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1 Introduction

These notes present some simple examples of mechanic program verification in Type
Theory. The examples have been developed using the ALF proof editor !.

Type Theory is a basic formalism which can be viewed as a constructive alterna-
tive to set theory. The important ideas were developed by the Swedish logician Per
Martin-Lof in the early 70’s [ML75]. Due to its constructive character Type Theory
can be viewed as a pure functional programming language whose type system is so
powerful that specifications can be expressed as types. Verifying correctness is then
reduced to type checking.

We shall present Type Theory based on this (modern) point of view. Intuitionis-
tic logic can be encoded inside the theory using the idea of propositions as sets (and
proofs as programs). We emphasise in particular the idea of integrated verification,
i.e. where the program and the correctness proof are considered as a unit.

There are a number of implementations of Type Theory: One of the earliest is the
NuPRL system which was developed by Constable and his group at Cornell [Con86].
Different to most of the other implementations NuPRL is based on extensional Type
Theory, which has an undecidable type checking problem.

During two ESPRIT projects several systems based on Type Theory were de-
veloped in Europe: The LEGO system [LP92] in Edinburgh and the Coq system
at INRIA are both based on the Calculus of Constructions by Coquand and Huet
[CH86], which is an impredicative extension of Martin-Lof’s Type Theory. Several
generations of the ALF system were (and are) developed at Chalmers in Goteborg,.
This list is by no means complete and there are systems like Isabelle [PN90] which
is a meta logic and can be (and has been) used to encode Type Theory.

There are a number of good introductions to Type Theory available now: lecture
notes by Martin-Lof were once published as a book [ML84] which is, alas, not
available anymore. A very nice tutorial on Type Theory with a similar spirit as
ours has been published by Backhouse et al [BCMS89]. The book by Nordstrom
et al [NPS90] also emphasises the programming view of Type Theory, one of the
main differences to our exposition is that they do not use pattern matching. A more
recent alternative to Nordstrom et al is Simon Thompson’s book [Tho91]. Zhaohui
Luo’s book [Luo94] concentrates more on the meta theoretic investigation of UTT,
which is pretty close to the language used in the LEGO system.

The material presented here is the background to some lectures I gave: First in
February 95 as a postgraduate course at Chalmers University of Technology, then
in October ’95 as a one week seminar at the University of Kent and during summer
term ’96 as a course at the Ludwig-Maximilian-University in Miinchen. I prepare
these notes especially for a course at the summer school ESSLLI ’96 which is taking
place in August ’96 in Prague.
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2 Type Theory as a Programming Language

We shall introduce the basic concepts of Type Theory by example. Later we will be
more precise. The Type Theory used here is the theory implemented in the ALF
system and all the examples were developed with the system.

2.1 Hello World in Type Theory

We view Type Theory as a functional programming language with a powerful type
system. One important difference to languages like SML or Haskell is that we only
allow total (i.e. terminating programs). This is important if we want to use Type
Theory as a programming logic.

A basic type is the type of sets Set. To every A € Set we associate elements
a € A. New set constants or connectives are introduced by giving their constructors.

Here is the definition of the of natural numbers Nat and the connective for lists List?:
Nat [0 Set

0 O Nat

s O (Nat) Nat

List O (A O Set) Set

nl O (A O Set) List(A)

cons OO (A0 Set; adA; | O List(A)) List(A)

The elements of Nat are well founded trees which can be built from the con-
structors, i.e. 0 € Nat,s(0) € Nat,.... The connective List is itself a function,
i.e. given a set A, List(A) is the set of lists which can be constructed using the
constructors cons and nil: nil(A),cons(A4, a,nil(A)), cons(4, a, cons(A4, b, nil(A)), ...
where a,b,... € A.

We have already used function types in the example above, i.e. the type of s
is (Nat)Nat which is denoted as Nat — Nat in more conventional notation (and
in other implementations of Type Theory). By (A;B)C etc. we denote curried
function types, i.e. written as A — (B — () in conventional notation. The type of
nil, (A € Set)List(A), is an example of a dependent function type, in conventional
notation this can be written as ITA € Set.List(A).

In conventional typed functional programming languages the constants nil and
cons are polymorphic, i.e. they have infinitely many types. Here this is not the
case, i.e. they are monomorphic. This is achieved by considering the (name of the)
set A as an explicit parameter. This is the first use of dependent types we encounter.

We want now to define new functions over the sets we have introduced. Simple
examples are addition of natural numbers add, and the second order function map
which applies a function to every element of a list. We introduce new constants
add, map and define them by pattern matching:

add O (Nat; Nat) Nat
add(0,hy) = hy
add(s(hp), ) = s(add(hy, hy))

map O (LA, :B O Set; (A)B; List(A)) List(B)

map(A, B, h, nil(L)) = nil(B)

map(A, B, h,cons(_, a,1)) = cons(B, h(a), map(A, B, h, 1))

map, add are called non-canonical or implicit constants. They do not introduce
new elements in the sets defined so far because any application of add or map can
be reduced to an expression constructed from canonical constants.

Not every definition from functional programming is legal in Type Theory: we
require that the patterns are complete® and that the recursion is structural, ie.
a recursive call has to use a subexpression of the pattern. These restrictions are
important to achieve the goals that non-canonical constants do not introduce new

2We ignore the | for the moment.
3SML and Haskell give warnings for incomplete patterns.



elements in (first order) sets and that the reduction to canonical expressions termi-
nates.

Another form of constants are explicit constants which can be viewed as implicit
constants defined by a trivial pattern. An example is the following definition of the
doubling function:
dol O (Nat) Nat

dbl = [hadd(h, h)

Here [z] ... denotes A-abstraction. A-abstractions are also useful when defining
local functions as in map([z]s(s(z)))! which increases every element of [ by two.

Some implementations of Type Theory (e.g. LEGO, Coq) require to anno-
tate A-abstractions by the type of the domain, i.e. we would have to write [z €
Nat]add(z, ). However, this is not necessary since we require that every definitions
is typed and we expect that definitions do not contain 8-redices (i.e. subterms of
the form ([z]M)(N)).

2.2 Hiding and argument synthesis

The syntax we have introduced seems very clumsy and explicit, e.g. consider the
expression :
map(Nat, Nat, s, cons(Nat, 0, nil(Nat))

The explicit set parameter Nat clutters up the expression without giving any new
information, because we can infer them from the types of s and 0.
Indeed, we can write

map(?,7?,s, cons(?,0,nil(?))

and all the 7’s can be inferred. This mechanism is actually implemented in the ALF
system.

The expression still looks too complicated, the ?’s don’t convey any information
either. Now we come back to the |’s we have ignored so far: They indicate that
the marked arguments can be hidden, i.e. not printed. Using this the expression
becomes:

map(s, cons(0, nil))

which is pretty close to the presentation in a polymorphic functional language.

The important point is that we don’t have to make our basic language more
complicated (e.g. by introducing polymorphism) to make the syntax legible and
easy to write. We don’t need type inference or the decidability of type inference as
a basic property of our language. And the concept of argument synthesis turns out
to be more general then type inference because we can also infer other parameters
and not just the one which have type Set — this is often the case for the parameters
to proofs.

Hiding is important to make complicated expressions readable. However, we can
also hide too much, some important information can be lost. Hence, it is important
for an implementation to make hidden arguments accessible if the user wants to see
them.

2.3 Using dependent types in programming

In functional programming we will often introduce partial functions like hd € (A €
Set; List(A)) A which is defined by hd(A4, cons(A,a,as)) = a. This is not a legal
definition in Type Theory because the pattern is not complete, it does not cover the
case of an empty list. In a functional programming evaluating hd(nil) will trigger
an exception, i.e. a run-time error.



Using dependent types we can replace partial functions like hd by total ones
and avoid the need for exceptions and run time errors. Moreover, since we have
invested more effort at compile time, some programs can be, in principle*, compiled
to more efficient code. This is reminiscent to the gain in efficiency when moving
from untyped programs (like LISP) to typed programs (like SML). Note that also
in this case runtime errors are avoided at the same time.

We replace List(A) € Set by a refinement which we call vectors Vec(A) €
(Nat)Set. Vec(A) is a family of sets indexed by natural numbers and the idea is
that Vec(A,n) is the set of lists of length n.

Vec O (A O Set; n O Nat) Set
nilvee O (1A O Set) Vec(A, 0)
consyec 0 (¢A O Set; :n O Nat; A; Vec(A, n)) Vec(A, s(n))

Vec(A,n) are sets of expressions which can be built from nilyec and consye, with
the appropriate types, i.e.?

Vec(4,0) = {nilyec}

Vec(4,s(0))
Vec(4,s(s(0)))

{consvec(a,nilvec) | a € A}

{consyec(a1, consyec(as, nilyec | a1, a2 € A})

Now it is straightforward to define a total counterpart to hd:
hdvee O (A O Set; n O Nat; Vec(A, s(n))) A

hovec(A, N, consye(hy, o)) = 1y

The pattern is complete because nilyec is never of type Vec(A, s(n)). The imple-
mentation of ALF supports the automatic generation of complete sets of patterns
like this.

The function map can be refined to a function mapy,, whose type indicates that
it does not change the length of the list.
mapve: O (LA, 1B 0 Set; «n O Nat; (A)B; Vec(A, n)) Vec(B, n)

mapyec(A, B, -, h, nilyec(-)) = nilyec(B)

MaPvec(A, B, —, h, consyed(—, m, h, hg)) =

consyec(B, g, h(he), mapvec(A, B, ny, h, hg))

Another example is the function zip which applies a function componentwise to
two lists constructing a new list (hence the name). A natural requirement for zip is
that both lists have the same length, which can be easily expressed using dependent
types and vectors.
zip O (f O (A; B C, Vec(A, n); Vec(B, n)) Vec(C, n)

Zp(F, nilves, Nilved) = Nilvee

ap(f, consyec(hz, h3), consvec(n, ) = consvec(f(hz, h), Zip(f, hs, ha))

An interesting consequence of the definition of zip is that we never have to
analyse the second argument because it is determined by the form of the first one.
This insight can be exploited to generate more efficient but still safe code.

We may view Vec(A,n) as the type of arrays of a certain size. How can we
define the access function for arrays without introducing partiality?

We introduce the family Fin € (Nat)Set which is a canonical representation of
finite sets of size n and hence isomorphic to the set of natural numbers less than n.
Fin O (Nat) Set

Orin O Fin(s(n))

Srin 1 (Fin(n) Fin(s(n))

4To my knowledge this idea has not yet been used in the implementation of a compiler.

5We omit hidden arguments here.

6This gain seems to be more then compensated by the additional argument of type Nat. How-
ever, we should be able to tell the compiler that this argument is never needed at runtime but
only for type checking at compile time.



Fin(n) represents precisely the address space of Vec(A,n) and indeed we can
implement a total version of nth as follows:
nth O (Fin(n); Vec(A, n)) A

nth(Ogin, consyec(h, hy)) = h

nth(sein(hy), consyec(h, hg)) = nth(hy, hg)

Due to the use of argument synthesis and hiding the function definition above
resembles the definition of the partial function nth for lists.

We summarise that dependent types can be used to avoid unsafe access to arrays
without having to introduce a runtime overhead.

Exercise 1 Write a library of vector-processing functions, with functions like:

appendy,. € (A € Set;m,n € Nat; Vec(A, m); Vec(A4, n))Vec(4, add(m, n))
insertvee € (A € Set;n € Nat; Vec(4,n);i € Fin(s(n)); A)Vec(4,s(n))
deletevec € (A € Set;n € Nat; Vec(4, s(n));i € Fin(s(n)))Vec(4,n)

where append is the obvious generalisation of append for lists and insert inserts
an element at a specified position and delete deletes one.

Exercise 2 Define pow(n) = 2" by repeated addition and define a function
val € (n € Nat; z € Vec(n, Bool))Fin(pow(n))

which calculates the value of binary number represented as a (reversed) list of bits
(= Bool).

2.4 Higher-order sets

All the sets we have defined so far are first-order, i.e. the domains of the constructors
do not include function types. However, we have already defined some second order
functions, i.e. map and mapyc.’

In the ALF’s Type Theory all inhabitants of the type Set are defined by in-
ductive definitions. In particular sets are not automatically closed under function
types, it is not the case that (A) B € Set even if A, B € Set. (A)B is syntactically
a type and never a set.

Indeed, in the moment we are not able to define the type of lists of functions
List((A)B) because we can apply List only to a set not to a type.

However, the problem is not so serious, because we can represent the function
set Fun(A, B) as follows :

Fun O (A B O Set) Set

fun O ((A) B) Fun(A, B)

An important operation on function sets is application, which can be defined by
pattern matching :
app O (Fun(A B); A) B

app(fun(hy), hy) = hy(hy)

One may ask why we do things in such a complicated way and do not just
consider sets closed under (A)B. This is a possible choice but it has some disad-
vantages:

1. We lose the property that all sets are defined inductively (and hence we can
always do pattern matching over a set).

2. In our system every constant has a fixed arity, i.e. the number of arguments
it can be applied to. If we close sets under function types, a constant like
[A,z]z € (A € Set;z € A)A has an arbitrary number of arguments.

"The order of a function type ord((A)B) is defined as the max{ord(A) + 1,ord(B)}. Hence
currying (A; B)C etc. does not increase the order.



3. We may want to consider a subsystem where all sets are first order. This can
be easily achieved by restricting ourselves to sets whose constructors are first
order.

The connective Fun introduces non-dependent function sets. In a similar way
we can define dependent function spaces or II-sets :
M O (A D Set; BO (A) Set) Set

A O (f O @OA)B@) MN(A B)
app' O (M(A,B); al A) Ba)

app' (A(f), @) = f(a)

Using higher order constructors we can introduce sets whose elements correspond
to infinitary branching trees. An interesting application is the following notation
system for countable ordinals :

Ord O Set

0 O ord

s O (Ord) Ord

lim O ((Nat) Ord) Ord

Ordinal notations are generated inductively from 0, s' and lim. The latter allows
us to construct limes ordinals over countably infinite sets of ordinals which are
represented as a function of type (Nat)Ord. There is an obvious embedding from
natural numbers to ordinals
nat2ord [0 (Nat) Ord

nat2ord(0) = O

nat2ord(s(hy)) = s (nat2ord(hy))

which we can use to define a representation for the smallest infinite ordinal w :
w 0 Ord

w = lim(nat2ord)

Using pattern matching we can implement ordinal addition:
addorg O (Ord; Ord) Ord

addorg(h,0') = h

addora(h, s (hp)) = s (addord(h, h2))

addora(h, lim(hp)) = lim([hy]addora(h, ha(hy)))

Exercise 3 Implement multiplication and exponentiation for ordinal notations and
define the ordinal €y (the limes of w towers). Implement the slow growing hierarchy
G € (Ord; Nat)Nat which is defined as follows:

Gla,m) = 0
Gla+1,n) = G(an)+1
G(lim(A),n) = G(A(n),n)

This shows that we can define G(eg), which is not definable in Peano arithmetic.

The inhabitants of higher order sets like Ord can still be considered as well
founded (but possibly infinitely branching) trees. This view is no longer possible
when we use the set we are defining in a negative position, as in :

D O Set

lan O ((D)D) D

Using D we can encode untyped A-terms which destroys important properties
of the system like decidability of equality and type checking.

Double negative definitions like
R O (Set) Set

r O (A O Set; (RIA)A) A) R(A)

seem to be harmless as far as the essential properties are concerned. However,
they are incompatible with our view that elements of sets are well-founded trees.

We conclude that we will only allow strictly positive definitions of sets.



3 Logic for free

So far we have just introduced programming language constructs. It seems that
we have to extend the language to be able to express specifications and correctness
proofs. Surprisingly, this is not the case, the logic is already there!

3.1 Propositional logic

The connectives of classical logic are defined as truth functions. I.e. to see that
(AANB)VC) = (AVC)A(BV (D)) (1)

is a tautology, we just have to check that all truth assignments to the propositional
variables A, B, C evaluate to true. This is the well known idea of truth tables.

In intuitionistic logic we can define truth by provability. I.e. we explain how
to construct proofs of compound propositions from proofs of components. This
corresponds to the Brouwer-Heyting-Kreisel (BHK) semantics of intuitionistic logic:

conjunction A proof of A A B is a pair of proofs for A and B.
disjunction A proof AV B is a bit b and

e 3 proof for A if b =0,
e a proof for B if b = 1.

implication A proof for A — B is a procedure which computes proofs of B from
proofs of A.

false There is no proof of False.

In Type Theory we go one step further and identify a proposition with the set
of its proofs. The basic propositional connectives are now simply the Cartesian
product A x B for conjunction, disjoint union A + B for disjunction, the empty set
() for falsum and function space for implication.

Here are the definition of the propositional connectives in ALF (we repeat the
function sets here) together with some useful implicit constants®:

And O (A,B [0 Set) Set

and O (A; B) And(A, B)
fst O (And(A, B)) A

fst(and(hy, hp)) = hy
snd O (And(A, B)) B

snd(and(hy, hp)) = hy
Or O (A, B O Set) Set

im O (A) Or(A,B)

i, O (B) Or(A, B)
or_case O ((A)C; (B)C; Or(A,B)) C

or_case(h, hy, im(hs)) = h(hg)

or_case(h, hy,in(hg)) = hy(hg)

Fun O (A B O Set) Set

fun O ((A) B) Fun(A, B)
app O (Fun(A,B); A) B

app(fun(hy), hy) = ho(hy)

False O Set
bot O (False) A

Notation 1 In the text we shall use the ordinary symbols A\,V,— to denote And,
Or, Fun. Alternatively we will also use x and + for And and Or. Alas the interface
to the ALF editor is not yet so flexible (e.g. it doesn’t allow infiz notation).

8Note that we haven’t left out the definition of False but False is defined as a set with no
constructors



Based on this we can now construct a proof of (1) using pattern matching (and
an auxiliary function tautl) :

tautl O (A,B,C O Set; Or(And(A, B), C)) And(Or(A, C), Or(B, C))
taut1(A, B, C, in(and(h, hp))) = and(iny(h), imy(hz))

tautl(A, B, C,iny(hy)) = and(ing(hy), iny(hy))

taut O (A,B,C O Set) Fun(Or(And(A, B), C), And(Or(A, C), Or(B, C)))

taut = [A, B, Clfun(tauti(A, B, C))

Note that the idea of the classical and the type theoretic proof are quite different.
We do not consider possible truth assignments but we construct a concrete object,
in fact a program, which gives direct evidence for the truth of the proposition.

Slogan : Theorem proving in Type Theory is the same as writing a (functional)
program.

As in intuitionistic logic the principle of excluded middle AV —A is not provable
in Type Theory. The reason is that we cannot write a program of type (A €
Set)Or(A, Fun(A, False)). Such a program would decide for every set whether it
is empty or not. Since we can encode arbitrary propositions in Type Theory such
a program would magically decide the truth of any (unproven) propositions like
Goldbach’s hypothesis that there exists an infinite number of twin prime numbers.

Another principle which is unprovable in intuitionistic logic is - A — A. Indeed
this is equivalent to the excluded middle. As rule of thumb we can say that proofs of
negated formulas carry less information than positive (unnegated formulas). This
also affects the de Morgan Laws: (—~AA—B) — —(AV B) is provable but =(AV B) —
(A A —B) is not. As a consequence intuitionistic logic differs from its classical
counterpart that we cannot define the connectives in terms of each other (ie. in
classical logic all connectives can be defined from V, ).

Exercise 4 Encode and prove the following proposition in Type Theory :
1. (AANB) = C) <= (A—>(B—-C())
2. ((AVB)=»(C) << (A=-C)AN(B—=0))

3. (—|A A —|B) — —|(A \% B)
Can these be generalised to < ¢

4. (A = -4
Exercise 5 Show formally that the principles ——A — A and AV-A are equivalent.

3.2 Predicate logic

How do we interpret predicates like Prime? For every natural number we obtain
a proposition Prime(n) which we consider as a set of proofs. Hence, a predicate
is a family of sets Prime € (Nat)Set i.e. it has the same type as Vec(A) or Fin.
However, the latter are uninteresting from a logical point of view?.

In defining the basic connectives we follow the semantic intuition introduced in

the last section :

Universal quantification Given a predicate B € (A)Set over A € Set, we say
that B is universally true, if we can define a function which assigns to every
a € A a proof in B(a). This precisely corresponds to the dependent function
space we have introduced earlier.
M O (A D Set; BO (A) Set) Set
A O (f O (a0 A) B@) MN(A B)
app' O (M(AB); all A) B@)
app'(A(f). &) = f(a)

9Vec(A) is always true, because it always has a proof nilye. and Fin is true for n > 0 because
it always has a proof Opip,-




Existential quantification Given A € Set, B € (A)Set as above, we say that B
is existentially true if we have an a € A and a proof b € B(a). This type is
called a ¥-type and can be defined as follows:

S O (A D Set; B O (A) Set) Set

par 0 (a0 A; b O B(@) (A, B)

™ U (Z(A B) A

my(pair(a b)) = a
T O (p O 2(A B)) B(Tu(p))
Ty(pair(a, b)) = by

Notation 2 We will usellz € A.B,Yx € A.B or alternativelyVe € A.B,3x € A.B
to denote TI(A, [z]B), (A, [z]B).

Y-types are called the type of dependent pairs because they generalise the type
of pairs And in a way similar to the way dependent function space II generalises
Fun.

There are also computational applications for X-types. Just to mention a simple
one: we can recover the type of lists from vectors by defining List'(4) = ¥n €
Nat.Vec(A,n), i.e. the infinite, disjoint union of Vec(A, n) over all n € Nat.

Again we cannot define the connectives in term of each other, i.e. although we
can prove (Ja € A.—B(a)) = —(Va € A.B(a)) we cannot show the contraposition
—(Va € A-~(B(a)) = (Ja € A.B(a)).

By the axiom of choice we mean here that for every relation R € (A4; B)Set such
that we can show Vz € A.3y € B.R(a,b) we can actually construct a function f €
(A)B such that Vz € A.R(a, f(a)). In classical set theory this axiom is considered
as an additional assumption which has a number of (sometimes counterintuitive)
consequences. The situation in intuitionistic logic and in Type Theory is different,
because the proof of the premise already contains such a choice function. Indeed,
we can prove the axiom of choice by pattern matching:

ac O (A,B O Set;
R O (A; B) Set;
N(A [N Z(B, [ R(h, hy)))
) Z(Fun(A, B), [N]IT(A, [y R(hy, app(h, hy))))
ac(A, B,R A(f)) = pair(fun([hmu(f(h))). A([alTe(f(a))))

Exercise 6 Prove the following propositions in Type Theory:
1. (3z € X.A(z)) » B) <= (Vz € X.A(z) —» B)
2. (Fz: X.A(z)) - (-(Vz € X.—A(x)))

3.3 Equality

So far we have not introduced any (interesting) basic predicates or relations. We
will use the mechanism for defining new sets to define new predicates — our first
example is equality.

Equality for a set A is a predicate over pairs of A ie. it will have the type
(A; A)Set. As before we will represent a polymorphic operation by explicit parametri-
sation, hence equality should have the type (A € Set; A; A)Set.

The definition of equality in Type Theory is very simple: the only proof of an
equality is reflexivity, which becomes the constructor id for equality proofs.

Id O (A D Set; a,b0A) Set

id O (A O Set; .x OA) Id(A, x, x)

Let us prove that Id is an equivalence relation. Since reflexivity is the construc-
tor, it remains to show symmetry and transitivity. It turns out that this is very
easy using the idea of pattern matching in ALF:
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symld O (A O Set; 1a,:b O A; Id(A, a b)) 1d(A, b, a)

symId(A, _ b,id(,_)) = id(A b)
transld O (LA O Set; 1a,:b,:c O A; Id(A, a,b); Id(A, b, ) Id(A, a,c)

transld(A, —, —, ¢, id(—, ), id(—, ) = id(A,c)

How can we understand the proof of symmetry symId? Since the only construc-
tor of Id(A, a,b) is id(a), hence the pattern is complete. Moreover since id( a) has
the type Id(4, a,a) we know that a = b'°. Applying this constraint to the goal
Id(A,b, a) we see that we only have to prove Id(A,b,b) which is easy just using
id(b). The proof of transitivity can be understood in an analogous way.

A basic property we would expect from equality is that equal arguments can be
substituted inside predicates and that equality is a congruence for every function
definable in the system. Actually, the second property is easily derivable from the
first but since both have very simple proofs using pattern matching we prove them
independently :
respld O (\A,:B O Set;

g OA;
f0(AB;
Id(A a,a)
) 1d(B, f(a), f(a'))

respld(A, B, a,f,id(_, 1)) = id(B,f(&))
substld O (1A O Set; 1a,:b O A; Id(A,a,b); C O (A) Set; C(a)) C(b)

substld(A, , b,id(-, ), C,hy) = hy

Since we have already defined the set of natural numbers Nat we want to prove
the axioms of arithmetic dealing with equality, i.e. that no successor is equal to
0 and that if the successors of two numbers are equal then already the numbers
we started with are equal, i.e. that s is an injection. Again, we apply pattern
matching :
inlS O («m,.n O Nat; Id(Nat, s(m), s(n))) Id(Nat, m, n)

NS, n,id(,_)) = id(Nat, n)
notld0_S 0 (:i O Nat; Id(Nat, 0, s(i))) False

The proof of injectivity uses the fact that from the constraint s(x) = s(y) we can
derive the constraint = y. This follows from the principle that all expressions of
type Nat can be built from the constructors. Similarly, we know that 0 # s(z) and
hence we can generate an empty pattern in the proof of the no-confusion property!!.

Notation 3 We denote Id(A,z,y) by x =4 y or if the set A is clear from the
context just T = y.

Id can also be applied to higher-order sets like Fun,II or Ord, However, this is
not very useful since the principle of extensionality

(A,BeSet;f,ge A— B;(a€ A)f(a) =g(a))f =g

is not provable. This is a shortcoming of intensional Type Theory as we use it!2.

3.4 Induction

The principle of induction is expressible in Type Theory since we allow sets and
also families of sets (which represent predicates) as parameters. In fact induction
can be proven using pattern matching:

10read a is definitionally equal to b see section 4 for the definition.

HUThere is a bug in the current implementation of ALF which makes it impossible to
define empty patterns at top level. This can be avoided by using a case-expression:
notld_0_S O (.i O Nat; Id(Nat, 0, s(i))) False

notld_0_S(i,h) = case h O Id(Nat, 0, s(i)) of
end
12Martin Hofmann’s PhD thesis [Hof95a] investigates this problem and possible solutions.
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indNat O (P O (Nat) Set;

P(0);
(nONat; P(n)) P(s(n));
n O Nat

P
indNat()P,(rT)hl, 0)=h
indNat(P, h, hy, s(hp)) = ha(hy, indNat(P, h, hy, hy))

Computationally, the induction principle corresponds to the scheme of primitive
recursion for dependent types. In conventional presentations of Type Theory this
induction principle is the only way to define functions (or proofs) with domain Nat.
Pattern matching arose as a generalisation of this scheme.

In the conventional approach we have to generate an induction principle for
every type we introduce, e.g. for List and Fin
indList O (A O Set;

P O (List(A)) Set;

P(nil(A));

(@OA; | OList(A); P(1)) P(cons(A, a,1));
I O List(A)

PO .

indList(A, P, h,hg,nil(L)) = h

indList(A, P, h, hy, cons(_, 1)) = hu(a, I, indList(A, P, h, hy, 7))
indFin O (P O (nO Nat; Fin(n)) Set;

(nONat) P(s(n), Orin(N));

(nONat; i OFin(n); P(n, 1)) P(s(n), Srin(n, i));
n O Nat;

i O Fin(n)

)P(n, i)

indAN(P, h, hy, —, Ogin(n1)) = h(ny)

indFin(P, h, hl, - spin(nl, hz)) = h]_(nl, hz, mdFm(P, h, hl, Ny, hz))

Usually, proofs by pattern matching can be translated into proofs using only
the induction constants. However, in many examples these proofs are much more
complicated than the original proofs. Another shortcoming is that they lead to
very artificial programs using only primitive recursion. As an example consider the
definition of max using pattern matching
max O (Nat; Nat) Nat

max(0,hy) = hy

max(s(hz), 0) = s(hp)

max(s(hp), s(h)) = s(max(hy, h))

This can be translated into a program only using indNat using higher order

functions:
max’ O (Nat; Nat) Nat
max’ =

axX =
[h, hy
app(indNat(
[ho] Fun(Nat, Nat),
fun({hz]h),
[n, he]fun(indNat([he] Nat, s(r), [V, he]s(app(hz, 0')))),
h),
hy)

Obviously, the second version is much harder to read and it uses higher order
functions.

However, pattern matching is in general not conservative over induction. A
counterexample can be derived for the case of Id. Here the induction principle is
the following:'3

13The constant indId has also been called J or idpeel
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indld O (A O Set;
abOA
PO (a]_, b OA; |d(A, ay, b]_)) Set;
(al 0 A) P(al, ay, Id(A, a]_));
p O Id(A, a,b)

~)P@bp

indid(A, _ b, P, h,id(_,_)) = h(b)

Using pattern matching we can derive the principle of uniqueness of identity
proofs which is just the intuitive property that any two proofs of an identity (with
the same type) have to be equal (because there is only one: id.)
idUnique O (A O Set; a,b O A; p,gq O Id(A, a,b)) 1d(1d(A, a, b), p,q)

idUnique(A, _, b, id(_, ), id(_, ) = id(Id(A, b, b), id(A, b))

It is a bit surprising that any attempt to derive this principle from indId fails.
It has been shown by Hofmann and Streicher [HS94] that idUnique is indeed inde-
pendent from the conventional formulation of Type Theory'4. I is interesting to
note that concrete instances of idUnique like idUnique(Nat) are derivable. It has
been conjectured that idUnique(Fun(Nat, Nat)) is not derivable.

However, this shortcoming can be easily fixed by adding a second induction
principle to the theory:
indld O (A O Set;

alA

P O (a1 OA; Id(A, a1, a1)) Set:
(a1 OA) P(ay, id(A, &)):

p O Id(A a,a)

, )P@.p)

indld' (A, a, P, h,id(_, ) = h(a)

We conjecture that pattern matching is conservative over the theory with both
induction constants.

Exercise 7 Derive an induction principle for Vec.

Exercise 8 Derive that add € (Nat; Nat)Nat is commutative and associative using
either indNat or pattern matching. Define mult € (Nat;Nat)Nat and show that
(add, 0, mult, 1) is a ring.

Exercise 9 Show that indId'(Nat) can be derived from indIld and indNat.

3.5 Inductively defined relations

Often relations are defined inductively, i.e. as the least relation satisfying a certain
property. In many cases (where the property is given by generalised Horn clauses)
we can translate this into an inductively defined family. Here the constructors
are the basic rules defining the type and the expressions correspond to derivation
trees. The proofs which implicitly use induction over the structure of derivations
are very often much simpler and shorter than conventional proofs using induction
over natural numbers.

As an example consider the following definition of the relation < on natural
numbers:

Le O (Nat; Nat) Set

leg O (n O Nat) Le(0,n)

les O (mn O Nat; Le(m n)) Le(s(m), s(n))

We want to show that Le is a preorder, i.e. reflexive and transitive. Reflexivity
can be shown by a pattern matching proof recurring over Nat which corresponds to
a normal induction. However, transitivity is best shown by pattern matching over
the proof arguments, which corresponds to an induction over derivations:

14The proof uses a model of Type Theory where sets are interpreted as groupoids, i.e. categories
where all arrows are isomorphisms.
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transLe O (i,j,k O Nat; Lei,j); Le(,k)) Le(i, k)
transLe(_, j, k, leg(L), hy) = ieg(K)
transLe(—, —, —, le(m, n, hg), lex(—, ny, h)) =
les(m, ny, transLe(m, n, ny, hs, h))

It is interesting that two cases are sufficient. We see this as follows: the first
proof argument is covered by the two possible cases leg, les. In the second cases the
parameter j is equal to a successor and hence the second proof parameter cannot
possibly be leg. Hence the pattern is complete.

Exercise 10 Define the type of binary trees BT as follows:
BT O Set

leaf O BT

span O (BT; BT) BT

Define a relation LeBT € (BT;BT)Set such that LeBT(b,b') is provable iff b is
a subtree of b'. Show that LeBT is a preorder (i.e. reflexive and transitive).

4 ALF’s Type Theory

In the last two sections Type Theory was introduced informally. In this section we
shall have a closer look at the system.

4.1 Judgements of Type Theory

Our presentation of Type Theory is based on four basic judgements :

1. o is a type.

2. Meo
M is an expression of type o.

3.0=71
The types o and 7 are definitionally equal.

4. M=NE€o
The expressions M, N of type ¢ are definitionally equal.

We are going to introduce a syntax for expressions and types together with the
definition of the judgements.

4.2 Conventions

The following conventions are useful to deal with bound variables and substitutions.
We use them informally, if we want to be fully precise it would be a good idea to
use nameless dummies as introduced by de Bruijn [dB72].

Substitution By M|z := N] or o[z := N] we denote the substitution of the free
variable z by N. We only allow this operation if all the parameters and the
result are well typed. By free variable we mean a variable which is not bound
by [z]— or by (z € —)—.

a-alpha conversion Bound variables may be consistently renamed, i.e.

[y](M[z := y]) if y is not free in M.
(y € o)(r[z :=y]) if y is not free in 7.
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4.3 Bureaucratic rules

e We require that — = — and — = — € ¢ are equivalence relations (i.e. reflexive,
symmetric and transitive).

e — = — and — = — € o are congruences with respect to all operations we
introduce.

e We require that M € — and M = N € — are closed under =, that is
Meo c=0c" M=M'€o oc=o'
Med M=M ed

4.4 Il-types

o is a type.
II-formation 7 is a type under the assumption x € o
(z € 0)7 is a type.

(z € o) is a type.
II-introduction M € 7 under the assumption z € ¢
[z]M € (z € o)T

Note that not all elements of II-types are introduced by A-abstraction, they
can also be introduced by implicit or explicit constants.

Me(zeo)T Neo

II-elimination M(N) € 7z = V]

II-computation
8) [z]M € (z:0)T Neo
([z£]M)(N) = M[z := N] € 7[x := N]
M€ (z:0)r

(n) x is not free in M.
[2]M(z) =M€ (z:0)r

Abbreviations

(1 € 01)(z2 € 02) ... (%, € On)T
(.sz,y€0..9)T
[21][22]...[zn] M

M(N)(Ns) .. (N)

(z€o)r

z not free in o

(1 €01;22 €E02...;%n € Op)T
(.;x€o;y€en.. )T
[xl,:cg,...a:n]M
M(Ny,Ns,...,Ny)

(o)7

4.5 The type of sets
We only have two rules dealing with the type of all sets.

e Set is a type.

A € Set
s —— —
A is a type.
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4.6 Inductively defined sets

We present a general scheme for inductively defined sets and allow the introduction
of new elimination constants by pattern matching. This approach is based on the
work by Peter Dybjer on schematic definitions of sets [Dyb91] and on the work by
Thierry Coquand on pattern matching with dependent types [Coq92]. Thus our
system differs from more traditional presentation of Type Theory which use a fixed
collection of sets and constants. There are also presentation which we may call
semi-traditional because they allow schematic definitions of sets but introduce a
fixed elimination constant with every set.

We present the schematic rules by first presenting a general but inconsistent
scheme and then stating some provisos which recover consistency.

First some notation: Every type has the form

(z1 € 01;...3T, € Op)T
which we abbreviate by
(Zed)r
Here ¥ = x1, T2, ..., %, is the sequence of variables and ¢ = o1, 09,...,0, is the

sequence of types. n may be 0, that is the sequence is empty.
We call a type large if 7 = Set and small otherwise.
4.6.1 Specification of sets
A collection of sets defined by mutual induction is given by :
1. A finite sequence of (free) names for the sets A;, As,..., A,.
2. For every 1 < i <mn an arity, that is a type of the form :
(% € d;)(y € Ti)Set
such that all o;; are large and all 73; are small.
3. A finite sequence of (free) constructor names ci, ¢a, - - -, Cpy-

4. For every 1 < j < m a type of the form :

—

(% € 6:)(% € pj)Ai(M;)
This type is subject to the proviso of positivity which we define below.

We say that a set name A appears strictly positive in a type p, iff
1. A does not appear in p.

2. p has the form .
(Z e d)A(M)
and A does not appear at all in &'

We require that all A; have to appear only strictly positive in p;;. This gives us
the following typing judgements:

A-formation For every 1 < i< n:

A-introduction For 1 <j<m
cj € (& € &)(¥ € §;) As(M;)



4.6.2 Pattern matching

We first have to introduce some preliminaries.
We define constructor expressions:

1. A variable z is a constructor expression.

— —
2. If all M; € M are constructor expressions and c¢ is a constructor, then ¢(M)
is a constructor expression.

We say that a expression M is an instance of M’ iff

M' = M[# := N]

where all N; are constructor expressions.
We define the relations structurally smaller M < N and strictly structurally
smaller M < N by the following rules:

1. z(M) < z.

2. If M; < N; then ¢(M) < ¢(N).
3. If M < N then M < N.

4. If M < Nj then M < ¢(N).

where ¢ is a constructor.

We consider extensions of the subterm ordering on tuples with respect to a total
ordering r of a subsequence of indices i; < is < ... < i,. We say that M < N if
M; < N; and My, = Ny, for all k < 1.

The specification of a collection of mutually inductive defined implicit constants
is given by

1. A sequence of (free) names d,...,d,.
2. For every 1 <14 <n a type
(f € (ﬁ')T
3. A system of (well typed) equations of the form
d,(ﬁ) =Mep

where N are constructor expressions and the free variables of M are contained

in the free variables of N and which are subject to the provisos stated below.
Provisos:

Completeness For every tuple of closed constructor expressions Le lof] there is
one and only one equation d;(IN) = — such that L is an instance of N.

Structural recursion For every 1 < i < n there is an ordering of the argument
indices r such that when d;(N) = M, where N is a constructor expression, is
derivable from the equations and d(N') appears in M then N’ <, N.

Given the provisos hold we introduce the rules:

d-Elimination For every 1 <i < n:

d-Elimination For all equations :



4.6.3 Case expressions

ALF also allows a limited form of case-expressions which correspond to local elim-
ination constants. The syntax is

N, = M,
case M € o of
N, = M,

We view case expressions just as a shorthand for the introduction of a new
implicit constant.

4.6.4 Universes

We allow the mutual definition of new set formers and implicit constants (as sug-
gested in [Dyb92]) it becomes possible to define internal universes, e.g.
T O (U) Set

T(n_at) = Nat

T(pi(a b)) = N(T(@), [NIT(b(h)))
U O Set

nat 0 U

p0(@0U;bO(T@)U)U

Here U contains names for types and T is a function which assigns meaning to
names. When we want to introduce II-types it is necessary that U and T are defined
at the same time. Note that both U and T fullfill the provisos stated earlier.

4.7 Properties
We claim (without proof) that the following properties hold:

Proposition 1 The reduction relation we obtain by directing the equations is (strongly)
normalising for all types o and all M € o.

Corollary 2 The properties
e o is a type,
e M€o,
o For types o, 7 whether o = T,
e For M,N € 0 whether M =N € o

are decidable.

5 Internal verification

In this section we will consider some very simple examples of program verification.
In a conventional approach to verification verifying a program would mean to proof
a property of a program. We call this external verification. In Type Theory where
we identify sets and propositions it is natural to consider program and correctness
proof as a unit. The relevant properties of the program are here expressed by
its type, which plays the role of a specification. We call this approach internal
verification.

What is the role verification can play in the software development process? We
believe that is highly unlikely that the development process can start with a formal
and detailed specification of the problem. In practice we often start with an informal
specification and a prototype. During the development process we strive towards
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a better program with a more detailed, possibly formal, specification. We try to
reflect this by the way we present the examples, often we will start with a prototypic
program and a vague idea what the program is supposed to do. We reimplement
the program such that the specification is expressed by the type and the agreement
between program and specification can be checked by a type checker.

5.1 Decidability of Le

We have already studied the relation Le in section 3.5. So far, we have considered
Le from a declarative point of view, but it is easy to see that Le is decidable, i.e.
we can write a functional program with boolean results :

Bool O Set

true O Bool

fase O Bool
le O (Nat; Nat) Bool

1&(0, hy) = true

le(s(hp), 0) = false

le(s(ha), s(h)) = le(hz, h)

Externally, the property of le we are interested in is that le(m, n) returns true if
and only iff Le(m, n) holds. From this it follows that le returns false iff Le(m, n) —
False holds

This external specification of the correctness of le can be expressed as follows :
LeSpec O ((Nat; Nat) Bool) Set

leSpec U (le O (Nat; Nat) Boadl;

(i,j ONat; Le(i,j)) Id(le(i, j), true);
(i,j O Nat; 1d(le(i, j), true)) Le(i, ])
) LeSpec(le)

The external verification has the result that LeSpec(le) holds:
leLeml O (i,j O Nat; Le(i,j)) Id(lei, j), true)

leLeml(j,le0(0)) = id

leLeml(—, — leS(m n,hy)) = leLeml(m n, hy)
true_neg false O (ld(true, false)) False

true_neg_false(h) = case h O Id(true, false) of

end

leLem2 O (i,j O Nat; Id(le(i, j), true)) Le(i,j)

leLem2(0,j, h) = 1e0(j)

leLem2(s(hy), 0, h) = bot(true_neg_false(symld(h)))

leLem2(s(hy), s(hy), h) = leS(hy, hy, leLem2(hy, hy, h))
leOk [0 LeSpec(le)

leOk = leSpec(le leLeml, leLem?2)

How would an internal verification of le look like? We can express the type
of functions which decide Le directly. First we introduce the connective Dec €
(Set)Set. Dec(P) means that we have either an element of P or we can show that
P is empty, i.e. P is decidable. In conventional notation Dec(P) = PV -P. We
may view Dec as a refinement of Bool.

Dec [ (Set) Set

yes O (P) Dec(P)

no O ((P)False) Dec(P)

Our goal is now to refine le to a function le’ € (m,n € Nat)Dec(Le(m,n). That
is, the result of le' is not just a boolean value, but it is a proof of either Le(m,n)
or of (Le(m,n))False. The correctness of this function is expressed by its type, no
further external verification is necessary.
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leml O (mn O Nat; Le(s(m), s(n))) Le(m, n)
leml(mn,leS(, . h)) = hy
lem2 O (n O Nat; Le(s(n), 0)) False
lem2(n,h) = case h O Le(s(n),0) of
d

le 0 (mnO Nate)nDec(Le(m, n))

l€(0,n) = yes(le0(n))

le(s(h), 0) = no(lem2(h))

le(s(h), s(hy)) = case I€ (h, hy) O Dec(Le(h, hy)) of

yes(fpy) U yes(leS(h, hy, hp))
no(hz) O no([hg]hp(lemi(h, hy, hs)))
end

If we compare le with le’ we note that le’ has essentially the same structure as le.
true is replaced by yes(—) and false by no(—). The argument to yes or no represents
a witness for the choice.

However, there is one point where le’ diverges from le, in the last case le’ does
a case analysis on the recursive result whereas le just returns the recursive result.
This case analysis preserves the decision yes or no but changes the witness.

In the case of Dec(Le(m,n)) the witnesses have no computational relevance.
This is not always the case as we will see later. In the case of le the case analysis
represents an unnecessary computation, which could be optimised once we inform
the compiler that we are not interested in the witnesses. That is the existence of
the witnesses is important at compile time (to see the correctness) but irrelevant at
run time.

Exercise 11 Show the decidability of LeBT from exercise 10, i.e. find an inhabi-
tant of (b,b' € BT)LeBT(b,d").

Exercise 12 Define a predicate Seg € (A € Set; List(A); List(A))Set such that
Seg(l,1") is inhabited iff | is a segment (i.e. a consecutive sublist) of I'. Show that
Seg is decidable, if the equality on A is decidable.

Hint: Define an auziliary predicate ISeg € (A € Set; List(A); List(A))Set such
that ISeg(l,1") holds iff | is a sublist of ' and establish decidability of ISeg first.

5.2 Division

As a second simple example we consider division of natural numbers. That is given
two natural numbers m,n we want to calculate the pair of quotient ¢ and remainder
r such that gn+r = m and r < n. To avoid the exceptional case that n = 0 we solve
the problem for m,n + 1. A prototypical implementation just implements counting
modulo n:
div O (Nat; Nat) And(Nat, Nat)

div(0, h;) = and(0, 0)

div(s(hp), hy) = case div(hp, hy) O And(Nat, Nat) of

and(h,hg) O case le(hy, s(hg)) O Bool of
true O and(h, s(hs))
fase O and(s(h), hy)
end
end

A specification of the algorithm is that for m,n+1 we look for a pair of numbers
q,r such that ¢(n + 1) + r = m and r < n. We specify this in ALF by using an
inductive type with a single constructor which can be considered as a named version
of the X-type:
DivSpec O (m n O Nat) Set

divSpec O (qg,r O Nat; ld(m, add(r, mult(q, s(n)))); Le(r,n)) DivSpec(m, s(n))

Our goal is now to define a function with the type (m,n € Nat)DivSpec(m,s(n)).
The structure of this construction will follow the algorithm div.

When we try to construct a solution we realize that it is not decidability of Le
we need but trichotomy. The idea is that we derive r = n from r < n and n < r.

20



We show trichotomy for the alternative version of Le which introduces Le and Lt
by a mutual inductive definition.
Le O (Nat; Nat) Set
rLe O (n O Nat) Le(n, n)
It2le O (Lt(m,n)) Le(m, n)
Lt O (Nat; Nat) Set
ItS O (Le(m n)) Lt(m, s(n))
trichLt O (mn O Nat) Or(Lt(m,n), Le(n, m))
trichLt(m 0) = iny(le0(m))
trichLt(0, s(h)) = im(ItS(Ie0(h)))
trichLt(s(hy), s(h)) = case trichLt(hy, h) O Or(Lt(hy, ), Le(h, hy) of
in(hy) O im(ItS (hy))
in(hp) O iny(leS(hyp))
end

Another lemma shows that » < n and n < r implies r = n which again needs
that n £ n.
leml O (n O Nat; Lt(n,n)) False

lem1(n,h) = accNonRefl(Nat, Lt, n, accLt(n), h)
lem2 O (n,r O Nat; Le(n,r); Le(r,n)) Id(Nat, n,r)

lem2(_,r,rLe(), rLe(l)) = id(Nat,r)

lem2(_, r,rLe(), It2e(_,  h)) = bot(Id(Nat, r,r), lem1(r, h))

lem2(n, r, It2le(, , hy), hy) = bot(Id(Nat, n, r), lem1(n, transLtLe(n, r, n, hy, hy)))

Using these components it is easy to derive div'. We need simple arithmetic
reasoning which use some fundamental properties of equality discussed earlier.
div' O (mn O Nat) DivSpec(m, s(n))

div'(0,n) = divSpec(0, 0, id, [e0(n))

div'(s(h),n) =
case div'(h,n) O DivSpec(h, s(n)) of
divSpec(q, r, hy, hp) O
case trichLt(n, s(r)) O Or(Lt(n, (r)), Le(s(r), n)) of
in(ItS(hy)) O
divSpec(s(a,
idS(transld(hy,
respld([hs]add(hs, mult(q, s(n))),
lem2(r, n, hy, h4)))),
_ le())
in(hg) O divSpec(q, S(r), respld(s, hy), hg)
end
end

6 Example: insertion sort

Sorting programs are a well understood class of algorithms. We shall consider here
one of the simplest sorting algorithms — insertion sort — and show how to derive an
internally verified version of insertion sort. Here is a prototype of insertion sort:

insert O (r O (A; A)Boodl; a O A; as O List(A)) List(A)
insert(r, a, nil) = cons(a, nil)
insert(r, a, cons(ay, 1)) = case r(a,a;) O Bodl of
fase O cons(ay, insert(r, a, 1))
true O cons(a, cons(ay, 1))

sort O (r O (A; A)Bodl; as Denl?ist(A)) List(A)

sort(r, nil) = nil

sort(r,cons(a, 1)) = insert(r, a, sort(r, 1))

We can now use sort(le) € (List(Nat))List(Nat) to sort lists of natural numbers
in ascending order. Note that sort and insert are structurally recursive. The more
efficient sorting algorithms like merge sort and quick sort do not have this property.
We shall present a solution to the problem in the next section.

Here is an informal specification of the sorting problem: Given a list ! € List(A)
and a relation R € (A; A)Set we are looking for a new list I’ € List(A) which is
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sorted wrt R and which is a permutation of I.

It is possible to diverge already here: we have seen specifications of sorting where
it is sufficient that the result list has the same members as [. Hence deletion and
copying would be allowed.

To specify sorting more formally we have to decide what we mean by sorted
wrt R and we have to specify permutation. Moreover we have to analyse which
properties of R we need. A first guess would be decidability but it turns out that
this is not the case.

There are a number of possible choices at this point, resulting in different ver-
ifications. This illustrates our point that a good specification is the result of the
development process and not its starting point.

6.1 Specifying Sorted

There seem at least two possibilities to specify Sorted:
1. A list is sorted iff every element is R-related to all subsequent elements.
2. A list is sorted if all consecutive elements are R-related.

The first alternative requires R to be transitive (otherwise we can’t sort), whereas
the second one doesn’t. The standard sorting algorithms seem to work when R is
not transitive, hence 2. seems to be a better choice!®.

We define Sorted by two inductive relations:

Sorted O ((A; A) Set; List(A)) Set
sorted_nil O Sorted(R, nil)
sorted_cons O (Sorted(R, bs);
SmdlerList(R, a, bs)
) Sorted(R, cons(a, bs))
SmallerList O ((A; A) Set; a O A; List(A)) Set
sml_nil O (a O A) SmallerList(R, a, nil)
sml_cons O (R(a, b)) SmallerList(R, a cons(b, bs))

6.2 Specifying Perm

A simple way to define that one list is a permutation of another is to say that
the counts of all elements are the same. Le. if we had a function count € (a €
A;l € List(A))Nat which counts the number of occurrences of a in | we can define
Perm(I,1') by (a € A)count(a,l) = count(a,l'). However to define count we need
that — = — is decidable which is not the case in general. Moreover we could imagine
that we want to sort objects whose equality is not decidable — an example would
be to sort functions of type (Nat)Nat w.r.t. their value at 0.

Exercise 13 Why is the following proposal not a solution? We define a relation
Count € (A € Set; A; List(A); Nat)Set inductively:
Count O (a O A; | O List(A); n O Nat) Set
count_nil 0 (a O A) Count(a, nil, 0)
count_s [0 (Count(a, xs, n)) Count(a, cons(a, xs), s(n))
count_same O ((Id(a, b)) False;
Count(a, xs, n)
) Count(a, cons(b, xs), s(n))

Now we can define Permeount
PerMoount 0 (LiSt(A); List(A)) Set

permeount O ((@0 A; n O Nat) Iff(Count(a, xs, n), Count(a, ys, n))
) Permeount(Xs, ys)

15We have used 1. in the past. Sometimes it is easier to verify a program than to come up with
a good specification.
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We choose the following definition of Perm which avoids this problem: First we
define Adjoin € (A4;List(A); List(A))Set which means that Adjoin(a, zs, azs) holds
iff azs is obtained by inserting a in xs at an arbitrary position:

Adjoin O (A; List(A); List(A)) Set

ad0 O (a O A; xs O List(A)) Adjoin(a, xs, cons(a, Xs))

adl O (Adjoin(a, xs, axs)) Adjoin(a, cons(b, xs), cons(b, axs))

Now it is easy to define Perm by subsequent Adjoins:

Perm O (List(A); List(A)) Set
perm0 O Perm(nil, nil)
perml O (Perm(xs,ys);

Adjoin(a, xs, axs);
Adjoin(a, ys, ays)
) Perm(axs, ays)

It is easy to show that Perm is reflexive and symmetric but the proof of transi-

tivity is quite hard!®. Another difficult property is to verify the inverse of perm, :

(Perm(zs,ys); Adjoin(a, xzs', zs); Adjoin(a,ys',ys))Perm(zs', ys')
which is useful when showing that Perm is decidable if — = — is decidable.
Exercise 14
1. Show that Perm is reflexive, symmetric (easy) and transitive (hard).
2. Show that Perm is decidable if the equality for the set A is decidable (hard).

3. Find o better definition of Perm which makes it easier to verify the properties
above.

6.3 The type of sorting programs

The type of solutions to a sorting problem can be specified as a family of sets
indexed over lists:
SortSpec [ (R O (A; A) Set; | 0 List(A)) Set

sortSpec O (I' O List(A); Perm(l,1"); Sorted(R, I')) SortSpec(R, I)

Again, this can be viewed as a named instance of a YX-type.

However, we will hardly find an inhabitant of the type

(R € (A; A)Set; ! € List(A))SortSpec(R, 1)

because we know nothing about the relation R (in the worst case it could be
always false which makes it impossible to sort any list with more than one element).

Two sort a two element list [a,b] we need that either R(a,b) or R(b,a) holds.
We call this property connected and define:

Con O (RO (A; A) Set) Set

con O ((a, & OA)Or(R(a,a),R(@,a))) Con(R)

We can use proofs of connectedness to decide how to to order the elements, i.e.
this proof takes over the role of the parameter le in the prototype. Moreover, we
don’t need decidability of R at all. Indeed, it seems that all sorting programs can
be refined to inhabitants of

(R € (A; A)Set;r € Con(R);! € List(A))SortSpec(R, 1)

16, uckily, transitivity is not needed for insertion sort. However, I used it in the verification of
quick sort and merge sort.
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6.4 Insertion sort verified

Following the structure of the prototype we can now develop insertion sort. As a
first step we need to give a specification of insert. Clearly insert adjoins an element
to a sorted list thereby preserving sortedness. We define
InsSpec 0 (RO (A; A)Set; a0 A; | O List(A)) Set
insSpec O (I' O List(A);
Adjoin(a,1,1');
Sorted(R I')
) InsSpec(R, a, 1)

We can refine insert to a function of type
(Con(R);a € A;l € List(A); Sorted(l))InsSpec(R,a,l)

We could explain the verified version of insert by reverse engineering, ie. by
rediscovering a verbal proof form the formal one. However, this is not how it was
derived, i.e. by an interaction with the ALF system.
insert 0 (r O Con(R); a O A; | O List(A); Sorted(R, 1)) InsSpec(R, a, 1)

insert(r, a, nil,h) =

insSpec(cons(a, nil), ad0(a, nil), sorted_cons(h sml_nl(a)))
insert(con(hy), &, cons(ay, 11), sorted_cons(hy, hg)) =
case hy(a, &) O Or(R(a, a1), R(as, @) of
iny(h) O
insSpec(cons(a, cons(ay, 11)),
ad0(a, cons(ay, 11)),
sorted_cons(sorted_cons(h, hs), sml_cons(h)))
in(h) O
case insert(con(hy), & 11, hy) O InsSpec(R, a,11) of
insSpec(, ad0(—, ), hs) O
insSpec(cons(ay, cons(a, 11)),
ad1(adO(a, 1)),
sorted_cons(hs, sml_cons(h)))
insSpec(, ad1(hg), hs) O
case hz 00 SmallerList(R, a1, cons(b, xs)) of
sml_cons(hs) O
insSpec(cons(ay, cons(b, axs)),
adi(adi(he)),
sorted_cons(hs, sml_cons(hy)))
end
end
end

Having done the main job of verifying insert, sort is now relatively easy:
sort O (r O Con(R); | O List(A)) SortSpec(R, 1)

sort(r, nil) = sortSpec(nil, perm0, sorted_nil)
sort(r, cons(a, 11)) =

case sort(r, I1) O SortSpec(R,1;) of

sortSpec(lI’,h,hy) O case insert(r,a,1’, hy) O InsSpec(R, a,1’) of
insSpec(l’ 1, hp, hg) O sortSpec(l’ 1, perm(h, adO(a, I1), hp), )
end
end

7 General recursion

We only consider programs which are structurally recursive. This is already quite
a powerful class and goes beyond the usual scheme of primitive recursion. An
example is the Ackermann function which is not primitive recursive but structurally

recursive:

ack III (Nat; Nat) Nat

k(0,hy) = s(0)

ack(s(0),0) = S(S(O))

ack(s(s(h)), 0) = s(s(s(s(h))))
ack(s(hp), s(h)) = ack(ack(hy, s(h)), h)

AAA A
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This is an instance where we have to use a lexicographic extension of the struc-
tural ordering, i.e. the second argument has a higher weight than the first. Using
higher order datatypes we can implement even faster growing functions, i.e. we
have already seen that ALF’s Type Theory is stronger than arithmetic.

However, there are many programs which don’t fit into the scheme of structural
recursion. We have already mentioned merge sort and quick sort.

7.1 Euclid’s algorithm

As a very simple example we consider Euclid’s algorithm for the calculation of the
greatest common divisor.
sub O (Nat; Nat) Nat

sub(h,0) = h

sub(0, s(hp)) = 0

sub(s(hy), s(hy)) = sub(hy, hy)
ged O (Nat; Nat) Nat

ng(O, hl) = h1

ged(s(hp), 0) = s(hy)

ged(s(hy), s(h)) = case le(hy, h) O Bool of

true 0 ged(sub(hy, h), s(h))
fase O ged(s(hy), sub(h, hy))
end

This function is not structural recursive in either argument, because it uses
subtraction when calling itself recursively. Obviously, the size of the arguments
gets always reduced and gcd is terminating but it is not covered by the simple
scheme of structural recursion.

We can invent more elaborate recursion schemes to cover examples like ged.
However we will go another way and show that we can always reduce terminating
recursion to structural recursion.

In the case of ged we can do this by introducing a new argument: i.e. we define
gedy (m, n,z) = ged(m, n) if £ > m+n. We can define the new function by structural
recursion. To make this explicit we introduce a fourth argument which is the proof
that > m+n, hence gcd, has the type (m, n,z € Nat; Lt(add(m, n), z))Nat. gcd,
can be defined with the same clauses as gcd but is structural recursive:
transLeLt O (Le(i,j); Lt(j, k) Lt(i, k)

transLeLt(rLe()), hy) = hy

transLeLt(It2le(hy), hy) = transLt(hy, hy)
leAdd [0 (x,y,y" O Nat; Le(y,y)) Le(add(x,y), add(x,y"))

leAdd(0,y,y',h) = h

leAdd(s(hy), y,y', h) = leS(leAdd(hy,y,y’,h))
leAdd” O (x,x',y O Nat; Le(x,x’)) Le(add(x,y), add(x,y))

leAdd (L, X', y,rLe(L)) = rLe(add(x ,y))

leAdd (x, , v, It2e(itS(h)) = It2e(ltS(eAdd (x, n,y, h)))
sub O (m,n O Nat) Z(Nat, [h]Le(h, m))

sub(m 0) = pair(m, rle(m))

sub(0, s(h)) = pair(0, 1e0(0))

sub(s(hy), s(h)) = case sub(hy, h) O Z(Nat, [W]Le(, hy) of

pair(a,b) O pair(a, It2eltS(b)))
end
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gedy O (mn,x O Nat; Lt(add(m, n), x)) Nat
gcdy(0,n,s(hy),h) = n
gedz(s(h), 0, s(hy), h) = s(hyp)
gedy(s(hp), s(ha), s(ha), h) =
case le(hy, hg) O Bodl of
false O
case sub(hs, hy) O =(Nat, [h']Le(h’, hg)) of
pair(ag, by) O
gedy(s(hy),
ﬁl,
trlénsLeLt(IeAdd(s(hz), a1, hs, b),
[tS _inv(substld(adds_lem(s(hy), hs),

[ha] Lt(ha, s(hy)),
h))))
end
true O
case sub(hy, hg) O Z(Nat, [h']Le(h’, hy)) of
pair(a,b) O
geda(a,
rS](hs),
1,
transL el t(leAdd (a, hy, s(hg), b), ItS _inv(h)))
end

end

Exercise 15 FEztend gcd,, to a verified version which shows that the function indeed
calculates the greatest common divisor.

7.2 Well-founded recursion

The idea of presenting general recursion in Type Theory is to introduce additional
arguments which are structurally reduced. In this section we consider a general
construction!”. which shows that we can represent all programs this way which
can be shown to terminate using well-founded recursion. The additional argument
which is structurally reduced is the proof of well-foundedness.

We start with a general fixpoint combinator which can be defined using general
recursion:
fix O (A,B O Set; (A; (A)B)B; A) B

fix(A, B,h,hy) = h(hy, fix(A, B, h))

We can argue as follows: whenever fix(f,z) terminates there must be a well
founded tree of recursive calls of f. This tree gives us an well founded ordering such
that f is only called at smaller arguments recursively.

We can encode this internally. Le. given a relation R € (A; A)Set we define the
well-founded domain of R: Acc(R) € (A)Set, i.e. the set of z € A such that all
trees which start with z and have edges in R have finite depth:

Acc O ((A; A) Set; A) Set

acc O (a0 A; (bOA; R(b,a)) Acc(R, b)) Acc(R, a)

This is a higher order inductive definition. The idea is that if for a givenz all y
such that R(y,z) are already in Acc(R) then also z is in Acc(R). This can be used
directly for a definition of Acc(R). Note that allr-normal forms, ie. all  such that
no R(y,z) exists are in Acc(R) because the precondition is vacuously true.

We can now implement a refined version of fix which realizes general well-founded
recursion via structural recursion over the proof of Acc(R)

17Due to Paulson [Pau86] and Nordstrém [Nor88]
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fix O (A,BO Set;
R O (A; A) Set;
(@adA; (bOA;R(b, @)B) B;
alA
Acc(R,a)
)B

fix (A, B,R h,a acc(_, hy)) = h(a [b, hifix (A B, R, h, b, ho(b, hy)))

A source for well-founded recursion are the internal versions of the structural
orderings on inductively defined types. In the case of Nat this is Lt. Here is the
proof that Acc(Lt).
accLt_aux O (i,j O Nat; Acc(Lt, |) Lt(j s(i))) Acc(Lt,j)

accLt_aux(i,_, h, ItS(rLe())) =

accLt_aux(i, j, acc(, hy), ItS(It2Ie(h1))) = hy(j, hy)
accLt O (n O Nat) Acc(Lt, n)

accLt(0) = acc(0, [b, h]bot(not_It_0(h)))

accLt(s(h)) = acc(s(h), [b, hiJaccLt_aux(h, b, accLt(h), hy))

Exercise 16 Define LtBT € (BT;BT)Set such that LtBT(b,b') is provable iff b
is a proper subtree of b’ (i.e. b # V). Show that LtBT is well-founded, i.e. that
(b € BT)Acc(LtBT, b) is inhabited.

Note: LeBT (exercise 10) and LtBT can be defined by one mutually inductive
definition.

Exercise 17 Given relations R € (A; A)Set, S € (B;B)Set we can define their
lexical product by RS € (A x B; A x B) by RS((a,b),(a',V')) < R(a,d')Va=
a' A S(b,b'). Derive that (a € A)Acc(R,a) and (b € B)Acc(R,b) entails (ab €
A x B)Acc(RS, ab).

7.3 Merge sort

We shall sketch how the ideas of the previous section can be applied to implement
merge sort using only structural recursion.
Below is the prototype for merge sort:
split O (A O Set; List(A)) And(List(A), List(A))
split(A, nil) = and(nil, nil)
split(A, cons(a, nil)) = and(cons(a, nil), nil)
split(A, cons(a, cons(ay, |1))) =
case lit(A, [1) O And(List(A), List(A)) of
and(h, h;) O and(cons(a, h), cons(ay, hy))
end
merge O (A O Set; le O (A; A)Bodl; List(A); List(A)) List(A)
merge(A, le nil, hy) =
merge(A, le, cons(a, 1), nil) = cons(a, |)
merge(A, le, cons(a, 1), cons(ay, 11)) =
case le(a, &) O Bool of
fase O cons(a;, merge(A, le, cons(a, 1), 17))
true O cons(a, merge(A, le, |, cons(ay, 11)))
end
sort 00 (A O Set; le O (A; A)Bodl; List(A)) List(A)
sort(A, le nil) = nil
sort(A, le, cons(a, nil)) = cons(a, nil)
sort(A, le, cons(a, cons(ay, 1)) =
case lit(A, [1) O And(List(A), List(A)) of
and(h,h;) O merge(A, le, sort(A, le, h), sort(A, e, hy))
end

We realize that sort is not structurally recursive because it calls itself recursively
on the result of split. However, we can see that split produces always shorter lists if
the length of the input is at least 2 and hence we should be able to use the results of
the previous section (fix',accLt) to implement sort only using structural recursion.

We partially specify split, i.e. we only express the fact that it will produce
shorter lists if the input is not of the form nil or cons(a,nil) :
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SplitSpec O (List(A)) Set
splitSpecNil O SplitSpec(nil)
splitSpecSgl 0 (a O A) SplitSpec(cons(a, nil))
splitSpec O (I,11,12 O List(A);

Lt(length(ly), length(1));
Lt(length(l,), length(1))
) SplitSpec(l)
We leave it as an exercise to reimplement split with the following type:
slit O (I O List(A)) SplitSpec(l)
We define the relation Shorter on lists, and show that Acc(Lt,length(l)) implies
Acc(Shorter, [):
Shorter O (List(A); List(A)) Set
Shorter = [h, hy]Lt(length(h), length(hy))
accShorter [0 (Acc(Lt, length(l))) Acc(Shorter, 1)
accShorter(acc(—, hy)) = acc(l, [b, hJaccShorter (hy(length(b), h)))
We can now reimplement sort by first define a functional which refelcts the fact
that sort only recurrs on shorter lists.

sortRec O (le O (A; A) Bool;
| O List(A);
(I" O List(A); Shorter(I’, 1)) List(A)
)List(A)
sortRec(le, nil, h) = nil
sortRec(le, cons(a, nil), h) = cons(a, nil)
sortRec(le, cons(a, cons(ay, 1)), h) =
case split'(cons(a, cons(ag, 1)) O SplitSpec(cons(a, cons(ag, 1)) of
splitSpec(, 12, 13, hy, hy) O merge(A, le, h(lz, hy), h(l3, hy))
end

sort’ O (A O Set; le O (A; A) Bodl; List(A)) List(A)
sort' (A, le,h) =
fix' (List(A),
List(A),
Shorter,
sortRec(le),
h

accshorter(accLt(length(h)))
Exercise 18 Implement split’ € (A € Set;l € List(A))SplitSpec(A,l).

Exercise 19 Derive a verified version of merge sort, i.e. refine sort' such that it
has the type of sorting programs:

(R € (A; A)Set;r € Con(R);1 € List(A))SortSpec(R,1)
Hints:
1. You have to implement a dependent version of fix'.

2. You need to show that Perm is transitive.

8 Concluding remarks

In the current version of these notes I have left out two subjects which provide a
good extension of the material presented here:

Type Theory as a Meta theory The Type Theory used here is very well suited
to prove meta theoretic results of logics or A-calculi. Examples are normalisa-
tion proofs [Coq94a, Alt93] or completeness results (such as the completeness
of Kripke models for minimal intuitionistic logic).

Infinite objects Thierry Coquand gave recently a very elegant proposal [Coq94b]
how to integrate infinite structures like streams into Type Theory.
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I hope that these notes give some ideas how to use Type Theory for program
verification. It should be possible to understand the concepts presented here without
needing a lot of background in typed A calculus or the meta theory of systems with
dependent types. It can be used like a programming language where most users are
also not aware of the subtleties of the underlying theory.

Having said this, Type Theory and typed A-calculus are certainly a fascinating
subject of study. I find it hard to recommend a text book which gives a good intro-
duction into this subject. Some of the books mentioned earlier certainly give some
background. Henk Barendregt’s handbook article [Bar92] gives a good overview
but concentrates for my taste too much on pure type systems. If one is interested in
non-dependent typed A-calculi Girard et al’s book is certainly worthwhile reading
[GLT89]. Roy Crole’s book [Cro93] approaches the subject from the viewpoint of
Category Theory but is generally self contained. Thomas Streicher [Str91] investi-
gates the Calculus of Constructions also using Category Theory but seems to be a
bit heavy going for the uninitiated. A good general reference and introduction for
categorical models are Martin Hofmann’s lecture notes [Hof95b].

On a more practical level it is certainly exciting to use one of the tools men-
tioned to play with Type Theory. The ALF system on which these notes are based
is available by ftp from file:ftp.cs.chalmers.se:pub/provers/walf. The com-
piled version there is only for SUNs under Solaris. If you are interested to install
ALF on other systems you should contact me by email.

There are new versions of ALF coming up with entirely different user interfaces
and an entirely different proof engine developed by Thierry Coquand. The new
versions should be even closer to functional programming languages and will in
particular support flexible case- and let-expressions.
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