Higher Order Containers

Thorsten Altenkirch', Paul Levy?, and Sam Staton®

! University of Nottingham
2 University of Birmingham
3 University of Cambridge

Abstract. Containers are a semantic way to talk about strictly positive
types. In previous work it was shown that containers are closed under
various constructions including products, coproducts, initial algebras and
terminal coalgebras. In the present paper we show that, surprisingly, the
category of containers is cartesian closed, giving rise to a full cartesian
closed subcategory of endofunctors. The result has interesting applica-
tions in generic programming and representation of higher order abstract
syntax. We also show that while the category of containers has finite lim-
its, it is not locally cartesian closed.

1 Introduction

Containers are a representation of datatypes, using a set of shapes S and a
family of positions P indexed over shapes. The associated datatype is given
by a choice of shape and an assignment of data to positions over that shape,
clearly this is an endofunctor of Set. In previous work [AAGO05,Abb03] it was
shown that all strictly positive datatypes give rise to containers. To include
nested inductive and coinductive definitions it was necessary to introduce n-ary
containers, corresponding to n-ary functors.

Containers can be used to analyze generic constructions on datatypes with-
out having to do induction over the syntax of datatypes. E.g. in [AAGMO05]
containers are used to study the notion of a derivative of a datatype.

Other applications of containers are related to container morphisms which
are a concrete and complete representations of polymorphic functions, i.e. nat-
ural transformations, between datatypes. In [PGMO8] this is exploited to derive
theorems about polymorphic functions on lists.

The previous results can be stated in terms of properties of the category of
containers: it is closed under products, coproducts and exponentiation with a set
and the extension functor into sets is full and faithful. Recent work by the 3rd
author [Sta08] on using higher order representations in generalized structured
operational semantics raised the question wether the category of containers is
cartesian closed. In the present paper we can answer this question positively.

As a simple example consider the functor A € Set — Set which assigns to
any set of variables the set of untyped lambda terms over this set. This functor
can be specified as the inital solution to the following equation in the category
of endofunctors

A~Td+ A% +1d— A

Here Id is the identity functor, and — refers to the exponential of endofunctors
(which may or may not exist). It turns out that this higher order equation is
equivalent to

A ~1d+ A% + Ao Maybe

where Maybe X = 1+ X. Indeed, this leads directly to the well-known represen-
tation of A-terms as a nested datatype in Haskell

data Lam a = Var a | App (Lam a) (Lam a) | Lam (Maybe a)

which has been studied in [AR99,BP99].

The category of containers can be defined wrt. any locally cartesian closed
category with coproducts. We are going to use the language of Type Theory
which to develop our results, which is the internal language of locally carte-
sian closed categories. Hence the constructions presented here can be intuitively
understood as taking place in a naive set theory.

A natural question is whether the category of containers itself is a model of
Type Theory, i.e. locally cartesian closed. We are able to construct pullbacks if
we assume that the ambient category has quotient types, corresponding to exact
coequalizers. However, we can show that the right adjoint to pullback doesn’t
exist in general.

2 Preliminaries

We work in an extensional Type Theory [ML74] as the internal langauge of
locally cartesian closed categories with disjoint coproducts.

Set We use Set to denote our universe of small types we identfy families with
functions into Set.

0,1 An empty type 0 € Set and a unit type 1 € Set. Categorically, those
correspond to initial and terminal objects. We write () € 1 for the unique
inhabitant of 1 and !4 € A — 1 with !4 a = () for the unique map into 1.

Y- and II-types Given A € Set and B € Set given that x € A then Yz €
A.B,Ilx € A, B € Set. Elements of Y-types are pairs, if a € A and b €
B[z := a] then (a,b) € Xz € A.B, while elements of IT-types are functions:
given b € B assuming x € A then Ax.b € Ilx € A.B.

Equality types Given a,b € A € Set we write a = b € Set for the equality
type. The constructor for equality is reflexivity refla € a = a if a € A.

2 A type of Booleans 0,1 € 2 € Set, which is disjoint, i.e. we have that
(0 =1) — 0 is inhabited.

We omit a detailed treatment of eliminators and use functional programming
notation as present in Agda and Epigram. All our definitions can be translated
into using the standard eliminators at the price of readability. To avoid clutter
we adopt the usual type-theoretic device of allowing hidden arguments, if they
are inferable from the use. We indicate hidden arguments by subscripting the
type, i.e. writing IT,c 4B and X, c4 B instead I[Ix € A.B and Yz € A.B.

While finite products arise as non-dependent X -types, finite coproducts can
be represented as

Ag + Ay = Xb € 2.if bthen A else Ag

We use the injections in; € A; — Ag + Ay with in; a = (i, a) for i € 2.

X-types can also be used to encode set-comprehension. If the family B € Set
(given a € A) is propositional, i.e. there is at most one element in B for any
a € A, we write {a € A | B} for Ya € A.B.

We are going to use type-theoretic representations of categorical concepts.
Given a bifunctor F' : Set®® — Set — Set we define its end as a subset of the
polymorphic functions:

/FXXEType
X

/FXX:{fEHXESet.FXX
X

|VA,B€Set,g€ A— BFgB(fB)=FAg(fA)}

This just internalizes the categorical definition of an end as a universal wedge.
Dually, coends can be defined as quotients of large X-types (i.e. abstract datatypes),
but we shall not need this here.

Using this notation, the type of natural transformations between two end-
ofunctors F,G € Set — Set arises as fXFX — G X. The Yoneda lemma
becomes:

FX:/(X—»Y)—»FY Yoneda
Y

As it is well known the category of endofunctors has products which can be
calculated pointwise:
(FxG@GX=FXxGX

If we assume that the exponential of two endofunctors F' — G exists then it must
have a certain form reminiscent of the Kripke interpretation of implication:

(F—-G)X
:/(X—>Y)—>(F—>G)Y Yoneda
Y

:/(X—>Y)><FY—>GY adjoint
Y

:/(X—>Y)—>FY—>GY curry
Y

However, for size reasons F©' — G doesn’t always exist. E.g. in the category
of classical sets, which after all is a model of Type Theory, we have that the
collection of [v PX — P(PX), where P is the covariant powerset functor, is
not a set. Indeed, there is a natural transformation o, € [,, P X — P (PX) for
every cardinal k, where a,; X S = {T' C S | cardT < &} for every set X and
SCX.

3 Containers

A container is given by a set of shapes S € Set and a family of positions indexed
over shapes P € S — Set - we write S < P. We shall also use <1 as a binder,
writing s € S < P for S < As.P. A container represents an endofunctor

[S < P] € Set — Set

[S<P]X=YsecSPs—X

Given containers S <1 P and T' < Q a morphism f < r is given by

fesS—-T
r€llesQ(fs)— Ps
This constitutes the category of containers Cont with the obvious definitions of

identity and composition. [—] extends to a functor [-] € Cont — (Set — Set)
assigning natural transformations to container morphisms:

[[f<1r]}e/X[[S<1P]]X—>[[T<1Q]]X

[f<r] X (s,p) = (fs.por)
Indeed Cont gives rise to a full subcategory of the category of endofunctors as
shown in [AAGO5]:
Proposition 1. [-] € Cont — (Set — Set) is full and faithful.

Containers also give rise to two modalities which operate on families: given
B € A — Set we have

DSQPB’OSQPB S [[SQP]]AH Set
Osap B(s,h) =IIp € Ps.B(hp)
Osap B (s,h) =Xp e Ps.B(hp)

[can be defined for any functor because it corresponds to applying the functor
to the representation of the family as an arrow.

The identity functor is given by Id =1 <1 and given S < P and T < @) we
can construct their composite:

(S<aP)o(T'<Q)=[S<P[T <0s4pQ

Composition is functorial but we shall not explore the 2-categorical structure of
Cont any further.

In [AAGO5] it is shown that containers are closed under finite products and
coproducts. Indeed they are closed under arbitrary products and coproducts.
Given a family of containers F' € I — Cont this family can be isomorphically
presented as

S el — Set
P cIlc;Si— Set

with Fi = Si<1P;. We write S < P for this family. We now define the coproduct
and the product of S < P:

X(S<P)=(i,s)€XieclSi<Ps
IHS<P)=fellicl.Si<XiecI.P(fi)

We summarize the operations on containers:

Proposition 2. Containers contain and are closed under:

identity
[Id]A~ A
composition
[(S<P)o(TaQ]=[S<Plo[T<q]
coproducts
[Y(S<P)|A~Xiel[Si< Py
products

HI(S<P)|]A~Iicl]Si< P,
It is important to realize that the infinite coproducts and products are internal
wrt. to the ambient category. The case of constant exponentiation in [AAGO5]
arises as a constant product.

4 Containers are cartesian closed

Our central observation is that exponentiation with a container which has only
one shape 1< P, i.e. a container representing an internal hom functor [1<P] X =
P — X, is straightforward.

(L<P]—F)X

:/(X—>Y)—>[[1<1P}]Y—>FY using (1)
Y

z/(X—>Y)—>(P—>Y)—>FY
Y

z/(X—>Y)><(P—>Y)—>FY uncurry

Y

~ / (X+P—-Y)—>FY adjunction
Y

~ F(X+ P)

To summarize we have that

[l<P]— F~Fo(+P) (2)

where (+P) X = X + P. Extensionally, every container is the a coproduct of
hom containers:

[S<P]X (3)
~YseSPs—X
~YseS[laPs|X

Because of proposition 1 this is also true in the category of containers;
SaAP~Y¥seS1<aPs (4)

Combining these observations we can see that exponentiation by a container is
always possible and can be constructed using products and composition:

[S<P]—F

~[Y¥seS1<aPs|—F using (4)
~[IseS[l<Ps]— F adjunction
~[Ise€ S.Fo(+Ps) using (2)

Proposition 3. Given a container S < P and a functor F € Set — Set we

have:
[S<P]—F~IlscSFo(+Ps)

Using proposition 2 we know that if F' is a container then ITs € S.F o (+P s) is
a container. Since containers are a full subcategory of Set — Set (prop. 1) this
implies our main result:

Corollary 1. The category of containers is cartesian closed, and the embedding
[—] € Cont — (Set — Set) preserves the cartesian closed structure.

We can spell out the construction of the exponential by expanding the defini-
tions of the operations involved. Note that +P s is given by [: 1+ P s<1l = ing ():

S<aP—-T<xQ
~[IseS(T<Q)o(+Ps)
~[IseS(T<aQ)o(l:1+Ps<l=ing())
~[Ise ST <QJ(1+ Ps)<Orqo(All=1ing ()
~fellseS[T<AQ](1+4Ps)<Zse SOraqM.l=ing())(fs)
~fellsec SXteT.Qt—1+Ps

9Xse S X¥qeQs.(fs)2qg=ing()

5 Failure of local cartesian closure
The previous section shows that we can interpret the simply typed A-calculus

within the category of containers. Can we go further, i.e. can we interpret de-
pendent types in Cont?

Dependent types correspond to locally cartesian closed categories, LCCCs.
A category is locally cartesian closed, if it has a terminal object and pullbacks
(i.e. all finite limits) and a (fibred) right adjoint to the pullback functor. We will
show that pullbacks can indeed be constructed, if we have quotient types (i.e.
exact coequalizers) in the underlying Type Theory. However, we can also show
that the right adjoints do not exist in general and hence while the category of
containers has finite limits, it is not locally cartesian closed.

We know from the previous section that Cont has a terminal object 1 <10
because this is just the nullary case of a finite product. Pullbacks correspond to
products in the slice category, i.e. given

fi<a; € Cont (S; < P) (T < Q) 1€2

we need to construct a new container U <R = (fy < ao) X1« (f1 <ai1) together
with projections:

gi <h; € Cont (U< R)(S;<F) i€2
We define
U € Set
U ={(s0,51) € So x S1| foso=fis1}
R e U — Set

R (s0,51) = (Poso + Pys1)/ ~
where ~ is an equivalence relation on Py sg + P; s1 generated by
ing (ag q) ~ iny (a1 q)

for ¢ € Q(foso) which due to the assumption foso = f1s1 is equivalent to
q € Q(f151). The definition of g; < h; of the projections is straightforward :
g; < h; = m; <in;.

Proposition 4. U < R, g; < h; is a pullback of f; < a; in Cont.

We omit the laborious verification of the equational conditions. As a consequence
we have:

Corollary 2. Cont has all finite limits.

The restriction to finite limits isn’t essential, it is not hard to generalize the
construction to arbitrary limits, again in the appropriate internal sense.

Pullbacks are products in the slice category, i.e. for a given container A
the slice category Cont/A has as objects morphisms with codomain A and as
morphisms commuting triangles. Given arrows «,3 € Cont/A their pullback
a X4 (3 is the product in Cont/A. For the category to be locally cartesian
closed we need a right adjoint to x4: assume «, (3, € Cont/A, there is a
B —4 0 € Cont/A such that

Cont/A (a x4)6~ Cont/Aa (S —49)

There is the additional condition that the local exponentials are fibred. However,
this doesn’t matter here because we are going to construct a counterexample,
showing that already the isomorphism above doesn’t exist in general. We set

A=1<2
a=0=1idy € Cont AA
=l <!l ContldA there is only one

The pullback « x 4 3 is again 3. There is only one morphism in Cont/A34d
since there is only one in ContId A. Now assume that 3 —4 § exists, i.e. let
B8 —4ad=I1s<af e Cont(S<P)Awith f € IIls € 52 — Ps. Because of
the isomorphism there can only be one morphism in Cont/A«a (3 — 4 ¢). This
allows us to draw some conclusions about the exponential (Is < f):

1. Thereisat € S and g € Pt — 2 such that go (ft) = ida.
2. For all s #t f s is not injective, i.e. ft0= ft1.

Now consider v = ! <ing € Cont (2 <2 + 1) A. There are two morphisms
Cont/A (v x4 3) §. However using the conditions about 8 — 4 § above we can
show that there is only one morphism in Cont/A~ (8 —4 ¢). Hence, Cont
cannot be locally cartesian closed.

6 Conclusions and further work

The category of containers is a full subcategory of the category of endofunctors
with a number of interesting closure properties. The initial motivation was to find
a subcategory which is closed under taking initial algebras and terminal coalge-
bras and has the necessary infrastructure to define datatypes, i.e. products and
coproducts. The fact that this category is also cartesian closed is an additional
benefit and shows that we can interpret higher order constructions. Finite limits
are also an interesting feature which may help in modelling dependent types
directly, however, the failure of local cartesian closure might indicate that we
should look for a different category. Quotient containers [AAGMO04] might be an
interesting alternative but an initial analysis indicates that they are not locally
cartesian closed either. However, the failure of local cartesian closure may not be
such an issue since dependent types can be modelled using indexed containers
[AMO09].

It is usual to work in an ambient category in which initial algebras of contain-
ers exist (W-types). However, the container A for A-terms, in the introduction, is
an initial algebra of a container, not in the category of sets, but in the category
of containers. An investigation into the nature of W-types in the category of
containers is left for future work.

References

[AAGO5]

M. Abbott, T. Altenkirch, and N. Ghani. Containers - constructing strictly
positive types. Theoretical Computer Science, 342:3-27, September 2005.
Applied Semantics: Selected Topics.

[AAGMO04] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Constructing poly-

morphic programs with quotient types. In 7th International Conference on
Mathematics of Program Construction (MPC 2004), 2004.

[AAGMO5] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. 9 for data: deriva-

[Abb03]
[AMO09]
[AR99]
[BP9Y]

[ML74]

[PGMOS]

[Sta08]

tives of data structures. Fundamenta Informaticae, 65(1,2):1-128, March
2005.

M. Abbott. Categories of Containers. PhD thesis, University of Leicester,
2003.

T. Altenkirch and P. Morris. Indexed containers. submitted for publication,
2009.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In Computer Science Logic, 1999.

R. Bird and R. Paterson. Generalised folds for nested datatypes. Formal
Aspects of Computing, 11(3), 1999.

P. Martin-Lof. An intuitionistic theory of types: Predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Proceedings of the Logic Colloquium,
pages 73—118. North-Holland, 1974.

R. Prince, N. Ghani, and C. McBride. Proving Properties of Lists using
Containers. In FLOPS, 2008.

S. Staton. General structural operational semantics through categorical
logic. Symposium on Logic in Computer Science, pages 166-177, 2008.

