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Summary. We introduce Type Theory, including Homotopy Type Theory, as an alternative to
set theory as a foundation of Mathematics emphasising the intuitive and naı̈ve understanding
of its concepts.

1 Introduction

The word type theory has several meanings: some people mean the theory of types as used
in programming languages. Here we refer to Type Theory in the sense of Martin-Löf’s Type
Theory [MLS84] as a constructive foundation of Mathematics. We capitalize the word to em-
phasize the 2nd meaning. Indeed, the two aspects are related since Type Theory can be viewed
as a programming language.

Type Theory is often presented as a formal system with a lot of scary rules exploiting the
greek alphabet to the whole. While formal systems for Type Theory are an important subject of
study, it is hardly the best way to approach the subject. It seems more important to understand
the intuitive ideas underlying Type Theory hence that is what we focus on in this chapter.

Type Theory is the base of a number of computer systems used as the base of interactive
proof systems and very advanced (functional) programming language. Here is an incomplete
list:

NuPRL is one of the oldest implementation of Type Theory, which was developed at Cornell.
It is based on a different flavour of type theory which was called Extensional Type Theory
but which is now referred to as Computational Type Theory [C+86].

Coq is maybe now the system most used in formal Mathematics and has been used for some
impressive developments, including a formal proof of the Four Colour Theorem and the
verification of an optimising C compiler [BC13, Chl13]

Agda is a sort of a twitter it can be used as a interactive proof assistant or as a dependently
typed programming language. [Nor08, Stu16]

Idris goes further on the programming language road by addressing more pragmatic concerns
when using Type Theory for programming [Bra17].

Lean is developed at Microsoft Research with strong support for automatic reasoning
[dMKA+15].

Cubical Cubical is a very new system and more a proof of concept but it is the only one (so
far) that actually implements Homotopy Type Theory [CCHM16].
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One way to introduce Type Theory is to pick one system (I usually pick Agda) and then
learn Type Theory by doing it. While this is a good way to approach this subject, and I do
recommend to play with a system, I want to concentrate more on the conceptual issues and then
I find that having to explain the intricacies of a particular system can be a bit of a distraction.
Hence this course will be a paper based introduction to Type Theory.

This chapter can be viewed as a taster for my forthcoming book [Alt18] or for the book on
Homotopy Type Theory (HoTT) [Uni13] which was the output of a special year at the Institute
for Advanced Study in Princeton.

The material presented in these notes was the base for a number of courses since my
presentation at the FOMUS meeting:

• Introduction to homotopy type theory
22nd Estonian Winter School in Computer Science (EWSCS) , Palmse, Estonia, January
2017.

• Naı̈ve Type Theory
Midland Graduate School 2017 (MGS 2017) , Leicester, UK, April 2017.

• Introduction to homotopy type theory
EU Types summer school , Ohrid, Macedonia, July 2017
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2 Type Theory vs Set Theory

I view Type Theory in the first place as a intuitive foundation of Mathematics. This is similar
to how most Mathematicians use Set Theory: they have an intuitive idea what sets are but
they don’t usually refer back to the axioms of Set Theory. This is sometimes called naive Set
Theory 1 and similar what I am doing here can be called naive Type Theory.

In Set Theory we write 3 ∈N to express that 3 is an element of the set of natural numbers.
In Type Theory we write 3 : N to express that 3 is an element of the type of natural numbers.
While this looks superficially similar, there are important differences:

• While 3 ∈ N is a proposition, 3 : N is a judgement, that is a piece of static information.
• In Type Theory every object and every expression has a (unique) type which is statically

determined. 2

• Hence it doesn’t make any sense to use a : A as a proposition.

1This is also the title of a well kown book by Halmos [Hal98].
2We are not considering subtyping here, which can be understood as a notational device

allowing the omission of implicit coercions.
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• This is similar to the distinction between statically and dynamically typed programming
languages. While in dynamically typed languages there are runtime functions to check the
type of an object this doesn’t make sense in statically typed languages.

• In Set Theory we define P ⊆ Q as ∀x.x ∈ P→ x ∈ Q. We can’t do this in Type Theory
because x ∈ P is not a proposition.

• Also set theoretic operations like ∪ or ∩ are not operations on types. However, they can
be defined as operations on predicates, aka subsets, of a given type. ⊆ can be defined as a
relation on such subsets.

• Type Theory is extensional in the sense that we can’t talk about details of encodings.
• This is different in Set Theory where we can ask wether N∩Bool = /0? Or wether 2 ∈ 3?

The answer to these questions depends on the choice of representation of these objects
and sets.

Apart from the judgement a : A there is also the judgement a ≡A b which means that
a,b : A are definitionally equal. We write definitions using :≡, e.g. we can define n : N as 3 by
writing n :≡ 3. As for a : A definitional equality is a static property which can be determined
statically and hence which doesn’t make sense as a proposition. We will later introduce a=A b,
propositional equality which can be used in propositions.

While Type Theory is in some sense more restrictive than Set Theory, this does pay off.
Because we cannot talk about intensional aspects, i.e. implementation details, we can identify
objects which have the same extensional behaviour. This is reflected in the univalence axiom,
which identifies extensionally equivalent types (such as unary and binary natural numbers).

Another important difference between Set Theory and Type Theory is the way proposi-
tions are treated: Set Theory is formulated using predicate logic which relies on the notion
of truth. Type Theory is self-contained and doesn’t refer to truth but to evidence. Using the
propositions-as-types translation (also called the Curry-Howard equivalence) we can assign to
any proposition P the type of its evidence [[P]] using the following table:

[[P⇒ Q]] ≡ [[P]]→ [[Q]]

[[P∧Q]] ≡ [[P]]× [[Q]]

[[True]] ≡ 1

[[P∨Q]] ≡ [[P]]+ [[Q]]

[[False]] ≡ 0

[[∀x : A.P]] ≡ Πx : A.[[P]]

[[∃x : A.P]] ≡ Σx : A.[[P]]

0 is the empty type, 1 is the type with exactly one element and + is the sum or disjoint
union of types.→ (function type) and × (product) should be familiar but we will revisit all of
them from a type theoretic perspective. Π and Σ are less familiar in Set Theory and we will
have a look at them later.

We are using a typed predicate logic, in the cases for universal and existential quantifi-
cation A refers to a type. Other connectives are defined: ¬P is defined as P⇒ False. Logi-
cal equivalence P⇔ Q is defined as (P⇒ Q)∧ (Q⇒ P). Be careful, equivalences such as
¬(P∧Q)⇔ ¬P∨¬Q or ¬(∀x : A.P)⇔ ∃x : A.¬P do not hold in Type Theory, hence we
cannot define ∨ or ∃ via ¬ and ∧ and ∀.

Later we will see a refinement of the proposition as types translation, which changes the
translation of P∨Q and ∃x : A.P.
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3 Non-dependent types

3.1 Universes

To get started we have to say what a type is. We could achieve this by introducing another
judgement but instead I am going to use universes. A universe is a type of types. For example
to say that N is a type, I write N : Type where Type is a universe.

But what is the type of Type? Do we have Type : Type? It is well known that this doesn’t
work in Set Theory due to Russell’s paradox (the set of all sets which does not contain itself).
In Type Theory a : A is not a proposition, hence it is not immediately clear wether the paradox
still works. However, it is possible to encode Russell’s paradox in a Type Theory with Type :
Type by using trees which can branch over any type. In this theory we can construct a tree of
all trees which don’t have themself as immediate subtree. This tree is a subtree of itself iff it
isn’t which enables us to derive a contradiction.

To avoid Russell’s paradox we introduce a hierarchy of universes

Type0 : Type1 : Type2 : . . .

and we decree that any type A : Typei can be lifted to a type A+ : Typei+1. Being explicit
about universe levels can be quite annoying hence we are going to ignore them most of the
time but try to make sure that we don’t use universes in a cyclic way. That is we write Type as
a metavariable for Typei and assume that all the levels are the same unless stated explicitly.

3.2 Functions

While in Set Theory functions are a derived concept (a subset of the cartesian product with
certain properties), in Type Theory functions are a primitive concept. The basic idea is the
same as in functional programming: basically a function is a black box and you can feed it
elements of its domain and out come elements of its codomain. Hence given A,B : Type we
introduce the type of functions A→ B : Type. We can define a function explicitly, e.g. we
define f : N→ N as f (x) :≡ x+ 3. Having defined f we can apply it, e.g. f (2) : N and we
can evaluate this application by replacing all occurrences of the parameter x in the body of the
function x+3 by the actual argument 2 hence f (2)≡ 2+3 and if we are lucky to know how
to calculate 2+3 we can conclude f (2)≡ 5.

One word about syntax: in functional programming and in Type Theory we try to save
brackets and write f 2 for the application and also in the definition we write f x :≡ x+3.

The explicit definition of a function requires a name but we should be able to define a
function without having to give it a name - this is the justification for the λ -notation. We write
λx.x+ 3 : N→ N avoiding to have to name the function. We can apply this (λx.x+ 3)2 and
the equality (λx.x+3)2≡ 2+3 is called β -reduction. The explicit definition f x≡ x+3 can
now be understood as a shorthand for f ≡ λx.x+3.

In Type Theory every function has exactly one argument. To represent functions with
several arguments we use currying, that is we use a function that returns a function. So for
example the addition function g :≡ λx.λy.x+ y has type N→ (N→ N), that is if we apply
it to one argument g3 : N→ N it returns the function that add 3 namely λy.3+ y. We can
continue and supply a further argument (g3)2 : N which reduces

(g3)2 ≡ (λy.3+ y)2

≡ 3+2
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To avoid the proliferation of brackets we decree that application is left associative hence we
can write g32 and that→ is right associative hence we can write N→ N→ N for the type of
g.

When calculating with variables we have to be a bit careful. Assume we have a variable
y : N hanging around, now what is gy? If we naively replace x by y we obtain λy.y+ y, that
is the variable y got captured. This is not the intended behaviour and to avoid capture we
have to rename the bound variable that is λx.λy.x+ y ≡ λx.λ z.x+ z - this equality is called
α-congruence. After having done this we can β -reduce. Here is the whole story

gy ≡ (λx.λy.x+ y)y

≡ (λx.λ z.x+ z)y

≡ λ z.y+ z

Clearly the choice of z here is arbitrary, but any other choice (apart from y) would have yielded
the same result upto α-congruence.

3.3 Products and sums

Given A,B : Type we can form their product A×B : Type and their sum A+B : Type. The
elements of a product are tuples, that is (a,b) : A×B if a : A and b : B. The elements of a sum
are injections that is lefta : A+B if a : A and rightb : A+B, if b : B. 3 To define a function
from a product or a sum it is sufficient to say what the functions returns for the constructors,
that is for tuples in the case of a product or the injections in the case of a sum.

As an example we derive the tautology

P∧ (Q∨R)⇔ (P∧Q)∨ (P∧R)

using the propositions as types translation. We assume that P,Q,R : Type, we have to construct
an element of the following type

((P× (Q+R)→ (P×Q)+(P×R))

×((P×Q)+(P×R)→ P× (Q+R))

We define:

f : P× (Q+R)→ (P×Q)+(P×R)

f (p, leftq) :≡ left(p,q)

f (p, rightr) :≡ right(p,r)

g : (P×Q)+(P×R)→ P× (Q+R)

g(left(p,q)) :≡ (p, leftq)

g(right(p,r))) :≡ (p, rightr)

Now the tuple ( f ,g) is an element of the type above.
In this case the two functions are actually inverses, but this is not necessary to prove the

logical equivalence.

3The choice of the names for the injections is arbitrary and not standardized, some people
write inl and inr; or in0 and in1.
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Exercise 1 Using the propositions as types translation, try 4 to prove the following tautolo-
gies:

1. (P∧Q⇒ R)⇔ (P⇒ Q⇒ R)
2. ((P∨Q)⇒ R)⇔ (P⇒ R)∧ (Q⇒ R)
3. ¬(P∨Q)⇔¬P∧¬Q
4. ¬(P∧Q)⇔¬P∨¬Q
5. ¬(P⇔¬P)

where P,Q,R : Type are propositions represented as types.

Exercise 2 While the principle of excluded middle P∨¬P (tertium non datur) is not provable,
prove its double negation using the propositions as types translation:

¬¬(P∨¬P)

If for a particular proposition P we can establish P∨¬P then we can also derive the principle
of indirect proof (reduction ad absurdo) for the same proposition ¬¬P⇒ P. Hence show:

(P∨¬P)⇒ (¬¬P⇒ P)

Note that the converse does not hold (what would be a counterexample?). However, use the
two tautologies to show that the two principles are equivalent.

Functions out of products and sums can be reduced to using a fixed set of combinators
called non-dependent eliminators or recursors (even though there is no recursion going on).

R× : (A→ B→C)→ A×B→C

R× f (a,b) :≡ f ab

R+ : (A→C)→ (B→C)→ A+B→C

R+ f g(lefta) :≡ f a

R+ f g(rightb) :≡ gb

The recursor R× for products maps a curried function f : A→ B→ C into its uncurried
form, taking tuples as arguments. The recursor R+ basically implements the case function
performing case analysis over elements of A+B.

Exercise 3 Show that using the recursor R× we can define the projections:

fst : A×B→ A

fst(a,b) :≡ a

snd : A×B→ B

snd(a,b) :≡ b

Vice versa: can the recursor be defined using only the projections?

4I didn’t say they are all tautologies!
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We also have the case of an empty product 1, called the unit type and the empty sum 0,
the empty type. There is only one element of the unit type: () : 1 and none in the empty type.
We introduce the corresponding recursors:

R1 : C→ (1→C)

R1 c() :≡ c

R0 : 0→C

The recursor for 1 is pretty useless, it just defines a constant function. The recursor for the
empty type implements the logical principle eq falso quod libet, from false follows everything.
There is no defining equation because it will never be applied to an actual element.

Exercise 4 Construct solutions to exercises 1 and 2 using only the eliminators.

The use of arithmetical symbols for operators on types is justified because they act like
the corresponding operations on finite types. Let us identify the number n with the type of
elements 0n,1n, . . .(n−1)n : n, then we observe that it is indeed the case that:

0 = 0

m+n = m+n

1 = 1

m×n = m×n

Read = here as has the same number of elements. This use of equality will be justified later
when we introduce the univalence principle.

The arithmetic interpretation of types also extends to the function type, which corresponds
to exponentiation. Indeed, in Mathematics the function type A→ B is often written as BA. And
indeed we have:

mn = n→ m

4 Dependent types

By a dependent type we mean a type indexed by elements of another type. An example is the
type of n-tuples An : Type their elements are (a0,a1, . . .an−1) : An where ai : A, or the finite
type n : Type. Indeed, tuples are also indexed by A : Type. We can use functions into Type to
represent these dependent types:

Vec : Type→ N→ Type
VecAn :≡ An

Fin : N→ Type
Finn :≡ n
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In the propositions as types view dependent types are used to represent predicates, e.g. Prime :
N→ Type assigns to any natural number n : N the type of evidence Primen : Type that n is a
prime number. This does not need to be inhabited, e.g. Prime4 is empty. Using currying we
can use this also to represent relations, e.g. ≤: N→ N→ Type, m ≤ n : Type is the type of
evidence that m is less or equal to n.

4.1 Π -types and Σ -types

Π -types generalize function types to allow the codomain of a function to depend on the do-
main. For example consider the function zeroes that assigns to any natural number n : N a
vector of n zeroes

(0,0, . . . ,0)︸ ︷︷ ︸
n

: Nn

We use Π to write such a type:

zeroes : Πn : N.Nn

zeroesn :≡ (0,0, . . . ,0)︸ ︷︷ ︸
n

The non-dependent function type can now be understood as a special case of Π -types, A→
B≡Π− : A.B. 5

In the same vain, Σ -types generalize product types to the case when the 2nd component
depends on the first. For example we can represent tuples of arbitrary size as a pair of a
natural number n : N and a vector of this size An as an element of Σn : N.An. So for example
(3,(1,2,3)) : Σn : N.Nn because (1,2,3) : N3. Indeed, this type is very useful so we give it a
name:

List : Type→ Type
ListA :≡ Σn : N.An

In the propositions as types translation we use Π -types to represent evidence for universal
quantification. For example a proof of ∀x : N.1+ x = x+ 1 is a dependent function of type
f : Πx : N.1+ x = x+1, such that applying it as in f 3 is evidence that 1+3 = 3+1.

We use Σ -types to represent evidence for existential quantification where the first com-
ponent is the instance for which the property is supposed to hold and the second component
a proof that it holds for this particular instance. For example the statement ∃n : N.Primen is
translated to Σn : N.Primen and a proof of this is (3, p) where p : Prime3.

As for Π -types the non-dependent products arise as a special case of Σ -types: A×B :≡
Σ− : A.B. 6

To avoid clutter we sometimes want to omit arguments to a Π -type when it is derivable
from later arguments or the first component of a Σ -type. In this case we write the argument in
subscript as in Πx:ABx or Σx:ABx. For example if we define ListA :≡ Σn:N.An we can omit the
length and just write (1,2,3) : ListN.

We can also define a dependent recursor or eliminator for Σ -types which allows us to
define any dependent function out of a Σ -type. This eliminator is not just parametrised by a
type but by a family C : Σx : A.Bx→ Type:

5Inspired by this, an alternative notation for Πx : A.Bx is (x : A)→ Bx.
6As for Π -types, an alternative notation for Σx : A.Bx is (x : A)×Bx.
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EΣ : (Πx : A,Πy : Bx.C (x,y))→Π p : Σx : A.Bx.C p

EΣ f (a,b) :≡ f ab

Exercise 5 As in exercise 3 we can define projections out of a Σ -type, let A : Type and B :
A→ Type:

fst : Σx : A.Bx→ A

fst(a,b) :≡ a

snd : Π p : Σx : A.Bx.B(fst p)

snd(a,b) :≡ b

Note that the type of the 2nd projections is a dependent function type using the first projection.
Derive the projections using only the eliminator EΣ . Vice versa, can you derive the elimi-

nator from the projections without making further assumptions?

Exercise 6 Using the propositions as types translation for predicate logic try to derive the
following tautologies:

1. (∀x : A.Px∧Qx)⇔ (∀x : A.Px)∧ (∀x : A.Qx)
2. (∃x : A.Px∨Qx)⇔ (∃x : A.Px)∨ (∃x : A.Qx)
3. (∃x : A.Px)⇒ R⇔∀x : A.Px⇒ R
4. ¬∃x : A.Px⇔∀x : A.¬Px
5. ¬∀x : A.Px⇔∃x : A.¬Px

where A,B : Type and P,Q : A→ Type, R : Type, represent predicates and a proposition.

We have seen that Σ -types are related to products but they are also related to sums. Indeed
we can derive + from Σ using as the first component an element of Bool = 2 and the second
component is either the first or the 2nd component of the sum (assuming A,B : Type):

A+B : Type
A+B :≡ Σx : Bool.ifx thenAelseB

In the same way we can also derive× from Π by using dependent functions over the booleans
which returns either one or the other component of the product.

A×B : Type
A×B :≡Πx : Bool.ifx thenAelseB

It is interesting to note that × can be viewed in two different ways: either as a non-dependent
Σ -type or as a dependent function-type over the booleans.

Exercise 7 Show that injections, pairing, non-dependent eliminators can be derived for these
encodings of sums and products.

Finally, we notice that the arithmetic interpretation of types extends to Σ and Π giving a
good justification for the choice of their names, let m : N and f : m→ N:

Σx : m. f x = Σ
x<m
x=0 f x

Πx : m. f x = Π
x<m
x=0 f x



10 Thorsten Altenkirch

4.2 Induction and recursion

Following Peano the natural numbers are introduced by saying that 0 is a natural number (0 :
N), and if n is a natural number (n : N) then its successor is a natural number (sucn : N), which
is equivalent to saying suc : N→ N. When defining a function out of the natural numbers, we
allow ourselves to recursively use the function value on n to compute it for sucn. An example
is the doubling function:

double : N→ N
double0 :≡ 0

double(sucn) :≡ suc(suc(doublen))

We can distill this idea into a non-dependent eliminator which is now rightfully called the
recursor:

RN : C→ (C→C)→ N→C

RN zs0 :≡ z

RN zs(sucn) :≡ s(Rzsn)

We can now define double using only the recursor:

double :≡ RN 0(λn.suc(sucn))

Exercise 8 We define addition recursively:

+ : N→ N→ N
0+n :≡ n

(sucm)+n :≡ suc(m+n)

Define addition using only the recursor RN.

Exercise 9 Not all recursive functions exactly fit into this scheme. For example consider the
function that halves a number forgetting the remainder:

half : N→ N
half0 :≡ 0

half(suc0) :≡ 0

half(suc(sucn)) :≡ suc(halfn)

Try to derive half only using the recursor RN.

When we want to prove a statement about natural numbers we have to construct a depen-
dent function. An example is the proof that half is the left inverse of double:

∀n : N.half(doublen) = n

I haven’t introduced equality yet but we only need two ingredients to carry out this construc-
tion, given A,B : Type:
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refl : Πx : A.x = x

resp : Π f : A→ B.Πm,n:Nm = n→ f m = f n

Using those we can define a dependent function verifying the statement:

halfDouble : Πn : N.half(doublen) = n

halfDouble0 :≡ refl0

halfDouble(sucn) :≡ respsuc(hn)

As for Σ -types we can derive dependent functions out of the natural numbers using a depen-
dent recursor or eliminator. Assume that we have a dependent type C : N→ Type:

EN : C 0→ (Πn : N.C n→C (sucn))→Πn : N.C n

EN zs0 :≡ z

EN zs(sucn) :≡ s(Ezsn)

Exercise 10 Derive halfDouble using only the dependent eliminator EN.

The type of EN precisely corresponds to the principle of induction - indeed from the proposi-
tions as types point of view induction is just dependent recursion.

Exercise 11 Show that the natural numbers with + and 0 form a commutative monoid:

1. ∀x : N.0+ x = x
2. ∀x : N.x+0 = x
3. ∀x,y,z : N.x+(y+ z) = (x+ y)+ z
4. ∀x,y : N.x+ y = y+ x

Not all dependent functions out of the natural numbers arise from the propositions as
types translation. An example is the function zeroes : Πn : N.Nn which we only introduced
informally. We can make this precise by inductively defining tuples:

nil : A0

cons : Πn:NAn→ Asucn

Using this we can define zeroes by recursion

zeroes0 :≡ nil

zeroes(sucn) :≡ cons0(zeroesn)

This can be easily translated into an application of the eliminator

zeroes :≡ EN nil(cons0)

Exercise 12 We can also define the finite types in an inductive way, overloading 0 and suc:
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0 : Πn:Nsucn

suc : Πn:Nn→ sucn

Using this and the inductive definition of An derive a general projection operator

nth : Πn:NAn→ n→ A

that extracts an arbitrary component of a tuple.

Exercise 13 Suggest definitions of eliminators for tuples and finite types. Can you derive all
the examples using them?

4.3 The equality type

Given a,b : A the equality type
a =A b : Type

is generated from one constructor

refl : Πx:Ax =A x

That is we are saying that two things which are identical are equal and this is the only way
to construct an equality. Using this idea we can establish some basic properties of equality,
namely that it is an equivalence relation, that is a relation that is reflexive, symmetric and
transitive. Moreover, it is also a congruence, it is preserved by all functions. Since we already
have reflexivity from the definition, lets look at symmetry first. We can define symmetry by
just saying how it acts on reflexivity:

sym : Πx,y:Ax = y→ y = x

symrefla :≡ refla

The main idea here is that once we apply sym to refl we also know that tht wto points x,y : A
must be identical and hence we can prove the result using refl again.

Exercise 14 Provide proofs of

trans : Πx,y,z:Ax = y→ y = z→ x = z

resp : Π f : A→ B.Πm,n:Nm = n→ f m = f n

using the same idea.

For equality there is a recursor and an eliminator, and for the examples above we only need the
recursor because we have no dependency on the actual proofs of equality. However, there is
some dependency because equality itself is a dependent type. We assume a family that depends
on the indices of equality but not on the equality proofs themselves: C : A→ A→ Type then
the recursor is:

R= : (Πx : A.C xx)→Πx,y:Ax = y→C xy

R= f (refla) :≡ f a
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Exercise 15 Derive sym, trans, resp using the recursor R=.

What would be a statement that actually depends on equality proofs? It seems that equality
is rather trivial since there is at most one proof of it and we should be able to prove this. This
is called uniqueness of equality proofs and states that any two proofs of equality are equal
and it has an easy direct definition exploiting exactly the fact that the only proof of equality is
reflexivity:

uep : Πx,y:AΠ p,q : x = y

ueprefla refla :≡ reflrefla

We now define the dependent eliminator for equality which E= which is also called J but we
stick to our terminology. This time we use a family that does indeed depend on the equality
proof C : Πx,y:Ax = y→ Type

E= : (Πx:AC (reflx))→Πx,y:AΠ p : x = y.C p

E= f reflx :≡ fx

Now we should be able to perform the usual exercise and reduce the direct definition of uep
to one using only the eliminator. The first step is clear, by eliminating one argument we can
reduce the problem to:

Πx:AΠq : x = x.reflx = q

but now we are stuck. We cannot apply the eliminator because we need a family were both
indices are arbitrary. Indeed, Hofmann and Streicher were able to show that uep is unprovable
from the eliminator [HS98]. In the next section we will discuss reasons why this is actually
not a bad thing. However, at least based on our current understanding of equality it seems that
this is an unwanted incompleteness. One which can actually fixed by introducing a special
eliminator which works exactly in the case when we want to prove something about equality
proofs where both indices are equal. That is we assume as given a family C : Πx:Ax= x→Type
and introduce

K : (Πx:AC reflx)→Πx:AΠ p : x = x.C p

K f reflx :≡ fx

This eliminator is called K because K is the next letter after J.

Exercise 16 Derive uep using only E= and K.

Exercise 17 Instead of viewing equality as a relation generated by refl, we can also fix one
index a : A and now define the predicate of being equal to a: a =− : A→Type. This predicate
is generated by refla : a = a so no change here. However, the eliminator looks different. Let’s
fix C : Πx : A.a = x→ Type

J′a : (C refla)→Πx:AΠ p : a = x.C p

J′a f (refla) :≡ f

Show that E= and J′ are interderivable, that is both views of equality are equivalent.



14 Thorsten Altenkirch

5 Homotopy Type Theory

5.1 Proof relevant equality

If we are only use E= aka J we cannot in general prove that there is only one proof of equality,
but what can we prove? It turns out that we can indeed verify some equalities:

trans p refl = p

transrefl p = p

trans(trans pq)r = trans p(transqr)

trans p(sym p) = refl

trans(sym p) p = refl

where p : a =A b, q : b =A c and r : c =A d.
It is easy to verify these equalities using only J because all the quantifications are over

arbitrary p : x = y and there is no repetition of variables.

Exercise 18 Explicitly construct the proofs using J.

A structure with these properties is called a groupoid. A groupoid is a category where
every morphism is an isomorphism. Here the objects are the elements of the type A, given
a,b : A the homset (actually a type) is a =A b, composition is trans, identity is refl and sym
assigns to every morphism its inverse.

We can go further an observe that resp also satisfies some useful equalities:

resp f refl = refl

resp f (trans pq) = trans(resp f p)(resp f q)

where f : A→ B, p : a =A b,q : b =A c.
In categorical terms this means that f is a functor: its effect on objects a : A is f a : B and

its effect on morphism p : a =A b is resp f p : f a =B f b.

Exercise 19 Why don’t we prove that resp f also preserves symmetries?

resp f (symp) = sym(resp f p)

Indeed, the idea of Streicher’s and Hofmann’s proof is to turn this around and to show
that we can generally interpret types as groupoids where the equality type corresponds to the
homset. Interestingly we can also interpret J in this setting but clearly we cannot interpret K
because it forces the groupoid to be trivial, i.e. to be an equivalence relation. However, in the
moment there is no construction which generates non-trivial groupoids, but this will change
once we have the univalence principle or if we introduce Higher Inductive Types (HITs).

However, groupoids are not the whole story. There is no reason to assume that the next
level of equalities, i.e. the equality of the equality of equality proofs is trivial. We need to add
some further laws, so called coherence laws, which are well known and we end up with a
structure which is called a 2-Groupoid (in particular all the homsets are groupoids). But the
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story doesn’t finish here we can go on forever. The structure we are looking for is called a
weak ω-groupoid. Alas, it is not very easy to write down what this is precisely. Luckily, ho-
motopy theoreticians have already looked at this problem and they have a definition: a weak
ω-groupoid is a Kan complex, that is a simplicial set with all Kan fillers. This is what Vo-
evodsky has used in his homotopical model of Homotopy Type Theory [KL12]. However, it
was noted that this construction uses classical principles, i.e. the axiom of choice. Thierry Co-
quand and his team have now formulated a constructive alternative which is based on cubical
sets [CCHM16].

5.2 What is a proposition?

Previously, we have identified propositions as types but it is fair enough to observe that types
have more structure, they can carry more information by having different inhabitants. This
becomes obvious in the next exercise:

Exercise 20 Given A,B : Type and a relation R : A→ B→ Type the axiom of choice can be
stated as follows:

(∀x : A.∃y : B.Rxy)→∃ f : A→ B.∀x : A.Rx( f x)

Apply the propositions as types translation and prove the axiom of choice.

This is strange because usually the axiom of choice is an indicator of using some non-
constructive principle in Mathematics. But now we can actually prove it in Type Theory?
Indeed, the formulation above doesn’t really convey the content of the axiom of choice be-
cause the existential quantification is translated as a Σ -type and hence makes the choice of
the witness explicit. In conventional Mathematics propositions do not carry any information
hence the axiom of choice has to build the choice function without any access to choices made
when showing the premise.

To remedy this mismatch we are more specific about propositions: we say that a type
P : Type is a proposition if it has at most one inhabitant, that is we define

isProp : Type→ Type
isPropA :≡Πx,y : A.x =A y

I write P : Prop for a type that is propositional, i.e. we can prove isPropP. That is we are
interpreting Prop as ΣP : Type.isPropP but I am abusing notation in that I omit the first
projection (that is an instance of subtyping as an implicit coercion).

Exercise 21 Show that equality for natural numbers is a proposition, that is establish:

∀x,y : N.isProp(x =N y)

Looking back at the proposition as types translation we would like that for any proposition
in predicate logic P we have that [[P]] : Prop. That can be shown to be correct for the so called
negative fragment, that is the subset of predicate logic without ∨ and ∃.

Exercise 22 Show that if P,Q : Prop and R : A→ Prop where A : Type then
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1. [[P⇒ Q]] : Prop
2. [[P∧Q]] : Prop
3. [[True]] : Prop
4. [[False]] : Prop
5. [[∀x : A.P]] : Prop

However this fails for disjunction and existential quantification: [[True∨True]] is equivalent to
Bool which is certainly not propositional since true 6= false. Also ∃x : Bool.True is equivalent
to Bool and hence also not propositional.

To fix this we introduce a new operation which assigns to any type a proposition which
expresses the fact that the type is inhabited. That is given A : Type we construct ||A|| : Prop, this
is called the propositional truncation of A. We can construct elements of ||A|| from elements
of A, that is we have a function η : A→ ||A||. However, we hide the identity of a, that is we
postulate that η a = η b for all a,b : A. How can we construct a function out of ||A||? It would
be unsound if we would allow this function to recover the identity of an element. This can
be avoided if the codomain of the function is itself propositional. That is given P : Prop and
f : A→ P we can lift this function to f̂ : ||P|| → A with f̂ (η a)≡ f a.

Using ||− || we can redefine [[−]] such that [[P]] : Prop:

[[P∨Q]] :≡ ||[[P]]+ [[Q]]||
[[∃x : A.P]] :≡ ||Σx : A.[[P]]||

Now the translation of the axiom of choice

(∀x : A.∃y : B.Rxy)→∃ f : A→ B.∀x : A.Rx( f x)

which is
Πx : A.||Σy : B.Rxy|| → ||Σ f : A→ B.∀x : A.Rx( f x)||

is more suspicious. It basically say if for every x : A there is y : B with a certain property, but
I don’t tell you which one, then there is a function f : A→ B which assigns to every x : A a
f x : B with a certain property but I don’t tell you which function. This sounds like a lie to me!

Indeed lies can make our system inconsistent or they can lead to classical principle, which
can be viewed is a form of lying that is not known to be inconsistent. Indeed, assuming one ad-
ditional principle, propositional extensionality we can derive the principle of excluded middle.
This proof is due to Diaconescu.

By propositional extensionality we mean that two propositions which are logically equiv-
alent then they are equal:

propExt : ΠP,Q : Prop.(P⇔ Q)→ P = Q

This is reasonable because all what we matters about a proposition is wether it is inhabited,
and hence two proposition which are logically equivalent are actually indistinguishable and
hence extensionally equal. Indeed, we will see that propExt is a consequence of the univalence
principle.

Theorem 1 (Diaconescu) Assuming the amended translation of the axiom of choice:

ac : Πx : A.||Σy : B.Rxy|| → ||Σ f : A→ B.∀x : A.Rx( f x)||

and propExt we can derive the excluded middle for all propositions:

∀P : Prop.P∨¬P
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What has really happened is that from the lie that we can recover information we have
just hidden we can extract information as long as we hide the function doing the extraction.
And this has nothing to do with Σ -types and existentials but with the behaviour of the hiding
operation, or inhabitance || − ||. Hence we can formulate a simpler version of the axiom of
choice in Type Theory:

(Πx : A.||Bx||)→ ||Πx : A.Bx||
This implies the revised translation of the axiom.

5.3 Dimensions of types

We have classified types as propositions if they have at most one inhabitant. uep says that
equality is a proposition. Even of we are not accepting uep, we can use this to classify types:
we say that a type is a set if all its equalities are propositions.

isSet : Type→ Type
isSetA :≡Πx,y:AisProp(x =A y)

As for propositions we abuse notation and write A : Set if A : Type and we can show isSetA.
uep basically says that all types are sets. The idea here is that sets are types which are quite
ordinary, they reflect our intuition that equality is propositional.

Actually we can show that certain types are sets, e.g. exercise 21 basically asks to prove
that N : Set. However, we can do much better, we can show in general that any type with a
decidable equality is a set. This is a theorem due to Michael Hedberg.

Theorem 2 (Hedberg) Given A : Type such that the equality is decidable

d : ∀x,y : A.x = y∨ x 6= y

then we can show
isSetA

To show Hedberg’s theorem we establish a lemma saying that if there is a constant function
on equality types then the equality is propositional. That is we assume

f : Πx,y:Ax =A y→ x =A y

c : Πx,y:AΠ p,q : x =A y→ f p = f q

Now for arbitrary x,y : A, p : x= y we can show that p= trans( f p)(sym( f refl)) because using
J this reduces to showing that refl = trans( f refl)(sym( f refl)) which is one of the groupoid
properties. Now given any p,q : x = y we can show

p = trans( f p)(sym( f refl))

= trans( f q)(sym( f refl)) using c

= q

And hence =A is propositional.
To construct the function f from decidability we assume p : x = y and apply d xy. Either

we have another proof q : x= y and we return this one, or we have that x 6= y but this contradicts
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that we already have a proof p : x = y and we can use R0. However, in either case the output
doesn’t depend on the actual value of the input and hence we can show that the function is
constant.

Indeed, if we additionally assume the principle of functional extensionality

funExt : ∀ f ,g : A→ B.(∀x : A. f x = gx)→ f = g

we can strengthen Hedberg’s theorem:

Theorem 3 Given A : Type such that the equality is stable

s : ∀x,y : A.¬¬(x = y)→ x = y

then we can show
isSetA

This strengthening shows that function types are sets, e.g. N→N : Set even though its equality
is not decidable but it is stable.

To prove the stronger version we observe that for if equality is stable, we can construct
the function g : Πx,y : A.x = y→ x = y by composing s with the obvious embedding x = y→
¬¬(x = y). Since ¬¬(x = y) is propositional, f must be constant.

Exercise 23 Show that the equality of N→ N is stable.

We can extend the hierarchy we have started to construct with Prop and Set. For example
a type whose equalities are sets is called a groupoid (indeed it corresponds to the notion of
groupoid which we have introduced previously).

isGroupoid : Type→ Type
isGroupoidA :≡ ∀x,y : A.isSet(x =A y)

We can also extend this hierarchy downwards, we can redefine a proposition as a type such
that its equalities are types with eactly one element - these types are called contractible:

isContractible : Type→ Type
isContractibleA :≡ Σa : A.Πx : A.x = a

isProp : Type→ Type
isPropA :≡Πx,y : A.isContractible(x = y)

We can now define the hierarchy starting with contractible types. For historic reasons (i.e. to
be compatible with notions from homotopy theory) we start counting with −2 and not with 0.
I am calling the levels dimensions, they are also called truncation levels.

hasDimension : N−2→ Type→ Type

hasDimension(−2)A :≡ isContractibleA

hasDimension(n+1)A :≡ ∀x,y : A.hasDimension(x =A y)
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I am writing N−2 for a version of the natural numbers where I start counting with −2. To
summarize the definitions so far:

Dimension Name
-2 Contractible types
-1 Propositions
0 Sets
1 Groupoids

We also introduce the notation n−Type for A : Type such that we can show hasDimensionnA.
To convince ourselves that this really is a hierarchy, that is that every n−Type is also a

n+ 1−Type we need to show that the hierarchy actually stops at −2 that is that the equality
of a contractible type is again contractible.

To show this assume is given a contractible type A : Type that is we have a : A and c :
Πx : A.a = x. Now we want to show that for all x,y : A the equality x =A y is contractible,
that is we have an element and all other elements are equal. We define d : Πx,y : A.x =A y as
d xy :≡ trans(sym(cx))(cy). Now it remains to show that e : Πx,y : A.Π p : x =A y.d xy = p.
Using J we can reduce this to d xx = reflx unfolding d xx ≡ trans(sym(cx))(cx) we see that
this is an instance of one of our groupoid laws.

As a corollary we obtain that hasDimensionnA implies hasDimension(n+1)A.

5.4 Extensionality and univalence

As I have already mentioned in the introduction: extensionality means that we identify math-
ematical objects which behave the same even of they are defined differently. An example are
the following two functions:

f ,g : N→ N
f x :≡ x+1

gx :≡ 1+ x

We can show that ∀x : N. f x = gx but can we show that f = g? The answer is no, because if
there were a proof without any assumption it would have to be refl and this would only be pos-
sible if f ≡ g but it is clear that they are not definitionally equal. However, we cannot exhibit
any property not involving this equality which would differentiate them. Another example are
the following two propositions:

P,Q : Prop
P :≡ True

Q :≡ ¬False

Again we cannot show that P≡Q even though there clearly is no way to differentiate between
them.

We have already mentioned the two principles which are missing here:

funExt : ∀ f ,g : A→ B.(∀x : A. f x = gx)→ f = g

propExt : ΠP,Q : Prop.(P⇔ Q)→ P = Q

We note that the corresponding principles are true in set theory, which seems to contradict my
statement that Type Theory is better for extensional reasoning than set theory. However, this
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shortcoming can be fixed since all constructions preserve these equalities. This can be made
precise by interpreting the constructions in the setoid model, where every type is modelled
by a set with an equivalence relation. In this case we can model function types by the set
of functions and equality is extensional equality. The same works for Prop, a proposition is
modelled by the set of propositions identified if they are logically equivalent.

However, the shortcoming of set theory becomes obvious if we ask the next question:
when are two sets equal? For example

A,B : Set

A :≡ 1+2

B :≡ 2+1

We have no way to distinguish two sets with 3 elements, hence following the same logic as
above they should be equal. However, they are not equal in set theory under the usual encoding
of finite sets and + and it would be hard to fix this in general.

When are two sets equal? Given f : A→ B we say that f is an isomorphism if there it has
an inverse, that is 7

isIso : (A→ B)→ Type

isIso f :≡
Σ g : B→ A

η : Πx : B. f (gx) = x

ε : Πx : A.g( f x) = x

And we define A∼=B :≡ Σ f : A→B.isIso f . Using isIso we can formulate a new extensionality
principle: we want to say that there is an isomorphism between isomorphism of sets and equal-
ity of sets. Indeed, we can observe that the is a function from equality of sets to isomorphism
because every set is isomorphic to itself using J.

Exercise 24 Define eq2iso : ΠA,B:SetA = B→ A∼= B

Using this we can state extensionality for sets

extSet : isIsoeq2iso

As a corollary we get that A∼= B→ A = B. Since 1+2∼= 1+2 we can show that 1+2 = 1+2

Exercise 25 Show that

1. (A+B)→C = (A→C)× (B→C)
2. (A×B)→C = A→ B→C
3. 1+N= N
4. N×N= N
5. ListN= N
6. N→ N 6= N

assuming A,B,C : Set. For which of the results do we not need extSet?

7I am using here a record-like syntax for iterated Σ -types.
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Exercise 26 An alternative to isomorphism is bijection, one way to say that a function is
bijective is to say there is a unique element in the domain which is mapped to an element of
the codomain. We define ∃! (exists unique) :

∃!x : A.Px :≡ ∃x : A.Px∧∀y : A,Py⇒ x = y

and using this we define what is a bijection:

isBij : (A→ B)→ Prop
isBij f :≡ ∀y : B.∃!x : A. f x = y

Show that isomorphism and bijection are logically equivalent:

∀ f : A→ B.isBij f ⇔ isIso f

extSet is incompatible with uniqueness of equality proofs (uep) because there are two el-
ements of 2 ∼= 2, namely identity and negation. If we assume that there is only one proof of
equality for 2 = 2 then we also identify this two proofs and hence 02 = 12 which is inconsis-
tent.

So far we have only considered sets what about types in general? There is a twist: if equal-
ity is not propositional then the η and ε components of isIso are not propositional in general.
Indeed, assuming extSet for all types is unsound. Instead we need to refine the notion of iso-
morphism by introducing an extra condition which relates η and ε . We call this equivalence
of types.

isEquiv : (A→ B)→ Type
isEquiv f :≡ Σg : B→ A

η : Πx : B. f (gx) = x

ε : Πx : A.g( f x) = x

δ : Πx : A.η ( f x) = resp f (ε x)

And we define A' B :≡ Σ f : A→ B.isEquiv f .

Exercise 27 Define eq2equiv : ΠA,B:SetA = B→ A∼= B

We can now state extensionality for types, which is what is commonly called univalence.

univalence : isEquiveq2equiv

As before for extSet a consequence is that equivalence of types implies equality A ∼= B→
A = B which is what most people remember about univalence. In the special case of sets
equivalence and isomorphism agree because the type of δ is an equivalence, that is for sets
we have (A ∼= B) = (A ∼= B). But more is true, even for types in general equivalence and
isomorphism are logically equivalent, that is (A∼= B)⇔ (A' B). While this may be surprising
at the first glance, it just means that we can define functions in both directions but they are
not inverse to each other. Indeed, in general there are more proofs of an isomorphism that of
an equivalence, indeed isEquiv f is a proposition, while isIso f in general isn’t (but it is if f
is a function between sets). However, the logical equivalence of equivalence and isomorphism
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means that to establish an equivalence all we need to do is to construct an isomorphism. In
particular all the equalities of exercise 25 hold for types in general.

The definition of isEquiv looks strangely asymmetric. Indeed, we could have replaced δ

with its symmetric twin:

δ
′ : Πy : A.respgη y = ε (gy)

We can either use δ or δ ′ it doesn’t make any difference. Why don’t we use both? Indeed, this
would exactly be the definition of an adjunction between groupoids. However, assuming both
messes everything up, now isEquiv f is no longer a proposition and we need to add higher
level coherence equations to fix this. Indeed, there is such an infinitary (coinductive) defintion
of equivalence. But we don’t need to use this, the asymmetric definition (or its mirror image)
does the job.

Exercise 28 We can extend exercise 26 to the case of equivalences by taking the equality
proofs into account. That is we say that not only there is a unique inverse but that the pair of
inverses and the proof that there are an inverse are unique that is contractible. We define

isEquiv′ : (A→ B)→ Type
isEquiv′ f :≡Πy : B.isContr(Σx : A. f x = y)

We have observed that already extSet implies that there are non-propositional equalities,
e.g. 2 = 2. In other words the first universe Type0 is not a set. Nicolai Kraus and Christian
Satller have generalised this and shown that using univalence we can construct types which are
non n−Type for any n :N [KS15]. I leave is an exercise to do the forst step in this construction:

Exercise 29 Show that the equalities of ΣX : Type0.X = X : Type1 are not always sets and
hence Type1 is not a groupoid.

5.5 Higher Inductive Types

In HoTT we view a type together with its equality types with the structure of an ω-groupoid.
Hence when we introduce a new type we also have to understand what its equality types are.
So for example in the case of→ and × we have the following equations:

f =A→B g = Πx,y : A.x =A y→ f x = gx

(a,b) =A×B (a′,b′) = (a =A a′)× (b =B b′)

When defining types inductively, that is by given the constructors, we can also add constructors
for equalities. The simplest example for this is propositional truncation ||A||, which can be
inductively defined by the following constructors:

η : A→ ||A||
irr : Πx,y : ||A||.x =||A|| y

To define a non-dependent function f : ||A|| → B we need an function g : A→ B but also an
equalities i : Πx,y : B.x =B y which correspond to saying that B : Prop. f will satisfy the
following equations:
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f (ηa) :≡ ga

resp f (irrxy) :≡ i( f x)( f x)

Hence the eliminator does not only determine the behaviour of f on elements but also on
equalities. This makes perfect sense because in the view of types as groupoids functions are
functors. We can also turn this into a non-dependent eliminator:

R||A|| : (A→ B)→ (Πx,y : B.x = y)→ ||A|| → B

R||A|| gi(ηa) :≡ ga

respR||A|| gi(irrxy) :≡ i(R||A|| gix)(R||A|| giy)

We can also derive a dependent eliminator, for which we need a dependent version of resp.
Another class for examples for higher inductive types are set quotients, that is we have a

set A : Set and a relation R : A→ A→ Prop, we define A/R : Set by the constructors

[−] : A→ A/R

[−]= : Πx,y : A.Rxy→ [x] =A/R [y]

set : Πx,y:A/RΠ p,q : x =A/R y.p =x=A/Ry q

Note that the last constructor is necessary to make sure that the type we construct is actually
a set. We do not require that R is an equivalence relation but obviously the equality on A/R
always is.

Exercise 30 Derive the non-dependent eliminator for set quotients.

An example is the definition of the integer as a quotient of pairs of integers:

eqZ : (N×N)→ (N×N)→ Prop

eqZ (a
+,a−)(b+,b−) :≡ a++b− = b++a− Z= (N×N)/eqZ

The idea is that a pair of natural numbers (a+,a−) represents its difference a+− a− and we
identify pairs which have the same difference.

Exercise 31 Define addition and multiplication and additive inverses on Z. How would you
prove the group laws?

Higher Inductive Types even for sets are more general than set quotients because we can
define elements and equalities at the same time. An example for this are infinite branching
trees with permutations. That is we define infinitely branching trees

Tree : Type
leaf : Tree

node : (N→ Tree)→ Tree

We inductively define a relation which identifies trees upto permutations of subtrees:
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−∼− : Tree→ Tree→ Prop

perm : Πg:N→TreeΠ f : N→ N.isIso f → node f ∼ node(λn.g( f n))

respNode : Πg,h:N→Tree(Π i : N. f i∼ gi)→ node f ∼ nodeg

trans : Πt,u,v:Tree→ t ∼ u→ u∼ v→ t ∼ v

Now trees with permutations can be defined as PTree :≡ Tree/ ∼. However, it turns out that
this type is not as useful as we might hope. Let’s say we want to lift the node construction to
PTree that is we want to define

node′ : (N→ PTree)→ PTree

such that node′(λn.[ f n]) = [node f ]. However, we have a problem, to define node′ we need to
commute the quotient definition and function type, that is we need to go from N→Tree/PTree
to a quotient on Nat→ Tree. This corresponds to an instance of the axiom of choice, in this
case this is called countable choice because the indexing type A is N.

Exercise 32 Show that we can define node′ using countable choice (i.e. (Πx : N.||Bx||)→
||Πx : N.Bx|| for B : N→ Set).

However, using HITs we have an alternative: we can define permutable trees by introducing
the elements and the equalities at the same time:

PTree : Type

leaf : PTree

node : (N→ PTree)→ PTree

perm : Πg:N→TreeΠ f : N→ N.isIso f → node f = node(λn.g f n)

We don’t need to add a constructor corresponding to respNode because we know that any func-
tion respects equality. We don’t ned to derive node′ because this is already captured by node
itself. In the HoTT book an instance of this idea is used to define the Cauchy Reals [Uni13],
section 11.3. The naive definition identifies converging sequences of rational numbers but we
can’t show that this definition is Cauchy complete that is that we can identify converging se-
quences of real numbers. Again this can be fixed by using countable choice or alternatively by
a HIT that defines the reals and their equality at the same time, now Cauchy completeness is
simply a constructor.

All the examples of HITs we have seen so far are not really higher because they work on
the level of sets. The only good examples of true HITs I know come from synthetic homotopy
theory, here we use HoTT to model constructions in Homotopy theory. In homotopy theory
we look at the path spaces of geometric objects: we start with paths between points and then
we can have paths between paths which are continuous transformation of paths. The main idea
behing synthetic homotopy theory is to identify paths with equality types.

A simple example is the circle. The paths on a circle correspond to the integers, they
measure how many times we move around the circle, we have to use integers because we can
go forwards and backwards. In HoTT the circle can be defined as the following HIT:

S1 : Type

base : S1

loop : base =S1 base
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Intuitively we imagine that the circle is generated by a point base and by a path loop from the
point to itself. S1 is not a set because there is no reason to assume that loop and refl are equal
and also loop and symloop are not equal. Indeed, we can define a function

encode : Z→ base = base

encoden :≡ loopn

encode0 :≡ refl

encode(−n) :≡ loopn−1

To define a function in the other direction is a bit more tricky. We cannot define a function
directly from base = base because none of the indices is variable. However, using the result
from exercise 17 it is enough if one of the indices is variable. That is we can use base = x.
However, we also have to generalize the left hand side to depend on x. We define a family
X : S1→Type s.t. X base are the integers. We also need to interpret loop as an equality of types
Z=Z. We don’t want to use the trivial equality because the isomorphism should represent the
number of times we have used the loop (and its direction). We observe that λx.x+1,λx.x−1 :
Z→ Z are inverses hence using univalence (actually set extensionality is enough) we can
derive a non-trivial proof p : Z= Z. Hence to summarise we define

X : S1→ Type
X base :≡ Z
respX loop :≡ p

We define our generalised decode function using equality elimination

decode′ : Πx:S1 base = x→ X x

decode′ refl :≡ 0

Indeed, X base ≡ Z and for refl we want to return 0. We obtain now decode by instantiating
decode′:

decode : base = base→ Z
decode :≡ decode′base

While it is well known in Homotopy Theory that the group of paths of the circle is the integers
the particular proof is due to Dan Licata who formalised it in Agda, see [LS13]. Dan also uses
dependent elimination to show that encode and decode are indeed inverse to each other. This
shows that (base =S1 base) = Z. However, it is not always the case that the loop space of a
HIT is a set it can be a higher dimensional type again. This is especially true once we move
from the circle to the sphere S2 which can be defined as follows:

S2 : Type

base : S1

loop : reflbase =base=S2 base reflbase

The idea is that surface of the sphere can be generated by a higher path which maps the empty
path on the pole onto itself. Now it may appear that the sphere is quite uninteresting because
all the paths base =S2 base can be transformed into refl. However, we cannot prove that this
type is contractible, that is has exactly on element. The reason is that it has non-trivial higher
path spaces, and indeed lots of them. From Homotopy theory it is known that all higher path
spaces of the sphere are non-trivial hence S2 is non an n−Type for any n.
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5.6 Example: Definition of the Integers

As a more mundane example we consider the definition of the integers (Z : Type) as a HIT.
Yes, we have already defined the integers as a set quotient but I think this definition is actually
nicer.

We have the following element constructors

0 : Z
suc : Z→ Z

pred : Z→ Z

To get the type we want we need to add some constructors for equalities, namely:

sucpred : Π i : Z.suc(pred i) =Z i

predsuc : Π i : Z.pred(suc i) =Z i

However we are not done yet! The type we have constructed so far is certainly not a set. For
example there are two ways to prove

suc(pred(suc0)) = suc0

namely

sucpred(suc0)

respsuc(predsuc0)

We certainly want the integers to be a set, in particular they should have a decidable equality.
One way to achieve this would be to equate all proofs by adding another higher constructor:

isSet : Π i, j : Z.Π p,q : i =Z j→ p =i=Z j q

We call such a first order HIT a Quotient Inductive Type (QIT).
As an example let us define addition for integers. I will do this in a pattern matching style.

It is certainly a good idea to derive the eliminator and check that the definitions can be reduced
to this but just writing down the eliminator is quite a mouthful.

To define + : Z→ Z→ Z we start with the element constructors:

0+ i :≡ i

suc j+ i :≡ suc(i+ j)

pred j+ i :≡ pred(i+ j)

To handle the equational constructor we overload functions so that we can also apply them
to equalities. In this case we consider the function + i for some i : Z, now given an equality
p : j =Z k we write p+ i : j+ i = k+ i as a shorthand for resp( + i) p. Using this notation we
can give definitions for the equational constructors as well:

sucpred j+ i :≡ sucpred( j+ i)

predsuc j+ i :≡ predsuc( j+ i)

We also have to deal with the isSet constructor and indeed we can extend the overload the
notation also to deal with hight proofs. However, all what we need to notice that the constructor
forces us to show that the codomain of the operation is a set, which it is since it is the integers
themselves.
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Exercise 33 Define the additive inverse − : Z→ Z in the same style.

Now let’s prove something about addition, for example that it is associative.

assoc : Πi, j,k:Z.(i+ j)+ k =Z i+( j+ k)

We are in for a pleasant surprise: since the codomain of associativity is a proposition we don’t
have to do anything for the equational constructors because the equations they induce hold
trivially. Hence it is enough to only consider element constructors:

assoc0 :≡ refl

assocsuc i :≡ suc(associ)

assocpred i :≡ pred(associ)

Note that in the definition above we again lift operations to equalities.

Exercise 34 Show that the additive inverse behaves properly, that is

Πi:Z(− i)+ i = 0

To show that it is also the 2nd equation hold you need to prove the lemmas you need to prove
commutativity. Hence as an extended exercise prove that the integers form a commutative
group.

To show that the equality of integers is decidable we need to define a normalisation func-
tion. A reasonable notion of normal form is signed numbers, that is we define Znf : Type by
the following constructors:

0 : Znf

+ : N→ Znf

− : N→ Znf

Znf is a set because all inductive definitions which don’t refer to higher types are automati-
cally sets. We can easily embed the normal forms into the integers, by defining the functions
pos,neg : N→ Znf which repeat the predecessor n-times

pos0 :≡ 0

pos(sucn) :≡ suc(posn)

neg0 :≡ 0

neg(sucn) :≡ pred(negn)

Putting everything together we define emb : Znf→ Z by

emb0 :≡ 0

emb(+ i) :≡ pos(suci)

emb(− i) :≡ neg(suci)
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Exercise 35 Define a function nf : Z→ Znf that is inverse to emb, i.e. establish the following
propositions:

Πi:Zemb(nf i) = i

Πi:Znf nf(emb i) = i

You may notice that using univalence we have established that Z = Znf, hence what is the
point of defining the integers as a HIT? It turns out that while the two objects are extensionally
equivalent they are intensionally different and the HIT definition is much easier to work with.

Let’s go back to the definition of the integers. When we added the constructor isSet we
forced Z to be a set but by using a steam hammer. This has bad consequences when we want
to define functions from the integers into a type which is not a set like S1 earlier. The only way
to do this would be going via the normal form because we can eliminate into any type form
them. However, this spoils the advantages we just claimed form using the HIT. Luckily, there
is another way which basically means we solve a coherence problem. Instead of isSet we add
the following constructor:

coh : sucpred(suc i) = respsuc(predsuc i)

This is enough to turn Z into a set. Indeed, the constructors pred,predsuc,sucpred together
just state that suc is an equivalence We can see this by adopting the normalisation proof to this
setting. This can be substantially simplified by observing that the constructors that state that
suc is an equivalence form a proposition.

We end with an open problem which suggested by Paolo Capriotti. When moving from
natural numbers to lists we are defining the free monoid over an arbitrary set of generators. We
can do the same with the integers and define the free group FGA over a type A by labelling suc
and pred in the definition with elements of A. So in the way we have a cons and an anti-cons
and equations that they cancel each other. As before we are saying that suca is an equivalence.
Now the question is given A : Set is it the case that FGA is a set? If A has a decidable equality
we can still define a normalisation function and establish the property this way. However, we
don’t know how to do this in the general case. 8
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