Categorical reconstruction of a reduction free
normalization proof *.

Thorsten Altenkirch!, Martin Hofmann? ** and Thomas Streicher®

! Chalmers University of Technology, Géteborg, Sweden
email : alti@cs.chalmers.se
2 University of Edinburgh, Scotland
email : mxh@dcs.ed.ac.uk
% Technische Hochschule Darmstadt, Germany
email : streicher@mathematik.th-darmstadt.de

1 Introduction

We present a categorical proof of the normalization theorem for simply typed
A-calculus, i.e. we derive a computable function nf which assigns to every typed
A-term a normal form, s.t.

M~N

_ nf(M)~ M
nf(M) = nf(N)
where ~ 1s 7 equality. Both the function nf and its correctness properties can
be deduced from the categorical construction. To substantiate this, we present
an ML program in the appendix which can be extracted from our argument.
We emphasize that this presentation of normalization is reduction free, i.e. we
do not mention term rewriting or use properties of term rewriting systems such
as the Church-Rosser property. An immediate consequence of normalization is
the decidability of ~ but there are other useful corollaries; for instance we can
show that every closed term M with the type (0 = 0) = (0 — 0) is fn-equivalent
to a Church numeral of the form Azy.z'y for some number i.

1.1 Related work

Already Martin-Lof in [ML75] shows the basic normalization property of Type
Theory by a model construction and without referring to properties of term
rewriting. However, he considers only weak equality, i.e. excluding the &-rule.
Schwichtenberg and Berger in [BS91] give a reduction free normalization proof
which is based on the idea to invert the evaluation functional. Our presentation
can be seen as an attempt towards a rational reconstruction of their proof using

* A preliminary version of this work has been presented at the joint CLICS/TYPES
workshop on Categories and Type Theory in Goteborg, January 1995
** Supported by a EU HCM fellowship, contract number ERBCHBICT930420.

the language of category theory® . Another outcome of categorical normalisation
proofs like ours is a certain clarification of the role of variables in usual normal-
isation arguments based on Tait’s computability method. Recall that in these
proofs a key step consists of applying a functional term to a variable the origin
of which is rather opaque because variables do not correspond to elements in
the set-theoretic interpretation. In the presheaf interpretation variables show up
naturally as generalized elements.

T. Coquand and Dybjer present an analysis of reduction free normalization
for the weak case in [CD93]. They observe that the correctness proof is related
to categorical glueing, without, however, making the relationship precise. C.
Coquand in [Coq94] presents a complete formalization of a reduction-free nor-
malization proof in Martin-Lof’s intuitionistic set theory using the ALF system.
It is worthwhile to note that she makes the use of Kripke style models explicit.

A naive category-theoretic approach to intensional aspects like normalisation
faces two problems. First, in category-theory fn-equal terms are usually iden-
tified and so we cannot express the difference between any term and a term in
normal form. Second, if category theory is understood via classical set theory
then a category-theoretic construction need not give rise to an algorithm. We
overcome the first obstacle by modeling normal forms (and the related concept
of neutral terms) by a special presheaf (over the category of variable renamings)
of normal forms based. The second problem is solved by restricting ourselves to
those parts of category theory which can be formalised in a constructive set-
ting, for definiteness in extensional Martin-Lof type theory with subset types
as described in [NPS90]. Tt seems worthwhile to carry out the formalization of
category theory in a type theoretic setting, this is a topic of current research,

e.g. [F1S95].

1.2 An intuiltionistic completeness proof

C. Coquand, T. Coquand and Dybjer have observed that there is a close analogy
between intuitionistic completeness proofs and normalization. Indeed, there 1s an
intriguing relationship between an intuitionistic completeness proof for Kripke-
style semantics of minimal logic which we are going to sketch here and our
construction. The following proof is folklore and inspired by similar constructions
which can be found in the standard literature, e.g. [TvD8§].

Minimal intutionistic logic can be presented by the following proof system
where A is a purely implicational formula and " is a finite set of such formulas :

Ael’ TU{A}+B TFA—=B TFA
I'tA I'tA—B I'tB

This can be extended to an entailment relation between contexts I' H A.

4 Note, however, that it is not clear that the algorithm we derive is identical to theirs.
E.g. Berger and Schwichtenberg are using the eval function in LISP, which does not
exist in ML (nor in Category Theory).

A (propositional) Kripke structure (c.f. [Kri65]) (W, <,IF) is a preordered
set of worlds (W, <) together with a forcing relation |F between worlds and
propositional constants such that for all propositional constants A the following
monotonicity criterion is satisfied : w’ IF A if w < w’ and w IF A.

The forcing relation Ik can be extended to compound formulas and contexts
by the following inductive definition :

wlFA—= B:<— Vw/wa’H-A:>w'H-B
wlk I : <= wltAforall Ae I’

It is easy to show that the monotonicity condition extends to compound formulas
and contexts.

We say that I" entails A (I' = A) in the structure if any world w forces A
whenever w forces I :

FEA:e YoultI'=>wlk A

By a straightforward induction over the structure of derivation one can show
soundness, i.e. I' - A implies I = A for all structures.

Completeness means that the reverse implication holds as well, i.e. if I' | A
holds in all Kripke structures then also I' F A. To show this we construct a
special structure, the universal model. Here the worlds are the contexts and <
is the subset relation. For atomic propositions we set

I'FA: <= TI'+ A

It is easy to see that monotonicity holds. The essential step in the completeness
proof is to establish by induction over the structure of formulas that I" IF A iff
I' F A. Note that we have to show both directions simultaneously. Completeness
is obtained by noting that I" - I" and using the equivalence above.

What happens to this construction when we apply the Curry-Howard iso-
morphism? We suggest the following translation :

Minimal logic ~ CCCs
Kripke structure ~ Presheaf category
Preorder of worlds ~ base category
Soundness ~ Presheaves are cartesian closed

The main point of this consideration is that the completeness proof can be
extended to this setting and gives rise to a normalisation function.

2 Contextual CCCs

Simply typed A-calculus is usually identified with cartesian closed categories
(CCCs). This can be formalised as a categorical equivalence between the two
notions [L.S86]. A consequence of this equivalence is that the initial cartesian
closed category can be construed from the syntax of typed lambda calculus by

taking contexts as objects and substitutions as morphisms. However, since in
an arbitrary CCC products are not associative up to equality, this category is
only initial up to isomorphism, but not in the strict sense. From a category
theorist’s point of view this does not matter, but for syntactic considerations,
as we pursue them, it 1s important to have actual equality. Therefore we define
a generalization of cartesian closed categories which is closer to the syntax and
for which the term model is initial in the strict sense.

Definition1l. A contextual CCC C is given by

a category C

A (chosen) terminal object 1,

A full subcategory T of types,

For each I' € |C| and A € |T| a (chosen) cartesian product I" x A in C.
For every A, B € |T| a (chosen) exponential of B by A, that is an object
A = B € |T| together with a natural isomorphism:

C(— x A,B) ~ C(—, A = B)

QU W N —

Fact 1 Fvery CCC gives rise to a contextual CCC with the choice T = C and
product and exponentials inherited from the cartesian closed structure.

Similar to [L.S86] we shall use an equational presentation of contextual CCCs .
We introduce the following constants : 5
r € C(I,1)
<=, —>€C(A X C(AA) - C(A T x A)
Ora € C(I' x A, A)
mra € C(I'x A T)
A=) e C(I'x A,B) - C(I' A = B)
APP(—,—) e C(I''A= B) x C(I',A) = C(I', B)

which fulfill the following equations :
A=~ S C(F7 1)

lo<y, f>=Ff

mo <y, f>=7

<moy, 0oy >=1

APP(A(f),a) = fo< 1,a>

A(APP(fom 0))=f
5 As said in the Introduction all the category-theoretic and set-theoretic constructions
we make are understood in a constructive setting. Without fixing a particular such
setting, typically extensional Martin-Lof Type Theory, we use standard set-theoretic
notation like x (cartesian product), — (function space) z € A +— ... (abstraction),

{z € A | P} (separation), etc., to denote expressions in such a constructive set
theory.

2.1 The free contextual CCC

Let B be a small category (of base types and constants). A contextual CCC
over B is a contextual category (C,T) together with a functor F : B — T.
We can construct the free contertual CCC over B, this is the initial object in
the category of contextual CCCs over B which has as morphisms functors that
preserve the CCC-structure on the nose and commute with the F's.

In the following we shall restrict our attention to the case where B is the
category 1 with one object and one arrow (i.e. the terminal object in CAT). The
free contextual CCC generated by 1 will be denoted by Tm. It corresponds to
the simply typed A-calculus with one uninterpreted base type, which we denote
by o. By initiality, a contextual CCC C with a chosen object X € |C| gives rise
to a unique strict structure preserving functor :

[-]¥ € Tm > C

such that [o]* = X.

The free contextual CCC over 1 Tm can be constructed following the equa-
tional presentation above, which is equivalent to a de Bruijn-style presentation
of simply typed A-calculus (therefore we use 0 to denote the second projec-
tion). To emphasize the syntactic character of the morphisms in Tm we use
0, (=, =), A(=),app(—,—) for I, < — — > A, APP in Tm. One question which
arises naturally is whether the equality of syntactically constructed morphisms
in Tm is decidable.

2.2 The category of weakenings

Our model construction is based on the category of presheaves over a category
of context extensions which we are going to define. These morphisms generalise
the notion of subsequence on contexts used in the proof-irrelevant case in 1.2.
We could restrict attention to composites of the m-morphisms and thereby arrive
at a posetal category. For technical reasons it is, however, appropriate to include
morphism like <!, 01544 >: (1 X A) x A > 1 x A.

We present the category W of weakenings by an inductive definition, together
with a faithful embedding E into Tm.

Definition2. We define a family of sets W(—, —) indexed by objects in Tm
inductively by the following constructors :
lr e W(I', T)
wi(—) EW(IA) = W(I' x A, A)
wa(—) EW(IA) = W(I' x A, A x A)

and define composition o and an embedding E € W(I', A) —» Tm([, A) by
primitive recursion :

low=w

J=E(w)om
) = (E(w) om,0)
:E(w) x 1

Proposition3. W with 1 and o as defined above is a category, and E is a
faithful embedding into Tm.

Proof. By a simple structural induction.

Note that E(wy (1)) = 7 and therefore we also use 7 to denote this morphism

m W.

3 Normalization

We shall present our construction in several steps : First we will sketch the
interpretation of A-calculus in presheaf categories which corresponds to a proof-
relevant version of the soundness theorem for Kripke structures. Similarly a proof
relevant version of the completeness proof can be constructed and indeed this
gives rise to an inverse of the evaluation functor. However, not much is gained
by this, since the resulting normalization function only works on equivalence
classes and is hence extensionally equal to the identity. We introduce normal
form objects to overcome this problem, but it is no longer obvious that proof
object corresponding to completeness is inverse to the evaluation functor. Finally,
we construct a new category TwGl (for twisted glueing) which combines a
normalization function with its correctness proof. This category is a variation of
the glueing construction and could be viewed as a special case of a Kripke logical
predicate as described in [MM91]. ©

3.1 Interpretation in presheaf categories

Given a small category C we construct the category of presheaves over C:
PSh(C) = SetC” | ie. objects are functors into Set and morphisms are nat-
ural transformations. For objects F' € |PSh(C)| and A € |C| we denote appli-
cation by F4 and analogously for & € PSh(C)(F, G) we denote the instance at
A by as € Fa — Ga. Moreover given z € F4 and w € C(B, A) we denote
F(w)(z) € Fg by ztv.

¢ Berger [Ber94] also found a new version of the correctness argument where he makes
use of a logical predicate.

It is well known that PSh(C) is a CCC 7 and therefore also a contextual
CCC:

Proposition4. PSh(C) is a CCC, with the following choice

] gSh(C) — 1Set
. (F XPSh(C) G)D = FD X GD

NSEASTEN

(F =PShC) ¢Yp = Nat(C(—, D) x F,G)
APSHC) (0 € PSh(C)(F x G, H))a € Fa — (G =M€),
APSPC) () 4 (2) g (w,y) = ap(zt,y)
APPPSM(C) (o € PSh(C)(F, G =T5MC) H) B € PSh(C)(F,G))a € Fa4 — Ha
APPPSMO) (o B) 4 (2) = aa(z) (14, Ba())

We can view a presheaf category as a proof relevant Kripke structure: the
base category C corresponds to the opposite of the preordered set of worlds.
The forcing relation is generalized to a presheaf where the monotonicity corre-
sponds to functoriality. Semantic entailment in a Kripke structure is generalized
to a morphism in the presheaf category, i.e. by a natural transformation. The
soundness theorem generalizes to the fact that for any F € PSh(C) we obtain
an evaluation functor [-]* € Tm — PSh(C).

3.2 A proof relevant completeness proof

We can generalize the intuitionistic completeness proof for Kripke structures to
the presheaf semantics, which gives rise to an inverse of the evaluation functor.
This is our first step towards the normalization function.

The category corresponding to the universal model is PSh(W). To construct
the evaluation functor we use

Yw = Set” o Y € Tm — PSh(W)
where Y(A) = Tm(—, A) is the Yoneda embedding. We obtain
[-1Y") € Tm — PSh(W)
™ We never use the fact that PSh(C) is a topos, and indeed this cannot be shown, if we
use a predicative set theory like Martin-Lof’s. However, one could show that PSh(C)

is a model of Martin-Lof’s set theory (i.e. an LCCC with some additional structure)
and express our construction directly in the internal language of this category.

Corresponding to the lemmas used in the completeness proof we construct
the following families of maps for any I', A € |Tm| :

dh r € [AD) = Yw(A)r
Qi,F(M) =M

qisz,r(f) = /\(qlB,I“xA(fFAA(ﬂ-F,A’uL,FXA(OF,A))))

L€ Yw(A)T — [A]

)

=1

Note that Yw(I')A = Tm(A, T').

The extensions to contexts qlAyF, UlA,p is defined in an obvious componentwise
way.

Here q' stands for quote since it maps semantical objects to syntax and u!
for unquote because it is doing the converse.

We can define the proof relevant counterpart of the completeness proof thus
obtaining :

complp o € PSh(C)([I'], [A]) — Tm(I', A)

complp (¥) = (aar o vr oupp)(1lr)

Consider the following diagram :

1r
1—— YWy ——> [l — = [Alr
urr [M]p
1 CI},F qlA,F

Yw(I)p — Yw(4)r
YW(M)F

Using that q' is natural and that qk o uk = 1 (which can be shown by
induction over the structure of I') we obtain that compll(ﬂM]]Yw(o)) =M, ie
1. . .
compl” 1s the inverse of the evaluation functor.
The proof relevant version of the completeness proof shows that [—] is faith-
ful. One would hope that the composition of evaluation and completeness

nf' (M) = compl' ([M]¥*))
nf' € Tm(I', A) - Tm(T, A)
gives rise to a normalization function. However, this is not yet achieved, since

we are only reasoning up to (n-equivalence and in this sense the constructed
function is merely the identity.

3.3 Normal form objects

The shortcoming of the previous construction was that it only works up to
equality. We can overcome this by identifying an normal form object with a
trivial equality in PSh(W) and using this instead of Yw(A).

We define families NF(—, —) (normal forms) and NE(—, —) (neutral terms)
indexed over objects from Tm inductively as follows :

i € NE(I', A)
i+1€eNE(T x B, A)

0 € NE(I" x A, A)

M ENE(I,A= B) N eNF(I,A)
appr a,5(M, N) € NE(I', B)
M € NE(T', 0)
M €NF(I',0)
M € NF(I x A, B)
Arap(M)€NF(I, A= B)

The rules for products for NF and NE are the same as in the definition of
Tm(—, —), we used the same syntax as for Tm and it should be obvious that
there are embeddings

NF(T, A) > Tm(T, A)

NE(I', A) c—> Tm(T, A)

Our definition of normal form corresponds to the standard definition of long
fn-normal forms, i.e. of A-terms which contain no (-redexes and are maximally
n-expanded. However, our motivation is slightly different, we require a definition
of normal forms s.t. q and nf are injective and onto. Note that the neutral terms
are not just auxiliary for the definition of normal forms but that they are the
minimal domain for which u has to be defined.

It is straightforward to define weakening for NF and NE and therefore we
obtain presheaves for every I' € |Tm]| :

NF(I') = NF(—, T') € [PSh(W)|
NE(I') = NE(—, I') € |PSh(W))|

Moreover, there are obvious natural embeddings from NF and NE to Tm
ia € PSh(W)(NF(A),Yw(A))
i’a € PSh(W)(NE(A), Yw(A))

which we will often omit from calculations.
We can now modify the previous construction, i.e. we use

[-177) € Tm — PSh(W)

as evaluation function and we modify ' and u' by replacing the basic morphisms
from Tm by their syntactic counterparts in NF, NE thus obtaining :

ah € PSh(W)([IT¥"), NF (1))
uZ € PSh(W)(NE(T), [IT¥F)

We now obtain nf? € Tm(A, ') - NF(A, I'). Thus we obtain a function
which maps terms in an equivalence class to a normal form but it is no longer
clear that the function we obtained is essentially the identity, i.e. whether

i(nf?(M)) =M

We are not even able to state that q? is a natural transformation, since
NF(—) is not functorial. We could try to show that q% = io qk is natural but
any attempts to show this directly fail — i1t seems that one needs a construction
as the one described in the next two sections.

3.4 Twisted glueing

We define a category TwGl from which we can obtain a normalization function
together with its correctness proof by proving that TwGl is a contextual CCC.
The proof of the central theorem we defer to the next section.

Definition5. We define the category TwGl by the following data

Objects : An object I' is given as a tuple (f, {I'),ur,ar) :

I' € |Tm|
(') € [PSh(W)]|
ur € PSh(W)(NE(

"), (1))
ar € PSh(W)((I'),N

(1))

st.iproqrour =i'p
Morphisms : A morphism a € TwGI1(I', A) is given by a pair ((]), &) :

(a]) € PSh(W)((T']), (A))
a €Tm(l,A)

s.t. the following diagram commutes in PSh(W):

(o]
ar qa
NF(I) NF(A)

Yw(f) _ Yw(f)
Yw(a)

Identity,composition are defined componentwise.
We now come to the central theorem :

Theorem 6.

1. TwGl s a contextual CCC.
2. The functor P € TwGl — Tm defined as

P(T, (I, ur,qr) =T

preserves the contertual CCC structure on the nose.

To define the evaluation functor we need an object to interpret o . We note
that
X = (0,NF(0),1,1)

is an object on TwGl and hence we have
[-1¥ € Tm - TwGl
We define compl and nf as before :

complp 4 € PSh(W)(A, I') — NF(A4, I')
complp 4(M) = qa,r([M](ur,r(1r)))
nfpyA S TIn(A7 F) — NF(A, F)
nfr 4(M) = complp, 4 ([M])

We can now conclude :

Proposition 7.

10 Ilfp = lywp

Proof. Consider the following diagram :

1T NE() —— (1) ——— (4],
1),
qar,r qa,r
F)I“ NF(A)['

Yw(I')p — Yw(4)r
YW(M)F

The triangle and the square commute by the defining property for objects in
TwGl1. The result follows by noting that

(YW(M)F o ll)(lp) =M
We can now derive the corollaries mentioned in the introduction :

Corollary 8.

M~N

/ —
nf(M) = nf(N)

2. ~ 1s decidable.

3. For all M € Tm(1, (0 — 0) — (0 —> 0)) there is an i s.t. M ~ Azy.x'y.

nf(M) ~ M

Proof. 1. Note that ~ is the equality in Tm. The first part follows from the fact
that the interpretation in TwGl is sound and the second from proposition

7.
2. Follows from 1. and the fact that we work in a constructive set theory.

3. By a simple induction over the structure of normal forms we can show that
the normal forms have this property and hence it follows for terms by the
second part of 1.

3.5 Proof of theorem 6

Products The definition of 1 and x can be done in an obvious component-wise
fashion.

The exponential The essential problem is the definition of the exponential.
For the following assume A, B € |[TwGl|.
The definitions of

qa=B A € [A= B], - NF(A= B)a
Usa=p A € NE(A= B)a = [A= B],

follows the definition sin the previous sections (3.2,3.3). We first define 4= p and
ua= p explicitly using (A]) = (B]). Later we will define (A = B)) as subpresheaf
of (A)) = ((B)). Naturally we will have to show that us=p produces results in
the subpresheaf, whereas q4- p causes no problems.

Lemma9. qa=p and ua=p are natural in A and therefore morphisms in PSh(W) :
qa=n5 € PSh(W)(([A]) = (B),NF(A = B))
ua=p € PSh(W)(NE(A = B), (4) = (B])

Lemma10.

A= B °Ua=B = A= B
Proof. Assume A and M € NE(A, A = B) we have :

qa=B,A(1a=p,a(M))

= XaB,a.a(up aa(app(M+™44 qa 4 a(ua,a.4(04.4)))))))
= Aapp(M*724,04,4))

=M

(A = B]) is defined as a subpresheaf of the full function space in PSh(W).
We give here the explicit set-theoretic definition first :

Definition11.

VAe|Tm| weW(A I') we(A) ,
(A= B)r =1 fe((4) = (B))r| i(apa(f(A,w,z)) =
aPPA,A,B(i(QA:B,F(f)er)ai(QA,D(l‘)))

(A = B]) can be characterized as the equalizer of the following two arrows :

lpa) = as
(A) = (B) (A]) = NF(A)
(a4 = Tyws)) o A(app(i,i)) 0 qa= 5

We have to show that ua= p will always produce results in (A = B]J).
Lemma 12.
uasp € PSh(W)(NE(A = B), (A = B))

i.e. we have to show that for any A, M € NE(A, A= B) : f = ua=sp a(M) full
fills the condition from definition 11.

Proof. Assume A € |Tm|,w € W(A, I'),z € (A]) 5

aB,a(ua=pB a(M)(A, w,z))

=up a(gp a(@PP(MT, qa a(z))

=app(M*t" qa,a(x)) property of B

= apP(QA:B,F(UA:B,F(M))+w,qA,A(;r)) by lemma 10

We can conclude that
A= B= (A= B,(A= B),uasB,q4=B8)
is an object in TwGl. It remains to show that this is indeed an exponential.
Lemma 13. Given a € TwGI(I' x A, B)
ATV @) = (AP ((a]), M)
€ TwGl(I', A= B)
Proof. We have to verify :
1. The diagram from definition 5 commutes :
iodazp o AT ((a]) = Yw(A(@)) o qr

Assume A,y € (') 4

quB(A(([a]))A('y))
B((0) axa(v"™ u4,2x4(0))))
T ua,axa(0))) property of a

"),d4,4(u4,4x4(0))))
™,0) by lemma 10

OqrxAa,A

Alq

(cx (v
(eo(araly A
(e

(

o(ara(y*

A
A
A
Ala) oqr,a(y)

2. ATWGl(q) € ([A = B)), that is we have to check the condition from definition
11: Assume A,y € (I') ,,w € W(A", A),a € (A 4 :

app(da=n5,a (A((@])a() ™™, d4,a/(a))

= app((M@) oqr.a(¥) ", qa,a:(a)) previous case
= app(A(a o (ar,a (7)™, 0)), da,4/(a))
=ao(qra()™,aaa/(a) (8

=ap a((@)(v*™,a)) property of a

=dp 4 (A[D)a (N (A, w, a))

Lemma14. Assume o € TwGI(I', A= B),3 € TwGI(T', A)

APPTYC!(a, §) = APPPS" W) (((a]), (8)), app(ex, B))
€ TwGI(I', B)

Proof. We only have to verify that he diagram from definition 5 commutes :

i0.ap o APPPH™)((a]), (4) = Yw (app(ar. B)) oo ar

Assume A,y € () p

app(a, 8) o (ar,a (7))
=app(a o (qra(v)),B o (ara(v)))

= app(qa=n,a((@) (7)), aa((B) a(v))) property of a
=apa((@)p()(A,14,([B) 4(7))) cond. from def.11
= qs,a(APP((a]), (B)) a(v))

Lemma15. (A = B)) is the exponential in TwGl1 with AT*E! and APPTVE!,

Proof. By lemmas 13 and 14 we know that ATYG! and APPTYE! are morphisms
with the appropriate type. This is already sufficient since the equations follow
from the corresponding equations on the components.

Proof of Theorem 6:

1. That TwGl is a contextual CCC follows from lemma 5 together with the
trivial construction of products (which we have omitted).

2. That P preserves the contextual CCC structure on the nose follows imme-
diately from the construction, since we defined products and exponential on
the appropriate components directly by using the corresponding construc-
tions from Tm.

4 Conclusions and further work

This work can be seen as a further attempt to demystify normalization proofs
by freeing them from the syntactic details which bare the view to the underlying
ideas. As a side effect we obtain new implementations of normalization, which
may be interesting from a computational point of view.

We hope to be able to apply these ideas to obtain provably correct nor-
malization functions for some systems for which the syntactical proofs become
very hard or fail. The extension to products with surjective pairing seems rather
trivial since we have already exploited the product structure in PSh(W) for

the interpretation of contexts. A more challenging example is the normaliza-
tion for strong coproducts which has only recently been investigated by Ghani
[Gha95]. Following a suggestion by Thierry Coquand we are investigating the
completeness proof for a variant of Beth models which gives rise to a normal-
ization function for coproducts. The proof relevant version of those models are
motivated by sheaf models; however it seems to be necessary to consider some
modifications to the standard sheaf semantics.

Another interesting case are systems with dependent types where the fact
that the n-rule leads to a failure of Church-Rosser on typed terms causes prob-
lems. We hope to be able to extend our approach to this case, thereby obtaining
an explanation or an alternative to [Coq91].

Acknowledgements

This work has benefitted from numerous discussions with our colleagues in the
BRAs CLICS (Categorical Logic in Computer Science) and TYPES (Types for
Proofs and Programs). We would like to thank especially Ulrich Berger, Thierry
and Catarina Coquand, Peter Dybjer, Andrew Pitts and Helmut Schwichtenberg.
To typeset the diagrams we used Paul Taylor’s diagram package.

A The normalization function in ML

The following ML program implements the function which can be extracted from
our proof, i.e. we derive a function

val nf = fn : Ty list -> Ty -> Tm -> Tm

which, when applied to a context G, a type S and a term M with the property

that M has type S in context G, calculates the long #n-normal form of M. If the

algorithm is applied to incorrect arguments it may fail or may not terminate.
Note the following deviations from the proof :

— We do not introduce NF;NE but calculate a term. Although it would be
possible to express the restriction to NF and NE in ML, this does not seem
to be sensible from a programming point of view.

— We only normalize terms whereas the categorical construction works for
substitutions.

Note that the presented program reflects the structure of the proof. To im-
prove efficiency a number of optimizations are possible, e.g. one can use machine
integers to represent variables and weakenings.

infixr —-->;

datatype Ty = 0 | —--> of Ty*Ty;

type Co = Ty list;

datatype Tm = var0 | varS of Tm | lam of Tm | app of Tm*Tm;

datatype Wk = w_id | wl of Wk | w2 of Wk;

val

fun

fun

w_pi = wi(w_id);
o_wk w_id W =W
o_wk (w1l w) w’ = wi(o_wk w w’)

o_wk (w2 w) w_id = w2(w)
o_wk (w2 w) (w1 w?’) = wi(o_wk w w’)
o_wk (w2 w) (w2 w’) = w2(o_wk w w’);

wk_tm w_id M = M

wk_tm w (lam M) = lam (wk_tm (w2 w) M)

wk_tm w (app (M1,M2)) = app(wk_tm w M1,wk_tm w M2)
wk_tm (w2 w) (varS M) = wk_tm w M

wk_tm (w2 w) var0 = var0

wk_tm (w1l w) M = varS (wk_tm w M);

datatype V1 = v_o of Tm | v_arr of Wk->V1->V1;

fun

fun

wk_vl w (v_o M) = v_o (wk_tm w M)
wk_vl w (v_arr f) = v_arr (fn w’ => fn x => f (o_wk w w’) Xx);

wk_vls w xs = map (wk_vl w) xs;

q0 (v_o M) =M
q (8 ——>T) (v_arr £f) = lam (q T (f w_pi (u S var0)))
ulOM=v_oM
u (S -—>T) M=
v_arr(fn w => fn x => (u T (app (wk_tm w M,q S x))));

eval var0 (x::x8) = x
eval (varS M) (x::xs) = eval M xs
eval (lam M) xs =
v_arr (fn w => fn x => eval M (x::(wk_vls w xs)))
eval (app (M1,M2)) xs =
case (eval M1 xs) of
(v_arr £f) => £ w_id (eval M2 xs);

id [1 =[]
id (S::G) = (u S var0)::(wk_vls w_pi (id G));

fun nf G S M = q S (eval M (id G));

References

[Ber94]
[BS91]

[CD93]

[Coq91]

[Coq94]

[Gha95]

[HS95]

[Kri65]

[LS86]

[ML75]

[MMo91]

Ulrich Berger. Personal email to Thomas Streicher, April 1994.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-
tional for typed A-calculus. In Proceedings of the Sixzth Annual Symposium on
Logic in Computer Science, pages 202 — 211, 1991.

Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Preliminary Proceedings of the 1993 TYPES Workshop,
Nijmegen (accepted for publication in Mathematical Structures in Computer
Science), 1993.

Thierry Coquand. An algorithm for testing conversion in type theory. In
Logical Frameworks. Cambridge University Press, 1991.

Catarina Coquand. From Semantics to Rules: a Machine Assisted Analysis.
In Borger, Gurevich, and Meinke, editors, CSL’93, pages 91-105. Springer-
Verlag, LNCS 832, 1994.

Neil Ghani. fBn-equality for coproducts. In Mariangiola Dezani-Ciancaglini
and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, number
902 in LNCS, pages 171-185, 1995.

Gérard Huet and Amokrane Saibi. Constructive category theory. In Peter
Dybjer and Randy Pollack, editors, Informal proceedings of the joint CLICS-
TYPES workshop on categories and type theory, 1995.

Saul A. Kripke. Semantical analysis of intutionistic logic I. In J.N. Crossley
and M.A.E. Dummett, editors, Formal systems and recursive functions. North
Holland, 1965.

Joachim Lambek and Phil Scott. [Introduction to Higher Order Categorical
Logic. Cambridge University Press, 1986.

Per Martin-Lof. An Intuitionistic Theory of Types: Predicative Part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages 73-118,
Amsterdam, 1975. North-Holland Publishing Company.

John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda
calculus. Annals of Pure and Applied Logic, 51:99-124, 1991.

[NPS90] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in

Martin-Lof’s Type Theory. An Introduction. Oxford University Press, 1990.

[TvD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An Intro-

duction, volume I1. North-Holland, 1988.

This article was processed using the I#*TEX macro package with LLNCS style

