal we apply &,
(ind.hyp. 4.) which reduces the problem to showing the equivalence of

Cof(p(os),fog)ob(h,o1)

and
hoCo8(p(o2),9)-

Using ~g on the second term we obtain

Cob(p(os), f) 0 8(h,03) 0 6(p(02), 9)



Now using naturality (ind.hyp. 2.) we can show that the term is equivalent
to

Co a(p(a3)7f) o e(p(02)ag) o e(haal)

and by applying the ind.hyp. 6. we show the equivalence to the first term.
O

Note that [Geu92] does not prove the functor laws for nested p-types, which
is the difficult case. The use of logical relations and naturality may be avoided
by an exhaustive case analysis® but the present proof seems much more elegant.

Corollary 1. Parametric theories are strong.

6 Monotone inductive types

We now turn our attention to general properties of terms having the type of
map-terms. It turns out that those are almost canonical.

Proposition 5. Given XOCC"p(X) and
m(X,¥) 1 (X 5 Y) = p(X) = p(¥)

we set
a(X) =m(X,X)1lx : p(X) = p(X)

We can show that

Proof. The fundamental theorem entails that for any S : ¢ <= o' and R :
T < 7 andfor h: 0 — 7,h' : ' = 7 such that tSt' implies (f t) R (f' t')
and ap#(S)a' it is the case that

(m(o,7) f a)p* (R) (m(o',7") f' a')

We now set f' = 1,5 =~, R = f# and by using the map theorem we obtain the
first line. The second line follows by a symmetric argument. O

We can immediately conclude the following corollary which was conjectured
by Ralph Matthes in the context of monotone inductive definitions:

Corollary 2. Given a map term for XOCC™' p(X)
m(X,Y) : (X = V) = p(X)  p(¥)

3 Suggested by Ralph Matthes.



which satisfies the first functor law
m(X, X)1x = 1,x)
Then m is already equal to the proper map:
m(X,Y) ~ Af.p(f)

We introduce the concept of monotone inductive definitions as a generalisa-
tion of positive inductive definitions, i.e. we drop the positivity requirement but
parametrise the p-types with a monotonicity witness:

Abbreviate the type of monotonicity witnesses for p(X) as ¢,(X,Y) = (X —
Y) = (p(X) = p(Y))

m(X,Y) : ¢,(X,Y)

pmX.p(X) € Ty

Coxp = P(mX.p) = pmX.p
Ity x., ¢ (p(0) = 0) = (bmX.p) > 0

(1t5, x.4) © Com . ~ t 0 (i X.p(X), 01X 1))

This presentation is appealing because we do not have to define the functors
anymore. Moreover we can show:

Corollary 3. Given XOCC*p(X) and any m(X,Y) : ¢,(X,Y), f:p(c) = o
then we have:
Ity 7 ~ I8P ((m(0,0)1,) o f)

This implies that for positive p everything we can define for monotone types
is already definable in the standard theory. The analogous facts hold about
monotone v-types.

Note that we do not say anything about the case when X does not appear
positively in p(X). Indeed, there are interesting examples of monotone but not
positive type abstractions like the following monotone type (discovered by Ulrich
Berger):

X (X 2 0) 2 X)) X) > X

However, it seems that no such m satisfies the first functor law, and we conjecture
that they do not increase the computational strength of the system.
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