Reduction-free normalisation for system F’

Thorsten Altenkirch
Institut fiir Informatik, LMU-Miinchen
Oettingenstr. 67
D-80538 Miinchen
Germany

e-mail:alti@informatik.uni-muenchen.de

Martin Hofmann and Thomas Streicher
TH Darmstadt, FB 4,
Schlofigartenstr. 7,

64289 Darmstadt, Germany

e-mail:{mh|streicher }@mathematik.th-darmstadt.de

July 2, 1996

Running title:
Reduction-free normalisation for system F'
Address for correspondence:

Martin Hofmann
TH Darmstadt, FB 4
Schlo3gartenstr. 7
64289 Darmstadt, Germany

e-mail:mh@mathematik.th-darmstadt.de

Abstract

We present a semantical proof of existence of normal forms for system F' including n-equality. A
reduction-free normalisation function can be obtained from this. The proof uses the method of
glueing (a variant of) the term model along the global sections functor, carried out in the internal
language of a category of presheaves. As a by-product we obtain an semantical explanation of higher-
order abstract syntax. The paper extends a previous one (Altenkirch, Hofmann, and Streicher 1996)

in which a combinatory version of system F' has been treated.

1 Introduction

In this paper we give a semantical proof of reduction-free normalisation for Fg,, a version of Girard’s
system F' with full fn-equality for both kinds of abstraction. This generalises the semantical
normalisation algorithms for simply-typed systems (Berger and Schwichtenberg 1991; Coquand
and Dybjer 1996; Altenkirch, Hofmann, and Streicher 1995) to polymorphism.

As in those approaches we do not prove strong normalisation but construct a function nf sending
terms to terms in normal form such that convertible terms are sent to the same normal form and
any term ¢ is convertible with nf(¢). Such a function is sufficient for practical purposes as it allows
one for every term to compute a normal form and consequently to decide equality of terms. These
“normal forms” are computed by structural induction; no notion of term rewriting whatsoever is
used although the normal forms computed by our algorithm are also normal forms in the sense of
term rewriting, more precisely, they are long @n-normal forms in the sense of e.g. (Huet 1976)

This work is part of a larger programme aiming at deriving reduction-free normalisation al-
gorithms for more complex systems such as Martin-Lof type theory, Extended Calculus of Con-
structions (ECC), and variants of the Logical Framework. The ultimate goal would be to derive
implementations of these systems which would be more efficient than the existing ones because
the reduction-free normalisation algorithms can employ the interpreter of the underlying functional
programming language as e.g. Standard ML. This gain of efficiency was the initial motivation of
Berger and Schwichtenberg for studying reduction-free normalisation.

The case of simply-typed lambda calculus has been treated by the abovementioned authors.
The richer systems like ECC extend the simply-typed lambda calculus by two new features: type
dependency and polymorphism. We treat the latter in this paper and leave type dependency for
future work.

The key idea of the present work (and also implicit in (Coquand and Dybjer 1996)) is to construct
a model GT (for Girard-Tait or Glueing of the Term model) in which types are interpreted as
quadruples (A4, AP gA u”) where A is a syntactic type, AP™? is a family of “sets” indexed by
conversion classes of terms of A, g® (“quote”) is a function mapping an element of AP™¢([t]) to
a normal form in [t], i.e. convertible with ¢, and finally u” (“unquote”) is a function mapping a
neutral term t, i.e. a variable applied to normal forms, to an element of the set AP™4([t]). Unlike in
(Coquand and Dybjer 1996), where these “sets” are ordinary sets, in our model they are replaced by

presheaves over the finite-product category V of types and variable renamings which has as objects

pairs [n,T"] where I' is a Fg,-context in n free type variables. A V-morphism from [n,T] to [m, A]
is an m-tuple A4 of types in n free type variables together with a renaming w from T to A[ff]

We summarise our main technical results. Our constructions are carried out within (models of)
an impredicative Type Theory, i.e. an extensional version of the Calculus of Constructions extended
by inductive types (e.g. similar to (Luo 1994)). We prove that the category V of presheaves over
V with values in the constructive sets of our metalanguage forms itself a model of impredicative
type theory. Generalising a result in (Asperti and Martini 1992) we construct a term model of
Fgy, living inside ¥ in which type quantification becomes “set-theoretic” dependent product (inside
\7) Furthermore, we show that in the term model there exists a higher-order abstraction operation
which constructs a term of type A = B from a V-function mapping variables of type A to terms of
type B. In this way our term model can be seen as a model for higher-order abstract syntax in the
sense of (Despeyroux, Felty, and Hirschowitz 1995).

The main result consists of the construction of the glued model G7 now internal to the category
Fam(V) of families or deliverables in V. The objects of GT can be considered as a naive version
of Tait’s computability predicates. Morphisms are maps respecting these. The desired result on
reduction-free normalisation is an immediate corollary of the correctness of this model.

Our approach is modular in the sense that we first identify a collection of objects and functions
inV together with equations satisfied by those and then construct the model G7 entirely within
the internal language of WA/, i.e. using impredicative type theory augmented by these objects and
functions (and the equations). Apart from simplifying the exposition this makes it possible to
use an implementation of impredicative type theory, for instance Lego (Luo and Pollack 1992) to
define the model GT and to prove its correctness. In our previous paper (Altenkirch, Hofmann,
and Streicher 1995) we were not yet able to formulate the glued model entirely within the internal
language resulting in more complicated definitions and proofs. The methods developed in this paper
apply just as well to the simply-typed case dealt with in loc. cit. and would result in a considerable
simplification.

We assume some knowledge of category theory and in particular a certain acquaintance with
categories of presheaves. A type-theoretically skilled reader who does not have this background
may still take profit of our paper by taking the context of definitions summarised in Fig. 8.3 for

granted and going through the construction of the model GT on top of this context.

2 Syntax

The system Fpg, is a variant of Girard’s System F' with full Bn-equality. We use de Bruijn indices
to represent variables; the judgement n F A means that A is a type with at most n free variables

and is defined as follows :

i<n nk A nt B n+1FA
(Var) @ —— (=) —— (V)
nki n-A=B nk V(A)

We define the category S of type substitutions : objects are natural numbers and a morphism
in S(m,n) is an n-tuple of types A= (Ap—1,...Ap) where m + A; for i = 0,...n — 1. Notice the
right to left decomposition of such tuples, i.e. the “first” element of Ais Ay, its leftmost entry.

Composition is given by substitution which can be defined as a recursive function over the
syntax. S has a terminal object 0 and finite products which are given on objects by addition of
natural numbers. Here and in the sequel we use the standard notation m, 7', (—, —) for projections
and pairing possible decorated with typing subscripts. We write () for the unique morphism into a
terminal object.

Ifn+1F A and n - B then we write A[B] for Ao(id,,B) and Bt for Bom, 1. We have
nt A[B]and n+1F B*.

Given a natural number n, a context n F T is a sequence of types in n variables, i.e. of types A
such that n - A. We denote the length of a context by |I'| and decompose I as T = (T'p|_1, .. . To).
Note that a context n - T is an S-morphism from n to |I'|. We write ¢ for the empty context and
I'.A for the extension of context I' by type A. The operation I'T arises as the pointwise extension

of AT. We define a judgement I' I, ¢ : A, where n - T" and n - A by the following rules:

i <|T]
——— (TM-VAR)
r |_n ir‘ . Fz
NAr,t: B 'k,t:A—> B 'kH,s: 4
A (aPP)
CFypAras(lt):A— B | . appnA’B(t,s) : B
Tttt A Tk,t:V(A4) nk B
(A) (ApP)
Tk Ar,a(t) : V(A) I'Fn Appr,a(t, B) : A[B]

The type annotations simplify the interpretation of the syntax. We may drop the annotations when
they are clear from the context and write ts for appr 4 g(t,s) and tB for Appr 4(t, B).
For any n we define a category of terms T9 whose objects are contexts n F I' and morphisms

between I" and A are context morphisms, i.e. sequences of terms I' F ¢; : A;. Composition of context

morphisms is defined as usual as simultaneous substitution which can be defined by structural
induction over the syntax. The categories TO have products given on objects by juxtaposition of
contexts. As in the case of the category of type substitutions we introduce the special syntax t[s]
for substitution of a single term into another term (¢[s] = #o(id, s)) and s1* for weakening with the
type X, ie. stX =somp x. [T.AbF,t: Band T+ s: Athen [k, t[s] : Band T.X F s7X : A
We also extend type substitution and weakening to terms in the obvious way, i.e. if T' k41 ¢t : A
and n - B then I'[B] +, t[B] : A[B] and if ' t-,, ¢ : A then I'" F,44 t* : BT. More generally, if
AeS(m,n)and Tk, t: A then we have T[A] b, ¢[A] : A[A]. In this way we obtain an indexed
category T : S°P — Cat (with fibres T%). We also write T for the total category of the associated
split fibration, i.e. the category T° has as objects pairs [n,[] where n - I' and a morphism from

[n,T] to [m, A is a pair [A,#] such that A € S(n,m) and '€ T(T, A[A]).

2.1 Equational theory

For t,s such that I I, t,s : A we define a conversion relation convr 4 by the least congruence

containing the following equations :

appr 4 5(Ar,a,8(t),s) convrp t[s]
)\F,A,B(appF’A’B(t—i_A, Or.4)) convrasp t
Appr a(Ar,a(t), B) convr aip) t[B]

Ar,a(Appr 4(t7,0)) convpy(a) t

For n € N we define the category T, as the quotient of T by conv. The objects of T,, are
contexts n + T' and the morphisms are conv-equivalence classes of TO-morphisms, i.e. tuples of
terms. Since conv is a congruence it is respected by weakening and substitution so that these
operations lift to equivalence classes. We identify notationally classes with representatives. In this
way, we obtain another indexed category T : S°P — Cat together with the associated split fibration

T — S.

2.2 The category of variable renamings

For n T and n F A we define V,,(T', A) as the set of those morphisms in T, (I, A) which consist
of variables (natural numbers) only, i.e. do not contain the term formers app, A, etc. Clearly, these

morphisms are closed under composition and contain the identities so that we have an indexed

sub-category V of T and T°. The composition of the inclusion from V into T® with the projection
from T° to T furnishes a product-preserving functor Z from V to T. We do not assume that 7 is
monic although this follows a posteriori from our normalisation argument. Again, V also denotes
the total category of the associated split fibration. Objects of V are pairs [n,I'] where n - T" and
morphisms between [n, '] and [m, A] are pairs [A, w] with A € S(n,m) and w € V,,(T', A[4)).

Notice that the total categories V, T9, and T each have products by “abstract nonsense” since
the total category of a fibration has finite products if the base and each fibre has finite products
and reindexing preserves them. For example, the product of [n,T] and [1,¢] is given by [n + 1,T7]
with projections [my 1, idr] and [m, 1, ()]

Our glued model will be internal to the presheaf category V. The argument to be made would
also go through with the more economic sub-category of weakenings (used in (Altenkirch, Hofmann,
and Streicher 1995)) which consists of order-preserving variable renamings, i.e. the vectors of the
form (im—1,...90) where ipy_1 > im—2 > --- > ig. Using this category would, however, make
the exposition more complicated, in particular in Section 8.2, so that we have opted for V. If an
efficient algorithm is to be extracted from our development then the category of weakenings (or even
the category of projections to initial segments, which also works albeit with a yet more complex

development) should be used instead.

2.3 Normal forms and neutral terms

The sets NF' and NE of normal forms and neutral terms, respectively, are given by the following

grammar (where t € NF and u € NE and i € N):

NF u | Ar,a,B(t) | Ar,a(t)

NE == il appr,A,B(Uat) | APPF,A(UaB)
Notice that normal forms and neutral terms are stable under type substitution and variable renam-
ings in the sense that if [4,w] € V([n,T],[m,A]) and ¢ € NF satisfies A b, t : A then the term
T b, t[A][w] : A[A] is in normal form, too. The same goes for neutral terms. There can be more
than one normal form in each conversion class; for an example see Section 8.3. The reason is that

a normal form of universally quantified type can either be neutral (for instance a variable) or a

A-abstraction.

3 Constructive metalanguage

We understand the previous and the following definitions to be made within a constructive metalan-
guage which contains an impredicative universe Prop of small sets closed under inductive definitions.
Impredicativity means that the product of an arbitrary family of small sets is again small. Fur-
thermore, we require subset types for equality predicates (i.e. equalisers) and quotients of classical
(i.e. =—~closed) equivalence relations. A model for such a metalanguage is furnished by w-sets and
pers/modest sets as described in (Streicher 1991). For a proof that the w-set model admits the
required quotients see for instance Ch. II of loc. cit.

We use an informal (impredicative) extensional Martin-Lof type theory to denote constructions
in the metalanguage. In particular, we write II and ¥ for dependent product and sum, and we
use A and juxtaposition for abstraction and application and {—,—) and .1, .2 for pairing and
projections. We use the symbol Type for the universe of sets in the metalanguage and we form
kinds like A — Type to denote the class of families of sets indexed over A. If B : A — Type and
f(z),g9(z) : B(z) if z: A then we write {z: A | f(z) = g(z)} for the subset of A where f and g agree.

We use the symbols € and : for membership interchangeably but mostly employ the colon when
Martin-Lo6f type theory is being used.

Many of our constructions are taking place in specific models of our metalanguage. We overload
the syntax of the type theoretic operations but may disambiguate by Type®, II¢, £¢ where C is the
model. Since the models are defined inside our constructive metalanguage all internal constructions
can be expanded and replaced by much longer (and unreadable) definitions in the metalanguage.

If a: A and f(a) = g(a) then we may write a : {z: A | f(z) = g(z)}. Conversely, if a : {z: A |
f(z) = g(x)} then a : A and furthermore f(a) = g(a) may be inferred. If A is a small set then so
is {a: 4| £(2) = g(2)}.

For the definition of functions we either use A-notation like in f = Az: A.t or equivalently a
“pointwise” notation like in f(x: A) = t. For iterated application we sometimes use parentheses and
commas, e.g. if f: A — IIb: B.C(b) and a: A and b: B then we may write f(a,b) instead of f a b.
We sometimes omit arguments which can be inferred. For instance, if f : Ila: A.B(a) — C and a: A

and b: B(a) then we may abbreviate f(a,b) by f(b).

4 Naive F-doctrines

Definition 1 A contextual cartesian closed category (ConCCC) is a category C together with a

distinguished sub-class Ty = Ty® such that
o C has a terminal object,
o C has all cartesian products of the form T' x A where T € C and A € Ty,

e C has all exponentials of the form A = B for A,B € Ty

Every cartesian-closed category C is a ConCCC with the setting Ty = |C|. The advantage of

ConCCC'’s over cartesian-closed categories is that term models furnish more naturally a ConCCC.

Proposition 2 The indexed category T : S°? — Cat from Section 2 is an indexed ConCCC,
i.e. T : S°? - ConCCC where ConCCC is the category of ConCCC’s and structure-preserving
functors. Moreover, the functors T(mpy1,n) : T, = Try1 have right adjoints satisfying the Beck-
Chevalley condition up to equality, i.e. T admits split Consy -products in the sense of Jacobs (1991,

§1.5). Moreover, 0 € Ty is a generic object for T.

Proof. Standard. See, e.g. (Crole 1993). For the ease of the reader we give some of the raw data
here. The cartesian product of I' and A in T, is given by the context I".A. The exponential of
B by A in T, is given by the type A = B. Finally, the result of applying the right adjoint of
T(mpt1,n) to A € Tpyq is the type V(A) € Ty,. If t € Tppq(I'H, A) then its transpose is the term
Ar,a(t) € To(T,V(A4)).

Notice that we have |T,| = S(n,1) which establishes that 0 € T; (recall that 0 refers to the

single type variable corresponding to the judgement ; 0) is a generic object. O

For further reference we call such a structure an external model. We remark that up to the distinction
between contexts and types T is a model of system F' in the sense of Seely (Crole 1993). For the
subsequent development it is, however, more appropriate to employ a different, but equivalent notion
of model due to Asperti and Longo (1992) based on internal categories. Their notion is adapted to
the ConCCC-situation in the following definition where the model of our metalanguage plays the

role of their ambient category.

Definition 3 A naive F-doctrine is a ConCCC C which has Ty-indexed products of types, i.e. for
every function B : Ty — Ty the product of B in C exists and lies in Ty.

10

Let C be a naive F-doctrine. In the following we introduce some notation and names to refer to its
components. The objects of C are called contexts, the objects in Ty are called types. We write ¢
for the terminal object and ()r € C(T',) for the unique morphism into ¢. If I' is a context and A is
a type then we write I'. A for their cartesian product and mr 4 € C(IA,T') and 7y 4 € C(T"4, A). If
A=0A4..... Ay, for types A; then the cartesian product of T and A also exists in C and we write it
as I'.A and use the already introduced notation for the associated morphisms with the A-subscript
replaced by A. We (partially) omit these and subsequent subscripts wherever appropriate.

If A and B are types then we write A = B for their exponential in C. If f € C(T', A = B) and
g € C(T', A) then we write appr_4 g(f,g) € C(T, B) for the composition of (f, g) with the evaluation
morphism. If f € C(T'.A, B) then we write Ar,4,8(f) € C(T', A = B) for the exponential transpose
of f.

For B : Ty — Ty we write V(B): Ty for the product of B and for every X: Ty we write
Appp(X):C(V(B), B(X)) for the product projection corresponding to X. If f : IIX: Ty.C(T', B(X))
is a Ty-indexed family of morphisms then Ag(f) : C(T',V(B)) denotes the (unique) morphism such
that for all X: Ty

Appp(X) o Ap(f) = f(X) Ty-Beta
Whenever f:C(T',V(B)) then we have
Ap(AX: Ty Appg(X)of) = f Ty-Eta

We decorate these symbols with superscripts ¢ identifying the corresponding naive F-doctrine wher-
ever this appears appropriate. Instead of C(A, B) we may write Mor(A, B) or Mor®(A, B) for the

set of morphisms.

Example 4 An example of a naive F-doctrine is furnished by the category P which has as ob-
jects the small sets (elements of Prop) and as morphisms the functions between them. We put
Ty? = |P| = Prop. It is clear that this defines a ConCCC. As for type quantification we use the
impredicativity of Prop, i.e. for B : Prop — Prop we define ¥(B) as I1X: Prop.B(X).

5 Interpretation of the syntax

Fix a naive F-doctrine C. By induction over the syntax we define a many-sorted interpretation

function [-] = [—]¢ which maps a context T in n free type variables to a function [n F I from

11

[nk o] (X: (TyS)™) = o

[n+ T.AJ(X) = [n+IT](X).[nF A|(X)

[n+ i(X) = X; where X = (X,_1,...Xo)

[n+ A — B](X) = [n+ Al(X) = [n+ B}(X)

[n+ V(A)](X) = VOX: Ty.[n+1F AJ((X, X))

[T Fy dr : D] (X) = projection from [n F I'J(X) to [n F ;]
IT Frn Ar,a,8#)](X) = M|T.AbF, t: B|(X)

[T Fn appr 4,5t 9)](X) = app([Fn t: AJ(X), [T ks s : B](X))
[T Fn Ar,a(t) : V(A)N(X) = AQX: TYE[TF bnpa t: AJ((X, X))

[T Fn Appr4(t, B) : AB])(X) App([T Fn t: V(A)](X), [n - BI(X))

Figure 1: Interpretation of Fg,

(Ty°)™ to |C| and a type A in n free variables to a function [n - A] from (Ty“)™ to Ty°. A term ¢
in n free type variables and in context I' of type A is mapped to a (dependent) function [T F,, ¢ : A]

of type
IX: (TyC)".T,([n - T](X), [n + A}(X))

The semantic equations are straightforward: syntactic constructs are interpreted by their semantic

counterparts. The details are given in Fig. 5.

Theorem 5 (Soundness) The interpretation is sound, i.e. the interpretation functions are total
in the domains described above and conversion is reflected by equality in the model: If t convr a s

then [T Fpt: Al =T Fnt: A].

Proof. By induction on derivations. |

6 Presheaves as a model of the constructive metalanguage

The notions of ConCCC and naive F-doctrine make sense in any model of the constructive metalan-

guage. Of particular interest are categories of presheaves K and categories of the form Fam(f{) of

12

families of presheaves over K. We explain how these categories model the constructive metalanguage

and introduce some notation.

6.1 Categories of presheaves

Let K be a small category. It is well-known that the category K = Set¥” of presheaves supports
extensional Martin-Lof type theory together with inductive definitions even if the ambient set-
theoretic universe with respect to which K is formed is not a topos, but only a model of Martin-L&f
type theory itself. We do not require quotient types on the level of presheaf categories. We refer to
(Phoa 1992) for the precise definition of the interpretation of Martin-Lof type theory in a category of
presheaves and only sketch some important aspects here. Dependent types in K can be understood

via the equivalence of categories (Moerdijk and Lane 1992, p. 157)
K/F = EI(F)

where El(F) =y | F is the category of elements of the presheaf F. It has as objects pairs (X, f)
where f € Fx and a morphism from (X, f) to (X', f') is a K-morphism u : X — X' such that
F.(f') = f. (We use subscripts for application of presheaves.) We write K(F) for E/Z(F) So for
example the objects of kind F' — TypeK are the objects of K(F) Cartesian products and X-types
are taken pointwise: (U x V); = Ur x Vr and (Zu:U.V(u)); = Zu:U(I).V;(u). The same goes for
subset types.

If U € K(F) we write Fr(u) (instead of F(1,4)) for the application of F' to the pair (I,u). We
sometimes call I a “stage” or a “world”.

The function space of U,V € K is given by the presheaf which sends I € K to the set K(y(I) x
U,V), where y : K — K is the Yoneda embedding. More elementarily, the elements of (U — V);

are mappings
pelJ:KK(J,I)xU; =V,

such that whenever u € K(J,I), v' € K(J',J), and f € Uy then Viy (ps(u, f)) = py(uou', Uy (f)).

We remark that by “uncurrying” a global element of a presheaf exponential, i.e. a natural
transformation 1 — (U — V) is nothing but a natural transformation from U to V. More
generally, since U — (V — W) is isomorphic to (U x V) — V a global element of U — (V — W)
can be given by specifying a natural transformation from U x V to W. The same goes for longer

chains of arrows.

13

This generalises to “non-empty contexts” in view of the definition of K(F) as a category of
presheaves, i.e. the local exponential of G, H € K(F) can be obtained by replacing K by El(K) in
the definition of ordinary exponentials. We finally remark that dependent products can be obtained
as regular subsets of suitable exponentials, e.g. if U € K and V € K(U) then the dependent product
Mu:U.V(u) € K equals {f : U = Sw:U.V(u) | =10 f = idy}.

This means that global elements of dependent products can also be given element-wise.

6.2 Impredicative universe

Less well-known is the existence of a small impredicative universe in K. Call a presheaf F' € K
“small” if for every I € K the set FT is small, i.e. lies in Prop. More generally, if G is any presheaf,
we can consider the set Small(G) of small presheaves in K(G). An element of Small(G) is a functor
from the opposite of the category El(G) of elements of G to the category of small sets. The operation
Small(—) extends to a functor from (K)°P to the category of sets by putting for a : G’ — G and
F € Small(G)

Small(a)(F)1(g) = F(I,a1(g))

and if w : I' - I and thus u € E(G")((I',G.,(9)), (I,g)) and

which works because u € El(G)((I',Gy(ax:(w))), (I,ar(u))) by naturality of . It is obvious that
the product of a family of small presheaves is again small because its construction only involves

taking products of small sets. The important point is that the small families are representable:

Theorem 6 The small presheaves over G are in bijective correspondence with K—morphisms from

G to the presheaf Prop defined by Prop; = Small(y(I))

Proof. If F € Small(G) then the associated morphism xr : G — Prop at I € K sends g € Gy to
the composition F o g where g: K/I — EI(G) maps u: J — I to (J,Gy(9)).

Conversely, if f : G — Prop then we obtain Prf(f) € Small(G) as the presheaf which at
(I,9) € El(G) is f1((I,9),idr).

For F € Small(G) we have Prf(xr) = F by functoriality of G and for f : G — Prop we have

Xprf(s) = f by naturality of f. O

14

We shall henceforth identify small presheaves with the associated morphisms into Prop and use the
informal Martin-Lof type theory explained above in Sect. 3 also to denote constructions in presheaf

categories.

6.3 Interpretation of the syntax in a naive F-doctrine inside K

Assume a naive F-doctrine C inside some category of presheaves K. This means that we have a
presheaf |C| € K (internally |C| : TypeK), a sub-presheaf TyC C |C|, and a presheaf C € K(|C],|C])
of morphisms (internally C : |C| x |C| — TypeK), as well as the constants specified after Def. 1 whose
types are now understood w.r.t. the internal language of K. We remark that this amounts to an
internal model in the sense of (Asperti and Martini 1992) with ambient category K. Following §5
of loc. cit. we define by induction on derivations a semantic function [—] = [=]¢ which to n T

associates a K-morphism from (Ty¢)™ to |C], i.e. we have
[n T € K(Ty)", IC])

Viewed externally, [n - I'] assigns to I € K and X € (Ty$)" an element [n F I'],;(X) € |C|; natural

in I. The same goes for types. A term I' -, ¢ : A gets interpreted as a global element of the presheaf
nX: ()" C(In + TUX), [n - AI(X))

Externally, this is an assignment which to I € K and X € (Ty¢(I))™ associates an element
[T bt AL (X) € Cr([n - T, (X), [n + AL (X))

again natural in I.As a typical example, we define here the interpretation of the V-operator. Suppose
we are given [n + 1+ B] € K((Ty)"+!, Ty°). The exponential transpose cur([n + 1 F B]) is a
morphism in K from (Tyc)" to the exponential Ty¢ — Ty¢. Composition with the semantic

V-operator yields the desired meaning of [n + V(B)]:
[nEVY(B)] =Vocur([n+1F B])

As explained above, we can also use A-notation to define morphisms in K. This leads to the more

familiar looking definition
[n+VB)] = AX: (Ty°)" VOAX: TyC.[n + 1 + B]|(X, X))

where the A-abstraction is interpreted in K. In this way we can understand all the other equations
from Fig. 5 by reading the right-hand sides as definitions in the internal language of global elements.

Again, we have the following soundness property:

15

Proposition 7 The interpretation of the syntaz in a naive F-doctrine internal to a category of

presheaves is sound in the sense that whenever Tkt =s: Athen [F,t: Al =Tk, s: A].

We remark that such interpretation function can be defined for naive F-doctrines living inside an
arbitrary model E of the metalanguage provided that the set of E-functions from X to Y in E is
a (constructive) set. We stress that this interpretation function is not directly an instance of the
interpretation function defined in 5 above because unlike there syntax and semantics live in different

ambient set-theoretic universes.

6.4 Families of presheaves

For a model E of the constructive metalanguage, for instance E = K, let Fam(E) denote the
category whose objects are pairs A = (A%¥", A°*™) where A¥" : Type® and A%*™ € AV — Type®.
A morphism from A to B is a pair f = (f%¥", f*¢™) such that f¥": A" — B%Y™ and f%™ :
Ila: AsY™ A%€™(q) — B*™(f*¥"(a)). Composition and identities are taken component-wise. We
call the first component of an object, respectively a morphism, the syntactic component, and use
the term semantic component for the second one. This terminology is motivated from the fact that
in subsequent applications the first components very often are syntactic objects whereas the second
components are predicates on syntactic components or proofs of such properties. We have a functor
Fst : Fam(E) — E which singles out the syntactic components, i.e. we have Fst(X) = X" for X
an object or a morphism.

Such categories of families can be subsumed under categories of presheaves because of the equiv-

alence
Fom(E) ~ E2*

where 2 is the category (in E) with two objects and one non-identity arrow. In the case where
E itself is of the form K we can avoid to consider presheaf-valued presheaves by employing the
equivalence

———

Fam(K) ~ K x 2

From this we know immediately that families of presheaves furnish a model of the constructive
metalanguage. For subsequent use we give the constructions of exponentials, dependent types,
and dependent products in Fam(E) in terms of the internal language of E. If A, B are objects in
Fam(E) then the exponential is defined by (A — B)®¥" = A" — BY" and (A — B)**"(f: (4 —

16

B)s¥"™) = Tla: ASY" . A%¢™ (q) — B%*™(f%¥"(a)). A type depending on A can be presented as a pair
F = (F#v" F5¢™) where F5¥" : A — Type® and F*¢™ : Tla: AS¥". A% (a) x F*¥"(a) — Type®. The

dependent product over such a family has syntactic component
(A, F)*¥" = Tla: A*Y" . F*¥"(a)
and semantic component
(A, F)**™(f:TI(A, F)*¥") = [la: A*Y" Ila: A**™(a).F*¢™(a,a, f(a))

It is well-known and obvious from these settings that the functor Fst : Fam(E) — E preserves all
the structure of a model of the constructive metalanguage.
We remark that Fam(E) can be seen as a category of proof-relevant logical predicates or ”‘de-

liverables”” in the sense of (Burstall and McKinna 1993).

6.5 Interpretation of the syntax in a naive F-doctrine internal to Fam(E)

From Section 6.3 it is clear how to interpret the syntax in a naive F-doctrine internal to Fam(E). For
subsequent use it is, however, appropriate to spell out the particular nature of this interpretation
and to introduce some notation. Let C be a naive F-doctrine in Fam(E) (for E a model of the
metalanguage). As Fst : Fam(E) — E preserves all the structure of a model of the metalanguage,
in particular substitution and II-types, the component-wise application of Fst to C furnishes a model
Fst(C) internal to E. More precisely, we have |Fst(C)| = Fst(|C|) and so forth. From the definition
of Fst and [—] it is immediate that the syntactic component of the interpretation in C coincides
with the interpretation in Fst(C). We abbreviate ([—])*¢™ by [-]°.
Let (X,X) : (Ty°)", ie. X : (Ty™™)m and X : ((Ty€)*m)n(X). For n F T we have:

[n - T1°(X,X) - [C]°m ([n - T]™9(X))
Similarly for types. A term I' F,, ¢ : A gets interpreted as

[Th,t: AHC()?,)_{) =C*m([C+t: A]]Fst(C))

7 Sconing of a naive F-doctrine

Fix a naive F-doctrine C living in some model of type theory E. Our aim is to define a new

doctrine Sc = Sc(C) internal to Fam = Fam(E) in such a way that the model C arises as Fst(Sc(C)).

17

Therefore, there is no need to define the syntactic components as they are fixed by this specification.
Accordingly, we omit the *¢™ superscript in the definition of the semantic components.

For I': |C| we write Sect(T") for C(1,T')—the set of global elements of I'. We define
|Se|(T:|C|) = Sect(I') — Prop

This means that the object of objects takes the form (|C|, AI':|C|.Sect(I") — Prop). The semantic
component of the family of morphisms in Sc is defined by
Se(T:|C|, T:Se(D), A |C|, A: Se(A), f:C(T, A)) =
IIy: Sect(T).T'(y) = A(fo7)

The object of types Ty is the restriction of |Sc| to types, i.e. we have ScT¥(A: Ty¢) = Sect(A) —
Prop.

We come to composition. If T': Se(T), A:Sc(A), ©:5¢(0), and f:C(T,A) and ¢:C(A,0) and
furthermore f:Sc(T', A, f) and g:Sc(A, ©, g) then we define the semantic component of the com-

position of f and g by

Ay: Sect(D).Ay:T(7)-g(f o7, £(7,7)) : ©((go f) o)

Associativity of composition in C is required for this to “type-check”. Similarly, we define identity
morphisms and the axioms for a category are readily verified.

Notice that this construction amounts to the well-known sconing construction (glueing along the
global sections functor) as discussed extensively in (Lambek and Scott 1985; Crole 1993). There
the glued category lives inside Set, but as there is a structure-preserving functor from the glued
category back to the original one this amounts to specifying a category internal to Fam(Set). The
construction of the products and exponentials in our Sc is as in the abovementioned sources. We
give their definitions on objects but omit the associated morphisms and the verifications.

For I' € S¢(T') and A € Ty*°(A) and B € Ty*°(B) we define
(T.A)({y,z) € Sect(I'.A)) =T'(v) x A(x)
(A = B)(f: Sect(A = B)) = lx: Sect(A).A(z) — B(app(f,z))

Now we will show that Sc has the required Ty-indexed products as a category internal to Fam. Let
B : Ty¢ - Ty° together with B : ILX: Ty°. Ty**(X) — Ty*°(B(X)) be an endomorphism of the

object of types in Sc. We claim that the semantic component of the product is given by

V(B, B, t: Sect(¥(B))) = I1X: TyC.TIX: Ty .B(X, X, App(X)ot)

18

It remains to define type abstraction and application and to check the equations. For X: Ty¢ and
X: TySC(X) the semantic component of the application morphism is defined by

App(X,X) = At: Sect(V(B)).At: V(B, B, t).t(X, X) : X(App(X) o t)
Conversely, if T: S¢(T) and f:T1X: Ty¢.C(T, B(X)) and

f:IIX: TyC.IX: Ty (X).Sc(T,T, B(X),B(X, X), f(X))
is a family of morphisms in Sc then we define

A(F) = My: Sect(T).My:T(7).AX: Ty AX: Ty (X).£(v,7, X, X) :
Sc(T',T',V(B),¥Y(B,B),A(f))

For this to “type-check” the identity App(X)oA(f)oy = f(X)o~y—a consequence of Ty-Beta has

been used. The required equations are straightforward.

7.1 Interpretation of the syntax in Sc(C)
By construction of S¢(C) one has Fst(Se(C)) = C. Thus, due to the analysis in Section 6.4, the

interpretation in Sc(C) gives rise to a (many-sorted) function [—]% which maps
e A judgement n F T to a function
[n+ 1% : IX: Ty" TX: (Ty*)"(X).Sect([n + T](X)) — Prop
e A judgement I' b, ¢ : A to a function
[ntt: A]% : IX: Ty .0OX: (TyS)(X).
Ty: Sect([n F T (X)).T: [n F T]%(X, X, 7).[n - A]%(X, X, [Tk, t: A]C o)

Again, the equational theory is respected in the sense that convertible terms are mapped to the

same semantic objects.

8 Exploring \Y

We will now explore the specific features of the presheaf category V. Our aim is to isolate a
context of definitions and equations which enables to carry out the construction of the model GT
entirely within the internal language of V, i.e. using the constructive metalanguage augmented by
this context of definitions. We start by lifting the term model T to a naive F-doctrine T inside
\Y% equipped with a higher-order abstraction operator. Secondly, we define sets and constructors of

normal forms and neutral terms together with the associated embeddings.

19

8.1 The term model

Before giving the explicit definition of 7 we describe its construction in more abstract terms. This
enables us to use existing results for the verification that 7 actually is a naive F-doctrine internal
to V. Afterwards, we give the explicit definitions of (most of the) structure components of T for
further reference and ease of the reader.

The abstract categorical construction of 7 proceeds in two steps. We start from the split fibred
ConCCC T : S°? — Cat with Cons;-products. Following (Asperti and Martini 1992) we call such
a structure an external model for further reference. To this fibration we apply the constant family
construction from (Jacobs 1991, §4.4.4) together with restriction along V resulting in an external
model T//V now over V and with type object [1,0] € V. The objects of (T//V),,r] are the objects
of Ty; a (T//V)[p,rj-morphism from A to © is a T,-morphism from I'.A to ©.

The definition of composition and identities in T//V uses the cartesian products in T. For
example, the identity morphism at A € (T//V), 1 is the product projection (in Ty) from I'.A to
A. The composition of f € T//V, (A, 0) (hence f € T,(T'.A,0)) with g € T//V},, (0, 7T) is
given by the morphism go{mr a, f) in T,

Products and exponentials are inherited from T.

From the development in loc. cit. adapted to the case of ConCCC’s together with the fact that
7T :V — T preserves finite products it follows that this is a split fibred ConCCC.

We now show directly that T//V is an external model. The generic object is given by 0 € Vi 4.
Recall from Section 2 that the product in V of [n,T] and [1,0] is [n 4+ 1,Tt]. If B € T//V},41,r+]
then we have V(B) € T//V|,r. Furthermore, if A € T//V},r) and f : T//V[n+1’r+](A+, B),
ie. f: T//Vapa(TH.AT,B), then Ap.a(f) : T//Vi,r(A,V(B)) is the transpose of f for the
desired adjunction. The counit of the adjunction is given by application, i.e. App(Or+.y(p)+,0) :
T/ /Viyr.r) (V(B)F, B).

The desired model T is now obtained by applying the process of internalisation from (Asperti
and Martini 1992) to the external model T//V resulting in a naive F-doctrine internal to V. For
further reference and for the reader not familiar with loc. cit. we explicitate parts of the raw data
of T.

Its object of contexts is the presheaf Con defined by

Conpnr) = {A | n A}(= [T,

-,

Conz,,(A) = A[A] if [4,w] € V([m,B],[n,T]) and b, A

20

The sub-presheaf of types Ty C Con is defined by
Typnry = {A |Fn A}= Ty")

Tts family of morphisms Mor : Con x Con — Type is given by
Morp, r1(A,0) = T,(I'.A,0)

as convertibility classes of syntactic context morphisms. If [A,w] € V([m,B],[n,T]) and €

Mor, (A, ©) then we define
Morz (8 = 4] o(w.A[A])

From (Asperti and Martini 1992) the following result is now immediate.

Theorem 8 The category T is a naive F-doctrine internal to V.

Remark 9 The presheaf Sect(A) = Mor(o, A) has the following remarkable property. For ([n,T],A) €

V(Con) we have
Sect[n’r](A) =T,(T,A)
so that the global sections in T correspond to vectors of open terms.

In order to explicitate the higher-order operations corresponding to type quantification and abstrac-
tion we require the following analysis of exponentiation with representable presheaves also used in

(Asperti and Martini 1992).

Lemma 10 Let K be a category, A be an object of K, such that the products I x A exist for all
IeKand FeK bea presheaf. The exponential y(A) — F of F' by the representable presheaf

yv(A) = K(—, A) is isomorphic to the functor F_y 4.

Proof. Immediate from the definition of exponentials in presheaf categories and the fact that the

Yoneda embedding preserves products. |

Lemma 11 Let F be a presheaf in V. The exponential Ty — F in V is isomorphic to the presheaf

FTY given by F T = Flnt1,0+]-

21

Proof. The presheaf Ty is isomorphic to the representable presheaf y([1,¢]). We conclude with

Lemma 10 O

To keep the exposition simple we shall henceforth treat the isomorphisms guaranteed by the
above results as identities.

We now construct the required function V : (Ty — Ty) — Ty in a pointwise way. Assume
[n,T] € Vand B : (Ty = Ty)jn,r)- From Lemma 11 we know that in fact B : Typ, 4 r+, i
n+1F B. We put

Vinr)(B) =V(B) : {X | nF X} = Ty, 1y

Naturality is immediate from the compatibility of type quantification with substitution and weak-
ening.
In a similar way we define type abstraction and application following the settings in the external

version T//V.

Proposition 12 (Interpretation in 7) Suppose that [m,A] € V and X e S(m,n)(= Ty["va]) .
If n T then
[+ F]][m,A](X) = F[X]
Furthermore, if 'k, t: A then
Jeons € Tm(T[X].A, A[X])

;s R
[0 bt 2 AT, 0 (X) = X om0

In particular, if oo t: A is a closed term then
[oFot: Al o (%) = [Heono

Proof. Induction on derivations. O

8.2 The presheaf of variables

The term model as a naive F-doctrine can more simply be defined internal to § by applying inter-

nalisation directly to the external model T. But that would not allow to have open terms of type

22

Ai.e. generalised elements of A in T, being represented by Sect(A). It is this property that opens up
the possibility to use the simple-minded sconing construction from Section 7 to prove existence of
normal forms and not only of weak head normal forms as was done in (Coquand and Dybjer 1996).
However, in order to make use of this fact without having to look at \Y externally, we have to express
this property in terms of the internal language. This will be done by reformulating A-abstraction
in T as a higher-order operation in V.

Had we worked internal to T then we would have a canonical isomorphism between Sect(A) —
Sect(B) and Sect(A = B) by an analogue of Lemma 11 since Sect(A) is representable, i.e. T would
be a full internal subcategory of T. Unfortunately, Sect(A) is not representable in \' Yet, there
exists a representable sub-presheaf Par(A) of Sect(A) corresponding to those open terms which are
variables. This presheaf has the property that there is an isomorphism £ : (Par(A) — Sect(B)) —
Sect(A = B) which is not as comfortable as a full internal subcategory but will suffice for our
purposes. The reason for accepting this inconvenience is that normal forms are not closed under

arbitrary substitutions and thus do not give rise to presheaves in T but only in V.
Definition 13 The presheaf Par : V(Ty) is defined on objects by
Par[n,F] (A) =V, (T, 4)

and for [A,w] € V([n',T"], [n,T]) and n+ A and w' € V,,(T, A) we define

-

Par (w') =w'[A]ow € Par[nf,rf](A[fI])

The natural transformation par : Par — Sect in V(Ty) is defined as the inclusion from weakenings

into terms.

Lemma 14 The presheaf Par is represented by the object ([1,0],0) of El(Ty). For any object
([n,T], A) of El(Ty) the object ([n,[.A], A) is the cartesian product of ([n,I], A) and ([1,0],0).

Proof. Suppose ([n,I], A) is an object of El(Ty), i.e. n T and n + A. By definition, an element
of Parp, r(A) is a renaming w € V, (T, A). It gives rise to the morphism [4,w] € V([n,T7], [1,0])
because 0[A] = A. Furthermore, by using 0[A] = A again, we have that [A,w] is in fact an
El(Ty)-morphism from ([n,T], 4) to ([1,0],0). For the converse, assume that [B,w] is an arbitrary
El(Ty)-morphism from ([n,I], A]) to ([1,0],0), i.e. [B,w] € V([n,I7], [1,0]) and 0[B] = A then we
must have B = A, thus w € V,(T', A) = Parp, rj(A). It is obvious that this establishes a natural

isomorphism between Par and y(([1,0],0)).

23

For the second part we notice that Ty is representable by [1, ¢] and therefore the category El(Ty)
is isomorphic to the slice category V/[1,¢]. So the cartesian product in question amounts to the
pullback of [4,()] : [n,T] — [1,¢] and [id1,{)] : [1,0] — [1,¢]. This pullback can be obtained using
a general construction, but we prefer to give it directly as follows:

[Aa 77{“,,4]

[n,T.A] [1,0]
[idn, 7r,4] [id1, ()]
[n,T] [1, 0]

[4, ()]

To see that the upper arrow is indeed a V-morphism notice again that 0[A] = A. It is clear that
the square commutes. If [A, w] : [m, A] = [n,T] and [B,w'] : [m, A] — [1,0] is a cone then we must
have w € V,, (A, T[A]) and w' € V,,(A, B) and (from the commutativity) B = A[A]. The unige

mediating morphism is then given by [A, (w,w')] : [m, A] = [n,T.A]. O

Corollary 15 For every presheaf F' € WA’(Ty) the exponential Par — F is isomorphic to the presheaf
which sends ([n,T], A) to Fi, . a1(4).

Proof. Immediate from Lemma 14 and Lemma 10. O

Proposition 16 There exists a natural transformation £ : A, B: Ty.(Par(A) — Sect(B)) —
Sect(A = B) such that the following equation holds in V

VA, B: Ty.Vt: Sect(A = B) . t = {(\p: Par(A).app(t, par(p)))

Proof. By Cor. 15 the arguments to £ at stage [n,I'] amount to types n - A, B and a term ¢
with T.A b, ¢t : B. We define £}, r1(A4, B,t) as Ar,a,p(t) and the required equation follows from

ETA. O

As announced before ¢ is actually an isomorphism, i.e. for f : Par(A) — Sect(B) we have f =

Ap: Par(A).app(4(f),p). However, we do not require this property for our purposes.

24

Remark 17 The presheaf Par together with £ can serve as an interpretation of the higher-order
syntax for A-calculus as described in (Despeyrouz, Felty, and Hirschowitz 1995). As stated before,
in a term model internal to T the presheaf Sect(A) — Sect(B) is isomorphic to Sect(A = B) and
one thus obtains a model for the usual higher-order abstract syntax of typed \-calculus as described

e.g. in (Harper, Honsell, and Plotkin 1993).

8.3 The presheaves of normal and neutral terms

As neutral terms and normal forms are stable under type substitutions and weakenings these sets

induce presheaves over Con (and also over Ty) defined by

NF'[, r)(A) = Tuples of normal forms of type A in context T’

NE, r1(A) = Tuples of neutral terms of type A in context T’

The clauses of the inductive definition of these sets induce natural transformations as given in the
second part of Figure 8.3. These operations allow to build up normal forms and neutral terms in
the internal language. Again, we have higher-order constructors giving normal forms of functional
and polymorphic types. Notice that we do not have an induction principle for NE and NF in V. We
also have functions ¢ : ITA: Ty. NF(A) — Sect(A) and k : IIA: Ty.NE(A) — NF(A) and therefore
also j : IIA: Ty. NE(A) — Sect(A) defined as the composition 4o k. The functions j and i commute

with the constructors in the obvious way. For instance, if p : Par(A) then
i(par np(p)) = par(p)

and if B: Ty — Ty and f:11X: Ty. NF(B(X)) then
i(Anr(f)) = AAX: Ty.i(f(X)))

In the case of Ay the higher-order abstractor £ is used: If A, B: Ty and f: Par(A) — NF(B) then
i(Anr(A, B, f)) = L(j(ap yp(u,v)))

Analogous equations hold for the remaining constructors of NE and NF.

We stress that the coercion ¢ is not monic. For example
My == Anp(AX: Ty Anr (Ap: Par(X = X).k(par yg(p))))
and
M; := Anp(AX: Ty Anp (Ap: Par(X = X).Anp(Az: Par(X).k(ap yg (par vg (p), k(par yg(2)))))

25

Externally, we have M; = AX . A\p.p and My = AX Ap.Az.app(p, z). These two are different normal
forms of type VX.X = X but i(My) = i(Ms3) by ETA.

We do not need that 4 is monic for the purposes of our proof; the fact that there can be different
normal forms of the same conversion class simply means that our normalisation function will not
be surjective, but simply picks out one particular normal form (in our example this will be My.)
One could enforce uniqueness of normal forms by using an analogue of Huet’s long Bn-normal forms
(Huet 1976) which is, however, not unproblematic since these are not stable under type substitution.
So the morphism part of the presheaf NF would have to perform certain n-expansions.

This completes the inspection of the internal language of V. The construction of the glued model
to follow can now be carried out entirely on top of the definitions made so far and summarised in

Figure 8.3.

9 The Tait model

Our aim is now to apply a mild variant of the sconing construction from Section 7 to the term
model 7. We do not consider arbitrary predicates over sections, but only those which are valid
for all sections corresponding to neutral terms and which imply the existence of normal forms, i.e.
a naive version of Tait’s computability predicates. More precisely, we define a naive F-doctrine

GT internal to Fam(V) the first component of which is the term model T, i.e. Fst(GT) = T. The

second component of the object of contexts Con®T : Con — Type is defined as

AL': Con.XP: Sect(I') — Prop.
(ITt: Sect(T").P(t) = {t': NF(T) | i(t') = t})x
(Ilu: NE(T').P(j(w)))

If T: Con?" (T') we refer to its three components by ['?™? qU' and u®, respectively. Le. we have
r?red ; Sect(T') — Prop

and
q" : TIt: Sect(T).TP™¢(t) — NF(T)

in such a way that i(q" (¢,t)) = t. Finally, u' : llu: NE(T').TP™4 (5 (u)).
According to our convention on arguments which can be inferred we often omit the first argument

to q.

26

Con : Type

Ty : Type

Mor : Con x Con — Type

id : IIT": Con.Mor(T',T)

comp : IIT, A, ©: Con.Mor(A, ©) x Mor(T',A) - Mor(T', ©)

o: Con

() : IIT": Con.Mor (T, o)

—.—: Con x Ty —» Con

cons : IIT": Con.ITA: Ty IIA: Con.Mor(A,T) x Mor(A, A) - Mor(A,T.A)
7 : IT: Con.ITA: Ty.Mor(T.A,T)

' IIT: Con ITA: Ty.Mor(T". A, A)

> Tyx Ty — Ty

app : IIA, B: Ty.ITA: Con.Mor(A, A = B) x Mor(A, A) - Mor(A, B)
A:ITA, B: Ty.IIA: Con.Mor(A.A, B) — Mor(A, A = B)

V:(Ty - Ty) —» Ty

App : IIB: Ty — Ty.IlA: Ty.Mor(¥(B), B(A))

A:IIB: Ty — Ty.IIA: Con.(I1X: Ty.Mor(A, B(X))) = Mor(A,V(B))

Equations stating that the above data define a naive F-doctrine

Par : Ty — Type

par : ILA: Ty.Par(A) — Sect(A)

¢:TIA, B: Ty.(Par(A) — Sect(B)) — Sect(A = B)

VA, B: Ty Vt: Sect(A = B). t = £(Ap: Par(A).app(t, par(p)))

NE,NF : Ty — Type

paryg : ILA: Ty.Par(A) — NE(A)

ap g - 1A, B: Ty.NE(A = B) — NF(A) — NE(B)
Apyg - 1B: Ty = Ty.NE(¥(B)) — ILX: Ty.NE(B(X))
proj yg : IIT: Con ITA: Ty.NE(T'.A) — NE(T)

varng : IIT: Con.I1A: Ty.NE(I'.A) — NE(A)

(Ywr : NF(o)

consyp : IIT: Con.ILA: Ty.NF(T) — NF(A) — NF(T.A)
Anr : IIA, B: Ty.(Par(A) - NF(B)) - NF(A= B)
Anp :1IB: Ty —» Ty.(IIX: Ty. NF(B X)) — NF(Y(B))
i:IMA: Ty.NF(A) — Sect(A)

j:TA: Ty NE(A) — Sect(A)

k: TLA: Ty.NE(A) — NF(A)

Equations specifying the interaction of ¢ and j with the constructors of NE and NF

Figure 2: Internal language of V

27

We define TygT : Ty — Type as the restriction of Con97 to Ty.

The second component of the object of morphisms is defined by
Mor9T(T,T, A, A, f: Mor(T, A)) = TIy: Sect(T').T?*% () — AP™(f o)

Since the definition of Mor9” does not depend on the added components q and u, the construction
of products, exponentials, and type-indexed products can be carried out as in the case of Se(T)
replacing Ty by TygT in the case of the type-indexed products. It only remains to show that
these constructions can be extended to “Tait-predicates”, i.e. the predicates are defined as before,
but we need to give the q and u components. For the ease of the reader we reproduce the predicates
themselves, as well.

First, we define

oPred(g: Sect(o)) = {x}
(0P (z)) = (nr
u®(u: NE(o)) = %

For T': Con, T: Con9"(T), and A: Ty, and A: Ty (A) we define

(T.A)Pred({v,2): Sect(T.A)) = TPred(y) x APd(z)

a2 (v, x): (T.A) ({7, 2))) consnr(q' (v), 9% (%))
utA (u: NE(T.A)) = (" (proj yp(u), v (var ng (u)))

We come to exponentials. Let A, B: Ty, and A: Ty9" (4) and B: Ty9" (B). We define

(A = B)Ped(t: Sect(A = B)) = Ta: Sect(A).AP™(a) — BP™?(app(t,a))
q*=B(t: (A = B)"(1)) = Anr(Ap: Par(A).q% (t(p, u® (par v (p)))))
uA=B(y: NE(A = B)) = Aa: Sect(A).da: AP (q) uB (ap vy (u, g™ (2)))

To type-check the quote expression, we need to show that
i(Anr (Ap: Par(A).q5 (t(p,w™ (par 5 (p)))))) = t
We calculate as follows. (The first argument to q will be given.)
i(Anr (Ap: Par(A).q® (app(t, par(p)) , t(p, u™(par yg(p))))))

£(Ap: Par(A).i(q® (app(t, par (p)) , t(p,u™ (par v (p))))))
£(Ap: Par(A).app(t, par(p))) by equation for ¢

28

Finally the type-indexed products. We require a generic Tait predicate for every type X; more

precisely we define U : I1X: Ty. TygT(X) by

U(X)Pme4(t: Sect(X)) = {t':NF(X)|i(t) =t}
PIOEEP) = ¢
WX (u: NE(X)) = k(u)

Now for B: Ty — Ty and bB:I1X: Ty. Ty97 (X) — Ty9" (B(X)) we define

V(B)?"ed(t: Sect(V(B))) = IIX: Ty.IIX: Ty97 (X).B(X,X)?"(App(t, X))
q"(®) (¢:V(B)Pr* (1))
wB) (u: NE(Y(B)))

Anr(AX: Ty.qBE YN (4(X, U(X))))
AX: Ty AX: Ty97 (X)) uBEX) (Ap yp (u, X))

10 The normalisation function

Theorem 18 For every closed type 0 - A there exists a constructively definable function nf 4
mapping closed terms of type A to normal forms in such a way that if 0+t : A then O F nf 4(t) =
t:Aandif OFt=1t": A then nf o(t) and nf 4(t') are syntactically equal.

Proof. Consider the interpretation of the syntax in the model G7. We make the following
definitions (in the constructive metalanguage, no longer in V). Recall that To(e, A) is the set

{t|etqt: A} modulo convertibility.

APt € To(e, A)) = ([0 + A]9T)P" g o (t, idjo.a]) € Prop

Amote(t € To(s, A) = ([0 F A]7T) ™0 g 4y (2) - AP™(t) — {t': NF(A) | i(t') = t}
Now, if o ¢ : A then [i-o # : A]{}), : AP*4(t) and we define

nf a(t) = AT (o ¢ AIGL)

These definitions are type-correct by Prop. 12.

From the type of A“°%* we know that

i(nfa(t) =t

Furthermore, by the soundness of the interpretation in the Tait model the function nf maps con-

vertible terms to equal normal forms. |

29

The restriction to closed types and terms is merely for ease of presentation. Open terms can be

normalised by normalising their universal closures.

11 Conclusion

We have defined an internal model of system F' the interpretation in which yields a normalisation
function. The model uses the idea of glueing along the global sections functor (“Freyd sconing”),
but had to be constructed internal to a category of presheaves where internal global sections corre-
spond to open terms. In this way we were able to overcome the difficulties with full gn-reduction
experienced in (Coquand and Dybjer 1996) where an ordinary set-theoretic semantic was used and
thus reduction underneath an abstraction could not be catered for. Our method of using presheaves
seems to be a general tool applicable in such situations. Furthermore, we have generalised the
apporach in loc. cit. to polymorphism by considering presheaves not w.r.t. classical set theory, but
relative to a model of impredicative type theory where polymorphic quantification has a natural
interpretation as dependent product. We have employed the fact that the operation of passing to a
presheaf model preserves the possibility of impredicative quantification cf. Prop. 6. Compared to
(Altenkirch, Hofmann, and Streicher 1995) where presheaves were also used, we have in this paper
used the internal language of the presheaf category for expressing the glueing construction. It ap-
peared in the course of this work that due to the extra complication arising from type variables and
polymorphism the argument is no longer manageable without using the internal language. The im-
portant point is that functional abstraction and type quantification are expressible as higher-order
operations in this internal language. We have explained how this relates to higher-order abstract
syntaz for M-calculus (Harper, Honsell, and Plotkin 1993; Despeyroux, Felty, and Hirschowitz 1995).

Our proof can be entirely formalised in extensional type theory, for instance Nuprl (Constable
et al. 1986). One can also aim at a formalisation in intensional type theory like ALF or Lego,
but then in order to define extensional objects like function spaces or the presheaf of convertibility
classes one would have to use setoids, i.e. types with equivalence relations, as has been done in
(Coquand 1994). Notice that such a formalisation would have to implement presheaves and natural
transformations and not merely the internal language. All the definitions which for ease of exposition
we have made in terms of the internal language have to be expanded into their set-theoretic or rather
type-theoretic formulations.

From such a formalisation one can immediately derive an executable function nf. This function

30

nfis given by type-theoretic code and executed by the normaliser of the implemented type theory. It
may seem that nothing has been gained because one normalisation procedure has been implemented
in terms of another one. Note, however, that the normal forms from Section 2.3 are a simple
inductive definition so that in order to compute them one only needs iterative weak head reduction
for closed terms on the meta-level.

A more efficient program can be obtained by translating the type-theoretic code into a functional
program, for instance in Standard ML. To do this one has to systematically replace dependently-
typed inductive definitions by recursive datatypes and delete computationally-irrelevant arguments.
For example the type of the semantic values which in the type-theoretic formulation depends on
types and on (convertibility classes of) terms becomes in Standard ML the following recursive

datatype where Tm is a simple inductive definition of terms.

datatype Sem = s_arr of int->Sem -> Sem |
s_pi of int->((Sem -> Tm)*(Tm -> Sem)) -> Sem |

s_u of Tm;

The integers are the “residuum” of the variable renamings in the type-theoretic formulation.

In order to justify these changes of data structure a general theory is called for. Lacking such
theory at the moment we have to content ourselves with intuition and—if desired—a brute-force
verification of the SML program using logical relations defining in which sense the SML program
simulates the type-theoretic one. Having obtained such an SML program for normalisation of type-
theoretic expression one has achieved the goal of employing the interpreter of the functional language
for the purpose of normalisation although the interpreter itself performs weak-head reduction. Such
an SML program exists and has been successfully tested on examples though has not been verified
formally.

There are various ways in which the present work can be extended. A relatively easy task
is the addition of inductive types such as a natural numbers type N with primitive recursion to
Fg,. One has to adjust the definitions of normal forms and neutral terms and defines nat?™¢ as
the property of being convertible to a normal form. The interpretation of zero and successor is
then straightforward, for the interpretation of the recursor one uses primitve recursion over normal
forms of N in V. Similarly, one can treat binary sum types albeit not with a general n-rule like in
(Ghani 1995). Incorporating n-equality for sums constitutes a difficult problem and requires further

research, yet we consider it an interesting task because usual term rewriting is not applicable to 7-

31

equality for sum types as it would violate Church-Rosser, a property irrelevant for the reduction-free
approach.

The other direction consists of extending the present method to dependently typed systems.
Although there are no principle obstacles this requires considerable effort because the notions of
model involved are more complex. In view of the results in the present paper adding impredicativity
would be a straightforward matter once type dependency has been settled. For a restricted notion of
equality (namely equality of whnfs) this programme has already been carried out by Per Martin-Lof
(1975). Using the ideas of higher-order abstract syntax and presheaf models we hope to be able to

extend Martin-Lof’s result to full gn-equality.

References

Altenkirch, T., M. Hofmann, and T. Streicher (1995). Categorical reconstruction of a reduction-
free normalisation proof. In D. Pitt and D. Rydeheard (Eds.), Proc. CTCS ’95, Springer
LNCS, Vol. 953, pp. 182-199.

Altenkirch, T., M. Hofmann, and T. Streicher (1996). Reduction-free normalisation for a poly-
morphic system. In Proc. LICS ’96, New Brunswick, N. J. IEEE.

Asperti, A. and S. Martini (1992). Categorical models of polymorphism. Information and Com-

putation 99, 1-79.

Berger, U. and H. Schwichtenberg (1991). An inverse of the evaluation functional for typed A-
calculus. In Proceedings of LICS 91, Amsterdam, pp. 203-211.

Burstall, R. and J. McKinna (1993). Deliverables: An approach to program semantics in con-
structions. In Proc. MFCS ’93, Springer LNCS, Vol. 711. Also as LFCS technical report
ECS-LFCS-91-133.

Constable, R. et al. (1986). Implementing Mathematics with the Nuprl Development System.

Prentice-Hall.

Coquand, C. (1994). From semantics to rules: a machine-assisted analysis. In Borger, Gurevich,

and Meinke (Eds.), Proceedings of CSL ’93, pp. 171-185. Springer, LNCS.

Coquand, T. and P. Dybjer (1996). Intuitionistic model constructions and normalization proofs.

Mathematical Structures in Computer Science. To appear. Previous version has appeared in

32

the informal proceedings of the BRA-Types workshop, 1993 held in Nijmegen.
Crole, R. (1993). Categories for Types. Cambridge University Press.

Despeyroux, J., A. Felty, and A. Hirschowitz (1995). Higher-order abstract syntax in Coq. In
M. Dezani and G. Plotkin (Eds.), Typed Lambda Calculi and Applications, pp. 124-138.
Springer LNCS vol. 902.

Ghani, N. (1995). Sn-equality for coproducts. In Proceedings of TLCA ’95, Edinburgh. Springer.
LNCS 902.

Harper, R., F. Honsell, and G. Plotkin (1993, January). A framework for defining logics. Journal
of the ACM 40(1), 143-184.

Huet, G. (1976). Résolution d’équations dans des langages d’ordre 1,2,...,w. Ph. D. thesis,

Université de Paris VII.
Jacobs, B. (1991). Categorical Type Theory. Ph. D. thesis, University of Nijmegen.

Lambek, J. and P. Scott (1985). Introduction to Higher-Order Categorical Logic. Cambridge

University Press.
Luo, Z. (1994). Computation and Reasoning. Oxford University Press.

Luo, Z. and R. Pollack (1992). LEGO Proof Development System: User’s Manual. Technical
Report ECS-LFCS-92-211, University of Edinburgh.

Martin-Lof, P. (1975). An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.
Sheperdson (Eds.), Logic Colloquium 1973, pp. 73-118. North-Holland.

Moerdijk, I. and S. M. Lane (1992). Sheaves in Geometry and Logic. A First Introduction to

Topos Theory. Springer.

Phoa, W. (1992). An introduction to fibrations, topos theory, the effective topos, and modest
sets. Technical Report ECS-LFCS-92-208, LFCS Edinburgh.

Streicher, T. (1991). Semantics of Type Theory. Birkhiuser.

33

