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Abstract

We show that the syntactically rich notion of strictly positive families can be
reduced to a core type theory with a fixed number of type constructors exploiting
the novel notion of indexed containers. As a result, we show indexed contain-
ers provide normal forms for strictly positive families in much the same way that
containers provide normal forms for strictly positive types. Interestingly, this step
from containers to indexed containers is achieved without having to extend the core
type theory. Most of the construction presented here has been formalized using the
Agda system – the missing bits are due to the current shortcomings of the Agda
system.

1 Introduction
Inductive datatypes are a central feature of modern Type Theory (e.g. COQ [36]) or
functional programming (e.g. Haskell1). Examples include the natural numbers ala
Peano: 2

data N ∈ Set where
zero ∈ N
suc ∈ (n ∈ N) → N

the set of lists indexed by a given set:

data List (A ∈ Set) ∈ Set where
[ ] ∈ List A
_::_ ∈ A → List A → List A

and the set of de Bruijn λ-terms:

data Lam ∈ Set where
var ∈ (n ∈ N) → Lam
app ∈ (f a ∈ Lam) → Lam
lam ∈ (t ∈ Lam) → Lam

1Here we shall view Haskell as an approximation of strong functional programming as proposed by
Turner [37] and ignore non-termination.

2We are using Agda to represent constructions in Type Theory. Indeed, the source of this document is
a literate Agda file which is available online. [11]. For an overview over Agda see [3], in particular the
tutorials and the reference manual which explain how to read the code included in this paper.
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An elegant way to formalize and reason about inductive types is to model them as the
initial algebra of an endofunctor. We can define the signature functors corresponding
to each of the above examples as follows:

FN ∈ Set → Set
FN X = > ] X
FList ∈ (A ∈ Set) → Set → Set
FList A X = > ] (A × X)

FLam ∈ Set → Set
FLam X = N ] (X × X) ] X

This perspective has been very successful in providing a generic approach to pro-
gramming with and reasoning about inductive types, e.g. see the Algebra of Program-
ming [14].

While the theory of inductive types is well developed, we often want to have a finer,
more expressive, notion of type. This allows us, for example, to ensure the absence of
runtime errors such as access to arrays out of range or access to undefined variables in
the previous example of λ-terms. To model such finer types, we move to the notion
of an inductive family in Type Theory. A family is a type indexed by another, already
given, type. Our first example of an inductive family is the family of finite sets Fin
which assigns to any natural number n a type Fin n which has exactly n elements. Fin
can be used where, in conventional reasoning, we assume a finite set, e.g. when dealing
with a finite address space or a finite set of variables. The inductive definition of Fin
refines the type of natural numbers:

data Fin ∈ N → Set where
zero ∈ ∀ {n} → Fin (suc n)
suc ∈ ∀ {n} (i ∈ Fin n) → Fin (suc n)

In the same fashion we can refine the type of lists to the type of vectors which are
indexed by a number indicating the length of the vector:

data Vec (A ∈ Set) ∈ N → Set where
[ ] ∈ Vec A zero
_::_ ∈ ∀ {n} (a ∈ A) (as ∈ Vec A n) → Vec A (suc n)

Notice how using the inductive family Vec instead of List enables us to write a total
projection function projecting the nth element out of vector:

_!!_ ∈ {A ∈ Set} → {n ∈ N} → Vec A n → Fin n → A
[ ] !! ()
(a :: as) !! zero = a
(a :: as) !! suc n = as !! n

In contrast, the corresponding function _!!_ ∈ {A ∈ Set} → List A →
N → A is not definable in a total language like Agda.

Finally, we can define the family of a well-scoped lambda terms ScLam which as-
signs to a natural number n the set of λ-terms with at most n free variables ScLam n.
DeBruijn variables are now modeled by elements of Fin n replacing Nat in the previ-
ous, unindexed definition of λ-terms Lam.
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data ScLam (n ∈ N) ∈ Set where
var ∈ (i ∈ Fin n) → ScLam n
app ∈ (f a ∈ ScLam n) → ScLam n
lam ∈ (t ∈ ScLam (suc n)) → ScLam n

Importantly, the constructor lam reduces the number of free variables by one. Induc-
tive families may be mutually defined, for example the scoped versions of β (NfLam)
normal forms and neutral λ-terms (NeLam):

mutual
data NeLam (n ∈ N) ∈ Set where

var ∈ (i ∈ Fin n) → NeLam n
app ∈ (f ∈ NeLam n) (a ∈ NfLam n) → NeLam n

data NfLam (n ∈ N) ∈ Set where
lam ∈ (t ∈ NfLam (suc n)) → NfLam n
ne ∈ (t ∈ NeLam n) → NfLam n

The initial algebra semantics of inductive types can be extended to model inductive
families by replacing functors on the category Set with functors on the category of
families indexed by a given type - in the case of all our examples so far this indexing
type was Nat. The objects of the category of families indexed over a type I ∈ Set are
I-indexed families, i.e. functions of type I → Set, and a morphism between I-indexed
families A,B ∈ I → Set is given by a family of maps f ∈ (i ∈ I) → A i → B i
Indeed, this category is easily seen to be isomorphic to the slice category Set/I but
the chosen representation is more convenient type-theoretically. Using Σ-types and
equality types from Type Theory, we can define the following endofunctors FFin, FVec
and FLam on the category of families over Nat whose initial algebras are Fin and Lam,
respectively:

FFin ∈ (N → Set) → N → Set
FFin X n = (m ∈ N)× (n ≡ suc m) × (> ] X m)

FVec ∈ (A ∈ Set) → (N → Set) → N → Set
FVec A X n = n ≡ zero ] ((m ∈ N)× (n ≡ suc m) × (A × X m))

FScLam ∈ (N → Set) → N → Set
FScLam X n = Fin n ] (X n × X n) ] (X ◦ suc) n

The equality type expresses the focussed character of the constructors for Fin. The
mutual definition of NeLam and NfLam can be represented by two binary functors:

FNeLam ∈ (N → Set) → (N → Set) → N → Set
FNeLam X Y n = Fin n ] (X n × Y n)

FNfLam ∈ (N → Set) → (N → Set) → N → Set
FNfLam X Y n = (Y ◦ suc) n ] X n

We can construct NeLam and NfLam by an elimination procedure: first we define
a parameterized initial algebra NeLam’ ∈ (N → Set) → N → Set so that
NeLam’ Y is the initial algebra of λ X → FNeLam X Y and then NfLam is the
initial algebra of λ Y → FNfLam (NeLam’ Y) Y. Symmetrically we derive NeLam.
Compare this with the encoding in section 8.

This approach extends uniformly to more complicated examples such as the family
of typed λ-terms, using lists of types to represent typing contexts:
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data Ty ∈ Set where
ι ∈ Ty
⇒ ∈ (σ τ ∈ Ty) → Ty

data Var (τ ∈ Ty) ∈ List Ty → Set where
zero ∈ ∀ {Γ} → Var τ (τ :: Γ)
suc ∈ ∀ {σ Γ} (i ∈ Var τ Γ) → Var τ (σ :: Γ)

data STLam (Γ ∈ List Ty) ∈ Ty → Set where
var ∈ ∀ {τ } (i ∈ Var τ Γ) → STLam Γ τ
app ∈ ∀ {σ τ } (f ∈ STLam Γ (σ ⇒ τ))

(a ∈ STLam Γ σ) → STLam Γ τ
lam ∈ ∀ {σ τ } (t ∈ STLam (σ :: Γ) τ) → STLam Γ (σ ⇒ τ)

Types like this can be used to implement a tag-free, terminating evaluator [7]. Obtain-
ing the corresponding functors is a laborious but straightforward exercise. As a result
of examples such as the above, inductive families have become the backbone of depen-
dently typed programming as present in Epigram or Agda [35]. Coq also supports the
definition of inductive families but programming with them is rather hard — a situation
which has been improved by the Program tactic [34].

Indexed containers are designed to provide the mathematical and computational
infrastructure required to program with inductive families. The remarkable fact about
indexed containers, and the fact which underpins their practical usefulness, is that they
offer an exceedingly compact way to encapsulate all the information inherent within
the definition of functors such as FFin, FVec and FScLam, FNeLam and FNfLam and
hence within the associated inductive families Fin, Vec, ScLam, NeLam and NfLam.
The second important thing about indexed containers is that not only can they be used
to represent functors, but the canonical constructions on functors can be internalised to
become constructions on the indexed containers which represent those functors. As a
result, we get a compositional combinator language for inductive families as opposed
to simply a syntactic definitional format for inductive families.

1.1 Related work
This paper is an expanded and revised version of the LICS paper by the first and 4th
author [32]. In the present paper we have integrated the Agda formalisation in the main
development, which in many instances required extending it. We have made explicit
the use of relative monads which was only hinted at in the conference version based
on the recent work on relative monads [8]. We have also dualized the development to
terminal coalgebras which required the type of paths to be defined inductively instead
of recursively as done in the conference paper (section 6). We have also formalized
the derivation of indexed W-types from ordinary W-types (section 7. The derivation of
M-types from W-types (section 7) was already given in [2] is revisited here exploiting
the indexed W-type derived previously. Moreover the development is fully formalized
in Agda.

Indexed containers are intimately related to dependent polynomial functors [20],
see also the comprehensive notes [26]. Indeed, at a very general level one could think
of indexed containers as the type theoretic version of dependent polynomials and vice
versa. However, the different needs of programmers from category theorists has taken
our development of indexed containers in a different direction from that of dependent
polynomials. In this vein an important contribution is the Agda implementation of our
ideas which makes our work more useful to programmers than the categorical work on
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dependent polynomials. We also focus on syntactic constructions such using indexed
containers to model mutual and nested inductive definitions. As a consequence we
show that indexed containers are closed under parametrized initial algebras and coal-
gebras and reduce the construction of parameterised final coalgebras to that of initial
algebras. Hence we can apply both the initial algebra and final coalgebra construction
several times. The flexibility of indexed containers allows us to also establish closure
under the adjoints of reindexing. This leads directly to a grammar for strictly positive
families, which itself is an instance of a strictly positive family (section 8) — see also
our previous work [30, 31].

Containers are related to Girard’s normal functors [21] which themselves are a
special case of Joyal’s analytic functors [25] — those that allow only finite sets of
positions. Fiore, Gambino, Hyland and Winskel’s work on generalized species [18]
considers those concepts in a more generic setting — the precise relation of this work
to indexed containers remains to be explored but it appears that generalised species can
be thought of as indexed containers closed under quotients.

Perhaps the earliest publication related to indexed containers occurs in Petersson
and Synek’s paper [33] from 1989. They present rules extending Martin-Löf’s type
theory with a set constructor for ‘tree sets’ : families of mutually defined inductive
sets, over a fixed index set. Inspired in part by Petersson and Synek’s constructor,
Hancock, Hyvernat and Setzer [22] applied indexed (and unindexed) containers, under
the name ‘interaction structures’ to the task of modelling imperative interfaces such as
command-response interfaces in a number of publications.

The implementation of Generalized Algebraic Datatypes (GADTs) [16] allows Fin
and Lam to be encoded in Haskell:

data Fin a where
FZero :: Fin (Maybe a)
FSucc :: Fin a -> Fin (Maybe a)

data Lam a where
Var :: Fin a -> Lam a
App :: Lam a -> Lam a -> Lam a
Abs :: Lam (Maybe a) -> Lam a

Here Fin and Lam are indexed by types instead of natural numbers; The type
constructor Maybe serves as a type level copy of the succ constructor for natural
numbers. Note that Lam is actually just a nested datatype [6] while Fin exploits the
full power of GADTs because the range of the constructors is constrained. The problem
with using GADTs to model inductive families is, however, that the use of type level
proxies for say, natural numbers, means that computation must be imported to the type
level. This is a difficult problem and probably limits the use of GADTs as a model of
inductive families.

Since the publication of the LICS paper, indexed containers have been used as a
base for the generic definition of datatypes for Epigram 2, [15] and to develop the
theory of ornaments [29]. In recent work it has been shown that indexed containers are
sufficent to express all small inductive-recursive definitions.

1.2 Overview over the paper
We develop our type theoretic and categorical background in section 2 and also sum-
marize the basic definitions of non-indexed containers. In section 3 we develop the
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concept of an indexed functor, showing that this is a relative monad and presenting
basic constructions on indexed functors including the definition of a parametrized ini-
tial algebra. In section 4 we develop the basic theory of indexed containers and relate
them to indexed functors. Subsequently in section 5 we construct parametrized initial
algebras of indexed containers assuming the existence of indexed W-types, this can
be dualized to showing the existence of parametrized terminal coalgebras of indexed
containers from indexed M-types in section 6. Both requirements, indexed W-types
and indexed M-types can be derived from ordinary W-types, this is shown in section
7. Finally, we define a syntax from strictly positive families and interpret this using
indexed containers in section 8.

Acknowledgements
The authors would like to especially thank Peter Hancock whose ideas and influence
permeate this paper.

2 Background

2.1 Type Theory
Our constructions are all developed in Agda, and so we adopt its syntax, but we will
take certain liberties with its type-theory. We have Π-types, denoted (a ∈ A) → B a
and Σ-types, which we write as: (a ∈ A )× B a. In fact this is sugar for the record
type:

record Σ (A ∈ Set) (B ∈ A → Set) ∈ Set where
constructor ,
field
π0 ∈ A
π1 ∈ B π0

We will, however assume that the type-theory we work in has Σ-types as primitive,
and has no native support for data-types. Instead, we only have W-types, the empty-
type ⊥, the unit type tt ∈ > and the booleans true, false ∈ Bool. A type theory has
W types if it has a type former W ∈ (S ∈ Set) (P ∈ S → Set) → Set with a
constructor sup and an eliminator wrec:

data W (S ∈ Set) (P ∈ S → Set) ∈ Set where
sup ∈ (s ∈ S)× (P s → W S P) → W S P

wrec ∈ {S ∈ Set} {P ∈ S → Set} (Q ∈ W S P → Set)
(x ∈ W S P)
(m ∈ (s ∈ S) (f ∈ P s → W S P)

(h ∈ (p ∈ P s) → Q (f p))
→ Q (sup (s, f)))

→ Q x
wrec Q (sup (s, f)) m = m s f (λ p → wrec Q (f p) m)

As a notational convenience, we will continue to define extra Agda data-types in the
rest of the paper, but in the end we will show how each of these can be reduced to
a theory that contains only W. For compactness, and readability we will also define
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functions using Agda’s pattern matching syntax, rather than encoding them using wrec,
all of these definitions can be reduced to terms which only use wrec.

We’ll also require a notion of propositional equality. To simplify the presentation
of some definitions later on, we will employ a heterogeneous equality. This can be
defined in Agda via a data-type:

data _∼=_ {A ∈ Set} (x ∈ A) ∈
{B ∈ Set} → B → Set where

refl ∈ x ∼= x
subst ∈ {A ∈ Set} (P ∈ A → Set) {x y ∈ A} →

x ∼= y → P x → P y
subst P refl p = p

Most of the time our equalities will be homogeneous, however, so we introduce a
short hand for this:

_≡_ ∈ {A ∈ Set} → A → A → Set
a ≡ b = a ∼= b

It is also known that homogeneous and heterogeneous equality have the same
strength, so all the definitions employing our equality could also be encoded in a theory
with only homogeneous equality. This is an intensional equality, but we want to work
in a setting with extensional type-theory, so we extend the propositional equality with
this extensionality axiom:

postulate ext ∈ { f g ∈ (a ∈ A) → B a} →
((a ∈ A) → f a ≡ g a) → f ≡ g

ext-1 ∈ { f g ∈ (a ∈ A) → B a} →
f ≡ g → ((a ∈ A) → f a ≡ g a)

ext-1 refl a = refl
syntax ext (λ a → b) = λ≡ a → b

We’ll also need a heterogeneous version of the extensionality principle – this says
that two functions of different types are equal iff, when applied to equal arguments they
produce equal results. Note that to exploit a heterogeneous equality between functions
we must provide a guarantee that the functions have equal domains, and co-domains:

postulate exteq ∈ {f ∈ (a ∈ A) → B a}
{g ∈ (a′ ∈ A′) → B′ a′} →
({a ∈ A} {a′ ∈ A′} →

a ∼= a′ → f a ∼= g a′) →
f ∼= g

syntax exteq (λ a → b) = λ∼= a → b

exteq-1 ∈ ∀ { l l′} {A A′ ∈ Set l}
{B ∈ A → Set l′} {B′ ∈ A′ → Set l′}
{f ∈ (a ∈ A) → B a} {g ∈ (a′ ∈ A′) → B′ a′} →
A ≡ A′ → B ∼= B′ → f ∼= g →
{a ∈ A} {a′ ∈ A′} → a ∼= a′ → f a ∼= g a′

exteq-1 refl refl refl {a} {.a} refl = refl
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This creates non-canonical elements of _∼=_, i.e. closed terms in equality types
which are not refl. In order to deal with these non-canonical elements, we also rely on
axiom K, or the uniqueness of identity proofs:

UIP ∈ {a b ∈ A} {p ∈ a ∼= b} {q ∈ a ∼= b} → p ∼= q
UIP {p = refl} {q = refl} = refl

With these ingredients we obtain a theory which corresponds to extensional Type The-
ory [23].

We will also need to use a notion of Set isomorphism, which we denote WV
and which exploits our extensional equality:

record WV (A B ∈ Set) ∈ Set where
field
φ ∈ A → B
ψ ∈ B → A
φψ ∈ φ ◦ ψ ≡ id
ψφ ∈ ψ ◦ φ ≡ id

We are going to use type theoretic versions of certain category theoretic concepts. For
example we represent functors by packing up their definition as an Agda record. An
endofunctor on Set, is given by:

record Func ∈ Set1 where
field

obj ∈ Set → Set
mor ∈ ∀ {A B} → (A → B) → obj A → obj B

It would also be possible to pack up the functor laws as extra fields in these records.
We use ends [27] to capture natural transformations. Given a bifunctor F ∈ Setop →
Set → Set, an element of ·

∏
X . F X X is equivalent to an element of f ∈ {X ∈

Set} → F X X, along with a proof:

{A B ∈ Set} (g ∈ A → B) → F g B (f {B}) ≡ F A g (f {A})

The natural transformations between functors F and G are ends ·
∏

X . F X →
G X. We will often ignore the presence of the proofs, and use such ends directly as
polymorphic functions. In this setting, the Yoneda lemma can be stated as follows, for
any functor F:

F X ∼= ·∏ Y . (X → Y) → F Y

we will make use of this fact later on.
Finally, for readability we will elide certain artifacts in Agda’s syntax; for instance,

the quantification of implicit arguments when their types can be inferred from the con-
text. We will often leave out record projections from notions such as Func, allowing
the functor to stand for both its action on object and morphism, just as would happen
in the category theory literature.
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2.2 Containers in a Nutshell
Initial algebra semantics is useful for providing a generic analysis of inductive types
based upon concepts such as constructors, functorial map and structured recursion op-
erators. However, it does not cover the question which inductive types actually exist,
and it falls short of providing a systematic characterisation of generic operations such
as equality or the zipper [24, 28]. To address this problem, we proposed in previous
work to consider only a certain class of functors, namely those arising from contain-
ers [2, 1]. Since indexed containers build upon containers, we recall the salient infor-
mation about containers. A (unary) container is given by a set of shapes S and a family
of positions P assigning, to each shape, the set of positions where data can be stored in
a data structure of that shape.

record Cont ∈ Set1 where
constructor C
field

S ∈ Set
P ∈ S → Set

This shapes and positions metaphor is very useful in developing intuitions about
containers. For example, every container S C P gives rise to a functor which maps
a set A to the the set of pairs consisting of a choice of a shape s ∈ S and a function
assigning to every position p ∈ P s for that shape, an element of A to be stored at
that position. This intuition is formalised by the following definition.

J_K ∈ Cont → Func
J S C P K = record {obj = λ A → (s ∈ S)× (P s → A)

; mor = λ m → λ {(s, f) → (s,m ◦ f)}
}

For example the list functor arises from a container whose shapes are given by the
natural numbers (representing the list’s length) and the positions for a shape n ∈ N
are given by Fin n. This reflects the fact that a list of length n ∈ N has Fin n locations
or positions where data may be stored.

The motivation for containers was to find a representation of well behaved func-
tors. Since natural transformations are the semantic representation of polymorphic
functions, it is also natural to seek a representation of natural transformations in the
language of containers. We showed in our previous work that a natural transformation
between two functors arising as containers can be represented as morphisms between
containers as follows.

record ⇒ (C D ∈ Cont) ∈ Set where
constructor C
field

f ∈ C .S → D .S
r ∈ (s ∈ C .S) → D .P (f s) → C .P s

As promised, such container morphisms represent natural transformations as the
following definition shows:

J K⇒ ∈ ∀ {C D} → C ⇒ D → ·∏ A . (J C K A → J D K A)
J f C r K⇒ (s,g) = f s,g ◦ r s
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Rather surprisingly we were able to prove that the representation of natural transfor-
mations as container morphisms is a bijection, that is every natural transformation be-
tween functors arising from containers is uniquely represented as a container mor-
phism. Technically, this can be stated by saying that Containers and their morphisms
form a category which is a full and faithful sub-category of the functor category. We
have also shown that the category of containers is cartesian closed [12], and is closed
under formation of co-products, products and a number of other constructions. Most
important of these is the fact that container functors (ie functors arising from contain-
ers) have initial algebras. Indeed, these are exactly the W types we know well from
Type-Theory, which we can be equivalently defined to be:

data W (S ∈ Set) (P ∈ S → Set) ∈ Set where
sup ∈ J S C P K (W S P) → W S P

However, we have also shown that for n-ary containers (containers with n position
sets) which we denote as Cont n., it is possible to define a parameterised initial algebra
construction µ ∈ ∀ {n} → Cont (suc n) → Cont n. This allows us to model a
broad range of nested and mutual types as containers. Further details can be found in
the paper on containers cited above.

3 Indexed Functors
While containers provide a robust framework for studying data types arising as initial
algebras of functors over sets, indexed containers provide an equally robust framework
for studying the more refined data types which arise as initial algebras of functors over
indexed sets. Indeed, just as the essence of containers is a compact representation of
well behaved functors over sets, so the essence of indexed containers will be an equally
compact representation of functors over indexed sets. Given I ∈ Set we begin by
considering the category of families over I. Its objects are I-indexed families of sets
A ∈ I → Set and its morphisms are given by I-indexed families of functions. The
definitions of morphisms, identity morphisms and composition of morphisms in this
category are

→? ∈ { I ∈ Set} → (A B ∈ I → Set) → Set
→? {I} A B = (i ∈ I) → A i → B i

id? ∈ {I ∈ Set} {A ∈ I → Set} → A →? A
id? i a = a
◦? ∈ { I ∈ Set} {A B C ∈ I → Set} →

(B →? C) → (A →? B) → (A →? C)
f ◦? g = λ i → (f i) ◦ (g i)

We call this category Fam I. 3 An I-indexed functor is then a functor from Fam I to
Set, given by:

record IFunc (I ∈ Set) ∈ Set1 where
field

obj ∈ (A ∈ Fam I) → Set
mor ∈ ∀ {A B} → (A →? B) → obj A → obj B

3This should not be confused with the usual notion of the category of families over a given base category,
i.e. the families fibration.

10



such that both id? is mapped to id and ◦? to ◦ under the action of mor. We adopt
the convention that the projections obj and mor are silent, i.e. depending on the context
F ∈ IFunc I can stand for either the functor’s action on objects, or on morphisms. A
morphism between to such indexed functors is a natural transformation:

⇒F ∈ ∀ { I} → (F G ∈ IFunc I) → Set1
F ⇒F G = ·∏ A . F A → G A

Our goal is, eventually, to give a representation for indexed functors as indexed
containers. In doing this, we will also wish to represent structure on indexed functors as
structure on indexed containers. To achieve this, we next look at the structure possessed
by indexed functors. The main structure we wish to highlight for IFunc is the following
is a monad-like structure:

ηF ∈ ∀ { I} → I → IFunc I
ηF i = record {obj = λ A → A i; mor = λ f → f i}
>>=F ∈ ∀ { I J} → IFunc I → (I → IFunc J) → IFunc J

F >>=F H =
record {obj = λ A → F (λ i → (H i) A)

; mor = λ f → F (λ i → (H i) f )}

It’s clear that IFunc cannot be a monad in the usual sense, since it is not an endofunctor,
it does how ever fit with the notion of relative monad presented by [4]. Note that in the
code above we have elided the use of the lifting functor.

Proposition 1 (IFunc, ηF, >>=F ) is a relative monad[4] on the lifting functor ↑ ∈
Set → Set1.

Proof To prove the structure is a relative monad we observe that the following equali-
ties hold up to Agda’s βη-equality, and our postulate ext.

For F ∈ IFunc I, G ∈ IFunc* J I, H ∈ IFunc* K J:

H i ≡ (ηF i) >>=F H (1)
F ≡ F >>=F ηF (2)

(F >>=F G) >>=F F ≡ F >>=F (λ i → (G i) >>=F H) (3)

So far our indexed functors represent functors Fam I to Set. Of course, really we
want to study functors Fam I to Fam J as we want to study functors mapping indexed
sets to indexed sets. We will therefore define a type IFunc? of such doubly indexed
functors and then investigate the structure possessed by such functors. Fortunately
IFunc? can easily be derived from IFunc as follows. Firstly, note that the opposite of
the Kleisli category of the relative monad associated with IFunc has objects I, J ∈ Set
and morphisms given by J-indexed families of I-indexed functors. We denote this
notion of indexed functor IFunc? and note that, as required, inhabitants of IFunc? are
functors mapping indexed sets to indexed sets.

IFunc? ∈ (I J ∈ Set) → Set1
IFunc? I J = J → IFunc I
obj? ∈ ∀ { I J} → IFunc? I J → Fam I → Fam J
obj? F A j = (F j) A
mor? ∈ ∀ { I J A B} (F ∈ IFunc? I J) →
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A →? B → obj? F A →? obj? F B
mor? F m j = (F j) m

Again, we will omit obj? and mor? when inferable from the context in which they
appear. Natural transformations extend to this doubly indexed setting, too:

⇒F? ∈ ∀ { I J} → (F G ∈ IFunc? I J) → Set1
F ⇒F? G = ·∏ A . F A →? G A

Turning to the structure on IFunc?, clearly, the Kleisli structure gives rise to identities
and composition in IFunc?. Indeed, composition gives rise to a re-indexing operation
which we denote ∆F:

∆F ∈ ∀ { I J K} → (J → K) → IFunc? I K → IFunc? I J
∆F f F = F ◦ f

This construction is used, for instance, in building the pattern functor for ScLam as in
the introduction; Concentrating only on the abs case we want to build ScLam′ X n =
(X ◦ suc) n. Or simply ScLam′ X = ∆F suc X. In general this combinator restricts
the functor X to the indices in the image of the function f.

What if the restriction appears on the right of such an equation? As an example,
consider the successor constructor for Fin; here we want to build the pattern functor:
FFin′ X (1 + n) = X n. To do this we observe that this is equivalent to the equation
FFin′ X n = ( n ∈ N ) × (n ≡ 1 + m × X m). We denote the general
construction ΣF, so the 2nd equation can be written FFin′ X = ΣF suc X:

ΣF ∈ ∀ {J I K} → (J → K) → IFunc? I J → IFunc? I K
ΣF {J} f F k =

record {obj = λ A → ( j ∈ J)× (f j ≡ k × F A j)
; mor = λ {m (j,p, x) → (j,p, F m j x)}
}

Perhaps unsurprisingly, ΣF turns out to be the left adjoint to re-indexing (∆F). Its right
adjoint, we denote ΠF:

ΠF ∈ ∀ {J I K} → (J → K) → IFunc? I J → IFunc? I K
ΠF {J} f F k =

record {obj = λ A → (j ∈ J) → f j ≡ k → F A j
; mor = λ m g j p → F m j (g j p)}

Proposition 2 ΣF and ΠF are left and right adjoint to re-indexing (∆F).

Proof To show this we need to show that for all f ∈ J → K, g ∈ K → J,
F ∈ IFunc? I J and G ∈ IFunc? I K:

ΣF f F ⇒F? G
F ⇒F? ∆F f G

∆F f F ⇒F? G
F ⇒F? ΠF f G

We can build the components of these isomorphisms easily:

Σa∆ ∈ (f ∈ J → K) → (ΣF f F ⇒F? G) → (F ⇒F? ∆F f G)
Σa∆ f m j x = m (f j) (j, refl, x)
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Σa∆-1 ∈ (f ∈ J → K) → (F ⇒F? ∆F f G) → (ΣF f F ⇒F? G)

Σa∆-1 f m . (f j) (j, refl, x) = m j x

∆aΠ ∈ (g ∈ K → J) → (∆F g F ⇒F? G) → (F ⇒F? ΠF g G)
∆aΠ g m . (g k) x k refl = m k x

∆aΠ-1 ∈ (g ∈ K → J) → (F ⇒F? ΠF g G) → (∆F g F ⇒F? G)

∆aΠ-1 g m k x = m (g k) x k refl

It only remains to observe that these pairs of functions are mutual inverses, which is a
simple proof.

In abstracting over all possible values for the extra indexing information ΠF allows
for the construction of infinitely branching trees, such as rose trees. We also note that
finite coproducts and products can be derived from ΣF and ΠF respectively:

⊥F ∈ ∀ { I} → IFunc? I >
⊥F = ΣF {J = ⊥} λ ()

]F ∈ ∀ { I} → (F G ∈ IFunc I) → IFunc? I >
F ]F G = ΣF λ b → if b then F else G
>F ∈ ∀ { I} → IFunc? I >
>F = ΠF {J = ⊥} λ ()

×F ∈ ∀ { I} → (F G ∈ IFunc I) → IFunc? I >
F ×F G = ΠF λ b → if b then F else G

Clearly these are simply the constantly > and ⊥ valued functors, and the point-wise
product and coproduct of functors. However, encoding them using ΣF and ΠF allows us
to keep to a minimum the language of indexed functors (and hence indexed containers)
with obvious benefits in terms of tractability.

3.1 Initial algebras of indexed functors
We have seen that an F ∈ IFunc? I I is an endofunctor on the category Fam I. Using
this observation we know that an algebra of such a functor is a family A ∈ Fam I and
a map α ∈ F A →? A. A morphism, then, between two such algebras (A, α) and
(B, β) is a map f ∈ A →? B such that the follow diagram commutes:

F A α //

F f
��

A

f
��

F B
β // B

If it exists then the initial algebra of F is the initial object of the category of F-algebras
spelled out above. It follows from the fact that not all functors in Set → Set (for
instance F A = (A → Bool) → Bool) have initial algebras that neither do all
indexed-functors.

We also know that we cannot iterate the construction of initial algebras given above.
That is, an endofunctor IFunc? I I gives rise to an initial algebra in Fam I, and we
cannot take the initial algebra of something in Fam I. This prevents us from being able
to define nested, or mutual inductive families in this way.
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We finish our study of indexed functors by tackling this problem. Our strategy is as
follows: First note that for a singly indexed functor over a coproduct we can eliminate
the coproduct and curry the resulting definition in this way:

IFunc (I ] J) ≡ (I ] J → Set) → Set
WV (I → Set) × (J → Set) → Set
WV (I → Set) → (J → Set) → Set

This gives us partial application for indexed functors of the form IFunc (I ] J).
Spelled out concretely we have:

[ ]F ∈ ∀ { I J} → IFunc (I ] J) → IFunc? I J → IFunc I
F [ G ]F =

record { obj = λ A → F [A, G A]
; mor = λ f → F [f , G f ]}

This construction is functorial:

[ ]F ∈ ∀ { I J} (F ∈ IFunc (I ] J)) {G H ∈ IFunc? I J}
→ G ⇒F? H
→ F [ G ]F ⇒F F [ H ]F

F [ γ ]F = F [(λ a → a), γ ]

Each of these definitions generalises to IFunc?:

[ ]F? ∈ ∀ { I J K} → IFunc? (I ] J) K → IFunc? I J → IFunc? I K
F [ G ]F? = λ k → (F k) [ G ]F

[ ]F? ∈ ∀ { I J K} (F ∈ IFunc? (I ] J) K) {G H ∈ IFunc? I J}
→ G ⇒F? H
→ F [ G ]F? ⇒F? F [ H ]F?

[ ]F? F {G} {H} γ = λ k → [ ]F (F k) {G} {H} γ

A parametrised F-algebra for F ∈ IFunc? (I ] J) J is then simply an algebra for the
functor F [ ]F? . That is, a parameterised F-algebra consists of a pair of an indexed-
functor G ∈ IFunc I J and a natural transformation α ∈ F [ G ]F? ⇒F? G.
A morphism between two such algebras (G, α) and (H, β) is a natural transformation
γ ∈ G ⇒F? H such that the follow diagram commutes:

F [ G ]F? α //

F [ γ ]F?

��

G

γ
��

F [ H ]F?
β // H

As you might expect, a parametrised initial algebra for F, if it is exists, will be the
initial object in the category of parametrised F-algebras. Alternatively, it is the initial
F [ ]F? -algebra. Either way, the parameterised initial algebra construction will map
indexed functors to indexed functors and hence can be iterated. This means that we can
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define nested and mutual families of datatypes, such as the tuple of neutral and normal
λ-terms outlined in the introduction.

However, it is still the case that not all indexed functors in IFunc? (I ] J) I
have parameterised initial algebras. In the analogous situation for functors on Set, we
solved this problem by limiting ourselves to those functors which can be represented
by containers. We follow a similar approach in the indexed setting, that is, we restrict
our attention to those indexed functors which can be represented by indexed containers.
We show that all indexed containers have parameterised initial algebras and that, sur-
prisingly, initial algebras may be constructed using only the W-types used to construct
initial algebras of containers.

4 Indexed containers
Following the structure of the previous section, we first define singly indexed contain-
ers which will represent singly indexed functors, and then we define doubly indexed
containers which will represent doubly indexed functors. To this end, we define an
I-indexed container to be given by a set of shapes, and an I-indexed family of positions:

record ICont (I ∈ Set) ∈ Set1 where
constructor _C_
field

S ∈ Set
P ∈ S → I → Set

The above definition shows that an I-indexed container is similar to a container in
that it has a set of shapes whose elements can be thought of as constructors. However,
the difference between an I-indexed container and a container lies in the notion of the
positions associated to a given shape. In the case of a container, the positions for a
given shape simply form a set. In the case of an I-indexed container, the positions for a
given shape form an I-indexed set. If we think of I as a collection of sorts, then not only
does constructor require input to be stored at its positions, but each of these positions
is tagged with an i ∈ I and will only store data of sort i ∈ I at that position. This
intuition is formalised by the following definition which shows how singly indexed
containers represent singly indexed functors

J_K ∈ ∀ { I} → ICont I → IFunc I
J_K {I} (S C P) =

record {obj = λ A → (s ∈ S)× (P s →? A)
; mor = λ {m (s, f) → (s,m ◦? f)}
}

Notice how the extension of an indexed container is very similar to the extension of
a container. In particular, an element of J S C P K A consists of a shape s ∈ S and
a morphism P s →? A of I-indexed sets. This latter function assigns to each i ∈ I,
and each position p ∈ P s i an element of A i. If we think of I as a collection of sorts,
then this function assigns to each i ∈ I-sorted position, an i-sorted piece of data, i.e.
an element of A i.

Analogously to the generalisation of singly indexed functors to doubly indexed
functors, we can generalise singly indexed containers to doubly indexed containers.
Indeed, a doubly indexed container, that is an element of ICont? I J, is simply a
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function from J to ICont I. Unpacking the definition of such a function gives us the
following definition of a doubly indexed container and its extension as a doubly indexed
functor:

record ICont? (I J ∈ Set) ∈ Set1 where
constructor C?

field
S ∈ J → Set
P ∈ (j ∈ J) → S j → I → Set

J_K* ∈ ∀ { I J} → ICont? I J → IFunc? I J
J S C? P K? j = J S j C P j K

We will denote the two projections for an ICont postfix as .S and .P. Our methodol-
ogy of reflecting structure on indexed functors as structure on indexed containers means
we must next consider how to reflect morphisms between indexed functors which can
be represented by indexed containers as morphisms between those indexed containers.
We begin by considering what constitutes a natural transformation between the exten-
sion of an indexed container and an arbitrary indexed functor. We do this in the singly
indexed case as follows:

J S C P K ⇒F F (1)

≡ ·∏ X . (s ∈ S)× (P s →? X) → F X {by definition}

WV
·∏ X . (s ∈ s) → (P s →? X) → F X {currying}

WV (s ∈ S) → ·∏ X . (P s →? X) → F X {commuting end and pi}
WV (s ∈ S) → F (P s) {Yoneda}

Now, if F is the extension of an indexed container T C Q, we have:

J S C P K ⇒F J T C Q K (2)

WV (s ∈ S) → ( t ∈ T)× (Q t →? P s)

WV ( f ∈ S → T)× ((s ∈ S) → Q (f s) →? P s)

We will use this last line as the definition for indexed container morphisms. This defini-
tion can be implemented by the following record type, containing a function on shapes
and a family of contravariant indexed functions on positions:

record ⇒C {I} (C D ∈ ICont I) ∈ Set where
constructor _C_
field

f ∈ C .S → D .S
r ∈ (s ∈ C .S) → (D .P (f s)) →? (C .P s)

ICont I forms a category, with morphisms given by ⇒C , the identity and composi-
tion morphisms are given as follows:

idC ∈ ∀ { I} {C ∈ ICont I} → C ⇒C C
idC = id C (λ → id)
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◦C ∈ ∀ { I} {C D E ∈ ICont I} →
D ⇒C E → C ⇒C D → C ⇒C E

(f C r) ◦C (g C q) = (f ◦ g) C (λ s → q s ◦? r (g s))

That idC is the left and right unit of ◦C, and that ◦C is associative follows immediately
from the corresponding properties of id and ◦ .

We will use a notion of equality for container morphisms that includes a proof that
their shape and position functions are pointwise equal:

record ≡⇒ {I} {C D ∈ ICont I} (m n ∈ C ⇒C D) ∈ Set where
constructor _C_
field

feq ∈ (s ∈ C .S) → m .f s ≡ n .f s
req ∈ (s ∈ C .S) (i ∈ I) (p ∈ D .P (m .f s) i) →

m .r s i p ≡
n .r s i (subst (λ s′ → D .P s′ i) (feq s) p)

In the presence of extensional equality, we can prove that this is equivalent to the
propositional equality on ⇒C , but it will prove simpler later to use this definition.

We witness the construction of a natural transformation from an indexed container
morphisms as follows:

J K⇒ ∈ ∀ { I} {C D ∈ ICont I} (m ∈ C ⇒C D) →
·∏ A . J C K A → J D K A

J f C r K⇒ (s,g) = f s,g ◦? r s

The representation of natural transformations between indexed functors arising from
indexed containers and morphisms between the indexed containers themselves is ac-
tually a bijection. This opens the way to reasoning about natural transformations by
reasoning about indexed container morphisms. Technically, this bijection is captured
by the following statement:

Proposition 3 The functor (J_K, J K⇒) ∈ ICont I → IFunc I is full and faithful.

Proof The isomorphism is proved in equations (1) and (2).

Having dealt with indexed container morphisms in the singly indexed setting, we
now turn to the doubly indexed setting. First of all, we define the morphisms between
two doubly indexed containers.

record ⇒C? {I J} (C D ∈ ICont? I J) ∈ Set1 where
constructor C?

field
f ∈ C .S →? D .S
r ∈ { j ∈ J} (s ∈ C .S j) → (D .P j (f j s)) →? (C .P j s)

J_K⇒* ∈ ∀ { I J} {C D ∈ ICont? I J} (m ∈ C ⇒C?

D) →
·∏ A . ( J C K? A →? J D K? A)

J f C? r K⇒
?

j = J f j C r K⇒

Having defined indexed containers and indexed container morphisms as represen-
tations of indexed functors and the natural transformations between them, we now turn
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our attention to the relative monad structure on indexed functors, reindexing of indexed
functors (and the associated adjoints), and parameterised initial algebras of indexed
functors. Our goal in the rest of this section is to encode each of these structures within
indexed containers. We begin by showing that, as with IFunc, we can equip ICont with
a relative monadic structure:

ηC ∈ ∀ { I} → I → ICont I
ηC i = > C λ i′ → i ≡ i′

>>=C ∈ ∀ { I J} → ICont I → ICont? J I → ICont J
>>=C {I} (S C P) (T C? Q) =

(J S C P K T)
C λ {(s, f) j → Σ (( i ∈ I)× P s i) (λ {(i,p) → Q i (f i p) j})}

Proposition 4 The triple (ICont, ηC, >>=C ) is a relative monad.

Proof Instead of proving this directly, we observe that the ηC and >>=C are preserved
under the extension functor, that is that the following natural isomorphisms hold:

·∏ X . J ηC i K X WV ηF i X
·∏ X . J C >>=C D K X WV (J C K? >>=F J D K) X

Which follows from the extensionality of our propositional equality, the associativity
of Σ and the terminality of >. By the full and faithful nature of the embedding J_K, we
can then reuse the result that (IFunc, ηF, >>=F ) is a relative monad to establish the
theorem.

As with indexed functors, the re-indexing functor ∆C on indexed containers is de-
fined by composition, and it has left and right adjoints ΣC and ΠC. As we shall see, our
proof of this fact uses the full and faithfulness of the embedding of indexed containers
as indexed functors and the fact that reindexing of indexed functors has left and right
adjoints.

∆C ∈ (J → K) → ICont? I K → ICont? I J
∆C f F = λ k → F (f k)

ΣC ∈ (J → K) → ICont? I J → ICont? I K
ΣC f (S C? P) = λ k →

(( j ∈ J)× (f j ≡ k × S j))
C λ {(j,eq, s) → P j s}

ΠC ∈ (J → K) → ICont? I J → ICont? I K
ΠC f (S C? P) = λ k →

((j ∈ J) → f j ≡ k → S j)
C λ s i → ( j ∈ J)× ((eq ∈ f j ≡ k)× P j (s j eq) i)

Proposition 5 ΣC and ΠC are left and right adjoint to re-indexing (∆C).

Proof Again we appeal to the full and faithfulness of J_K and show instead that J_K
also preserves these constructions. That, is we want to show that the following three
natural isomorphisms hold:

·∏ X . J ΣC f F j K X WV ΣF f J F K? j X
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·∏ X . J ∆C f F j K X WV ∆F f J F K? j X
·∏ X . J ΠC f F j K X WV ΠF f J F K? j X

These can be proved simply by employing the associativity of Σ.

Before we build the initial algebras of indexed containers, it will help to define their
partial application.

[ ]C ∈ ∀ { I J} → ICont (I ] J) → ICont? I J → ICont I
[ ]C {I} {J} (S C P) (T C? Q) =

let PI ∈ S → I → Set; PI s i = P s (inl i)
PJ ∈ S → J → Set; PJ s j = P s (inr j)

in J S C PJ K T C
(λ {(s, f) i → PI s i

] (( j ∈ J)× ((p ∈ PJ s j)× Q j (f j p) i))})

The composite container has shapes given by a shape s ∈ S and an assignment of T
shapes to PJ s positions. Positions are then a choice between a I-indexed position, or a
pair of an J-indexed position, and a Q position underneath the appropriate T shape.
As with indexed functors, this construction is functorial in its second argument, and
lifts container morphisms in this way:

[ ]C ∈ ∀ { I J} (C ∈ ICont (I ] J)) {D E ∈ ICont? I J} →
D ⇒C? E

→ C [ D ]C ⇒C C [ E ]C

C [ γ ]C =
(λ {(s, f) → (s, λ j p → γ .f j (f j p))}) C
λ {(s, f) i → id ] λ {(j,p,q) → (j,p, γ .r j (f j p) i q)}}

5 Initial Algebras of Indexed Containers
We will now examine how to construct the parameterised initial algebra of an indexed
container of the form F ∈ ICont? (I ] J) J. The shapes of such a container are an
J-indexed family of Sets and the positions are indexed by I ] J; we will treat these
position as two separate entities, those positions indexed by J – the recursive positions
– and those by I – the payload positions.

The shapes of the initial algebra we are constructing will be trees with S shapes at
the nodes and which branch over the recursive PJ positions. We call these trees indexed
W-types, denoted WI, and they are the initial algebra of the functor J S C PJ K?. In
Agda, we can implement the WI constructor and its associated iteration operator WIfold
as follows:

data WI {J ∈ Set} (S ∈ J → Set)
(PJ ∈ (j ∈ J) → S j → J → Set) ∈ J → Set where

sup ∈ J S C? PJ K? (WI S PJ) →? WI S PJ

Proposition 6 (WI S PJ, sup) is the initial object in the category of J S C PJ K-
algebras.
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Proof We show this by constructing the iteration operator WIfold, a morphism in the
category of J S C PJ K-algebras from our candidate initial algebra to any other algebra
such that the following diagram commutes:

J S C? PJ K? (WI S PJ)
sup //

J S C? PJ K? (WIfold α)
��

WI S PJ

WIfold α
��

J S C? PJ K? X α // X

In fact we can use this specification as the definition of WIfold:

WIfold ∈ ∀ {J} {S X ∈ J → Set} {PJ} →
J S C? PJ K? X →? X →
WI S PJ →? X

WIfold {S = S} {PJ = PJ} α j (sup ._ x) =

α j ( J S C? PJ K? (WIfold α) j x)

We also require that WIfold is unique, that is we must show that any morphism β which
makes the diagram above commute must be equal to WIfold α:

WIfoldUniq ∈ ∀ {J} {X ∈ J → Set} {S ∈ J → Set}
{PJ ∈ (j ∈ J) → S j → J → Set}
(α ∈ J S C? PJ K? X →? X)

(β ∈ WI S PJ →? X) →
((j ∈ J) (s ∈ J S C? PJ K? (WI S PJ) j) →

(β j (sup j s)) ≡ (α j ( J S C? PJ K? β j s))) →
(j ∈ J) (x ∈ WI S PJ j) → β j x ≡ WIfold α j x

WIfoldUniq α β commβ j (sup .j (s,g)) = begin
β j (sup j (s,g))

∼=〈 commβ j (s,g) 〉
α j (s, (λ j′ p′ → β j′ (g j′ p′)))

∼=〈 cong (λ f → α j (s, f))
(λ≡ j′ → λ≡ p′ → WIfoldUniq α β commβ j′ (g j′ p′)) 〉

α j (s, (λ j′ p′ → WIfold α j′ (g j′ p′)))
�

where open ∼=-Reasoning

The above definition proves that β and WIfold α are pointwise equal, by employing
ext we can show that WIfoldUniq′ implies that they are extensionally equal.

This proof mirrors the construction for ordinary containers, where we can view
ordinary W-types as the initial algebra of a container functor. Positions in an indexed
W-type are given by the paths through such a tree which terminate in a non-recursive
PI-position:

data Path {I J ∈ Set} (S ∈ J → Set)
(PI ∈ (j ∈ J) → S j → I → Set)
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(PJ ∈ (j ∈ J) → S j → J → Set)
∈ (j ∈ J) → WI S PJ j → I → Set where

path ∈ ∀ { j s f i} →
PI j s i

] (( j′ ∈ J)× ((p ∈ PJ j s j′ )× Path S PI PJ j′ (f j′ p) i))
→ Path S PI PJ j (sup (s, f)) i

pathh ∈ ∀ { I J ∈ Set} (S ∈ J → Set)
(PI ∈ (j ∈ J) → S j → I → Set)
(PJ ∈ (j ∈ J) → S j → J → Set)
{ j s f i} →

PI j s i
] (( j′ ∈ J)× ((p ∈ PJ j s j′ )× Path S PI PJ j′ (f j′ p) i))
→ Path S PI PJ j (sup (s, f)) i

pathh S PI PJ x = path x

Again this mirrors the partial application construction where positions were given by a
PI position at the top level, or a pair of a PJ position and a recursive Path position. This
reflects the fact that a WI-type can be thought of as iterated partial application. We can
now use WI-types, or equivalently initial algebras of indexed containers, to construct
the parametrised initial algebra of an indexed container. Firstly we construct the carrier
of the parameterised initial algebra:

µC ∈ {I J ∈ Set} → ICont? (I ] J) J → ICont? I J
µC {I} {J} (S C? P) =

let PI ∈ (j ∈ J) → S j → I → Set; PI j s i = P j s (inl i)
PJ ∈ (j ∈ J) → S j → J → Set; PJ j s j′ = P j s (inr j′)

in WI S PJ C? Path S PI PJ

Next, we note that the structure map for this parameterised initial algebra is a container
morphism from the partial application of F and its parametrised initial algebra, to the
parameterised initial algebra. This structure map is given by the constructor sup of WI
and the deconstructor for Path:

inC ∈ ∀ { I J} → (F ∈ ICont? (I ] J) J) → F [ µC F ]C? ⇒C? µC F
inC F = sup C? λ { (path p) → p}

Proposition 7 (µC F, inC F) is initial in the category of parameterised F-algebras of
indexed containers. Further, by full and faithfulness, (J µC F K?, J inC F K⇒

?

) will also
be initial in the indexed functor case.

To show this we must define an operator foldC from the initial algebra to an arbitrary
algebra. The shape map employs the fold for WI directly. For the position map we
apply the position map for the algebra, which maps Q positions to either a P position
in the first layer, or a recursive Q position — it is straightforward to recursively employ
this position map to construct the corresponding Path to a P position somewhere in the
tree.

foldC ∈ ∀ { I J} (F ∈ ICont? (I ] J) J) {G ∈ ICont? I J} →
F [ G ]C? ⇒C? G → µC F ⇒C? G
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foldC {I} {J} (S C? P) {T C? Q} (f C? r) = ffold C? rfold
where PI ∈ (j ∈ J) → S j → I → Set; PI j s i = P j s (inl i)

PJ ∈ (j ∈ J) → S j → J → Set; PJ j s j′ = P j s (inr j′)
ffold = WIfold f
rfold ∈ { j ∈ J} (s ∈ WI S PJ j)

(i ∈ I) → Q j (ffold j s) i → Path S PI PJ j s i
rfold (sup ._ (s,g)) i p =

path ((id ] (λ jpq → ( , π0 (π1 jpq)
, rfold (π1 (π1 jpq))))) (r (s, ) i p))

We also need to show that the following diagram commutes for any parametrised F-
algebra (G, α):

F [ µC F ]C? inC F //

F [ (foldC F α) ]F?

��

µC F

foldC F α
��

F [ G ]C? α // G

Or, equivalently:

foldComm ∈ ∀ { I J} {F ∈ ICont? (I ] J) J} (G ∈ ICont? I J)
(α ∈ F [ G ]C? ⇒C? G) →
(foldC F α ◦C? inC F) ≡⇒*

(α ◦C? F [ (foldC F α) ]C?)
foldComm {F} G α = (λ j x → refl) C? (λ j x i p → refl)

All that remains for us to show in order to prove that (µC F, inC F) is the initial
parametrised F-algebra is to show that foldC F α is unique for any α. That is any
morphism β ∈ µC F ⇒C? G, that makes the above diagram commute, must be
foldC F α:

foldUniq ∈ ∀ { I J} {F ∈ ICont? (I ] J) J} (G ∈ ICont? I J)
(α ∈ F [ G ]C? ⇒C? G) (β ∈ µC F ⇒C? G) →
(β ◦C? inC F) ≡⇒* (α ◦C? F [ β ]C?) →
β ≡⇒* (foldC F α)

foldUniq {I} {J} {S C? P} (T C? Q)
(αf C? αr) (βf C? βr) (feq C? req) =

WIfoldUniq αf βf feq C? rfoldUniq
where

PI ∈ (j ∈ J) → S j → I → Set; PI j s i = P j s (inl i)
PJ ∈ (j ∈ J) → S j → J → Set; PJ j s j′ = P j s (inr j′)

That the shape maps of β and foldC F α agree follows from the uniqueness of WIfold;
while the proof that the position maps agree follows the same inductive structure as
rfold in the definition of foldC. 4

rfoldUniq ∈ (j ∈ J) (s ∈ WI S PJ j) (i ∈ I)
(p ∈ Q j (βf j s) i) →

4Some parts of the Agda proof are hidden and denoted by . . . .
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βr s i p ∼=
rfold S PI PJ (T C? Q) αf αr s i

(subst (λ s → Q j s i)
(WIfoldUniq αf βf feq j s) p)

rfoldUniq j (sup ._ y) i p with req j y i p
rfoldUniq j (sup ._ y) i p | reqjyip with βr (sup j y) i p
rfoldUniq j (sup ._ y) i p | reqjyip | path q = begin

path q -- βr (sup j y) i p
∼=〈 cong path reqjyip 〉

path ((id ] (λ jpq → (π0 jpq, π0 (π1 jpq)
, βr (π1 y (π0 jpq) (π0 (π1 jpq))) i

(π1 (π1 jpq)))))
(αr (π0 y, (λ j’ p’ → βf j’ (π1 y j’ p’))) i

(subst (λ s’ → Q j s’ i) (feq j y) p)))
∼=〈 cong . . . (λ∼= j′ → λ∼= p′ → λ∼= q′ → begin

βr (π1 y )
∼=〈 rfoldUniq (π1 y ) i 〉

rfold S PI PJ (T C? Q) αf αr (π1 y ) i
(subst (λ s → Q s i)

(WIfoldUniq αf βf feq (π1 y )) )
∼=〈 . . . 〉

rfold S PI PJ (T C? Q) αf αr (π1 y ) i �) . . . 〉
path ((id ] (λ jpq → (π0 jpq, π0 (π1 jpq)

, rfold S PI PJ (T C? Q) αf αr
(π1 y (π0 jpq) (π0 (π1 jpq))) i
(π1 (π1 jpq)))))

(αr (π0 y, (λ j p → WIfold αf j (π1 y j p))) i
(subst (λ s → Q j s i)

(WIfoldUniq αf βf feq (sup y)) p)))
∼=〈 refl 〉

rfold S PI PJ (T C? Q) αf αr (sup y) i
(subst (λ s → Q s i)

(WIfoldUniq αf βf feq (sup y)) p) �

6 Terminal Coalgebras of Indexed Containers
Dually to the initial algebra construction outlined above, we can also show that indexed
containers are closed under parameterised terminal coalgebras. We proceed in much
the same way as before, by first constructing the dual of the indexed W-type, which we
refer to as an indexed M-type. As you might expect this is in fact the plain (as opposed
to parametrized) terminal coalgebra of an indexed container:

data MI {I ∈ Set} (S ∈ I → Set)
(PI ∈ (i ∈ I) → S i → I → Set) ∈ I → Set where

sup ∈ J S C? PI K? (λ i → ∞ (MI S PI i)) →? MI S PI

sup-1 ∈ ∀ { I S} {PI ∈ (i ∈ I) → S i → I → Set} →
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MI S PI →? J S C? PI K? (MI S PI)

sup-1 (sup (s, f)) = s, λ i p → [ (f i p)

Here, we employ Agda’s approach to coprogramming (e.g. see [17]), where we mark
(possibly) infinite subtrees with∞. The type∞ A is a suspended computation of type
A, and ] ∈ A → ∞ A delays a value of type A and [ ∈ ∞ A → A forces a
computation. A simple syntactic test then ensures that co-recursive programs total —
recursive calls must be immediately guarded by a ] constructor. 5.

The equality between infinite objects will be bi-simulation, for instance MI, types
are bi-similar if they have the same node shape, and all their sub-trees are bi-similar:

data ≈MI {J S PJ} { j ∈ J} ∈ (x y ∈ MI S PJ j) → Set where
sup ∈ ∀ {s f g} → (∀ { j′} (p ∈ PJ j s j′) →

∞ ([ (f j′ p) ≈MI [ (g j′ p))) →
sup (s, f) ≈MI sup (s,g)

It is simple to show that this bi-simulation is an equivalence relation.

Proposition 8 (MI S PJ, sup-1) is the terminal object in the category of J S C? PJ K-
coalgebras.

We must construct a co-iteration operator MIunfold, a morphism in the category of
J S C? PJ K-coalgebras to our candidate terminal coalgebra from any other coalgebra.
Such that the following diagram commutes:

X α //

MIunfold α
��

J S C? PJ K? X

J S C? PJ K? (MIunfold α)
��

MI S PJ
sup-1

//
J S C? PJ K? (MI S PJ)

sup
oo

The following definition of MIunfold makes the diagram commute up-to bisimulation.

MIunfold ∈ ∀ {J S PJ} {X ∈ J → Set} →
X →? J S C? PJ K? X → X →? MI S PJ

MIunfold α j x with α j x
MIunfold α j x | s, f = sup (s, λ j′ p → ] MIunfold α j′ (f j′ p))

We also require that MIunfold is unique, i.e. any morphism that makes the diagram
above commute should be provably equal (again upto bi-simulation) to MIunfold α. To
state this property we need to lift the bi-simulation ≈MI through the extension of an
indexed container, to say what is it for two elements in the extension to be bi-similar:

≈J KMI ∈ ∀ {J ∈ Set} {S ∈ J → Set}
{PJ ∈ (j ∈ J) → S j → J → Set} { j ∈ J} →
(x y ∈ J S C? PJ K? (MI S PJ) j) → Set

≈J KMI {J} {S} {PJ} { j} (s, f) (s′, f′) =

5Agda’s approach to coinduction is at an experimental stage and has some known issues, e.g. see [9]
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Σ (s ≡ s′) λ eq → { j′ ∈ J} (p ∈ PJ j s j′) →
f p ≈MI f′ (subst (λ s → PJ j s j′) eq p)

The uniqueness property is then given by:

MIunfoldUniq ∈ ∀ {J} {X ∈ J → Set} {S PJ}
(α ∈ X →? J S C? PJ K? X) → (β ∈ X →? MI {J} S PJ) →
((j ∈ J) (x ∈ X j) →
(sup-1 (β j x)) ≈J KMI (( J S C? PJ K? β ◦? α) j x)) →

(j ∈ J) (x ∈ X j) → β j x ≈MI MIunfold α j x
MIunfoldUniq α β commβ i x with commβ i x
MIunfoldUniq α β commβ i x | commix with β i x
MIunfoldUniq α β commβ i x | (refl, y) | sup (. (π0 (α i x)),g) =

sup (λ p → ] ≈MItrans (y p) (MIunfoldUniq α β commβ ))

However, Agda rejects this definition due to the recursive call not being guarded
immediately by the ], however, it is productive due to the fact that the proof of tran-
sitivity of bisimulation is contractive. We can persuade the system this is productive
by fusing the definition of ≈MItrans with this MIunfoldUniq in a cumbersome but
straightforward way.
The paths to positions in an indexed M-tree, are always finite – in fact modulo the use
of [, this Path is the same as the definition for the initial algebra case.

data Path {I J ∈ Set} (S ∈ J → Set)
(PI ∈ (j ∈ J) → S j → I → Set)
(PJ ∈ (j ∈ J) → S j → J → Set)
∈ (j ∈ J) → MI S PJ j → I → Set where

path ∈ ∀ { j s f i} →
PI j s i

] (( j′ ∈ J)×
((p ∈ PJ j s j′ )× Path S PI PJ j′ ([ (f j′ p)) i))

→ Path S PI PJ j (sup (s, f)) i

Just as parameterised initial algebras of indexed containers are built from WI-types,
so parameterised terminal coalgebras of indexed containers are built from WI-types as
follows.

νC ∈ { I J ∈ Set} → ICont? (I ] J) J → ICont? I J
νC {I} {J} (S C? P) =

let PI ∈ (j ∈ J) → S j → I → Set; PI j s i = P j s (inl i)
PJ ∈ (j ∈ J) → S j → J → Set; PJ j s j′ = P j s (inr j′)

in MI S PJ C? Path S PI PJ

outC ∈ ∀ { I J} → (F ∈ ICont? (I ] J) J) → νC F ⇒C? F [ νC F ]C?

outC {I} {J} (S C? P) = (λ → sup-1) C? outr
where outr ∈ { j ∈ J} (s ∈ (νC (S C? P) .S) j) →

((((S C? P) [ νC (S C? P) ]C?) .P) j (sup-1 s)) →?

((νC (S C? P)) .P j s)
outr (sup s) i′ p = path p
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Proposition 9 (νC F . outC F) is the terminal object in the category of parametrized
F-coalgebras of indexed containers. By full and faithfulness, (J νC F K?, J outC F K⇒

?

)
will also be terminal in the indexed functor case.

Proof Mirroring the case of initial algebras, the coiteration for this terminal co-algebra
employs the coiteration of MI for the shape maps. The position map takes a Path and
builds a Q position by applying the position map from the coalgebra at every step in
the path — note that this position map is inductive in its path argument.

unfoldC ∈ ∀ { I J} (F ∈ ICont? (I ] J) J) {G ∈ ICont? I J} →
G ⇒C? F [ G ]C? → G ⇒C? νC F

unfoldC {I} {J} (S C? P) {T C? Q} (f C? r) = funfold C? runfold
where PI ∈ (j ∈ J) → S j → I → Set; PI j s i = P j s (inl i)

PJ ∈ (j ∈ J) → S j → J → Set; PJ j s j′ = P j s (inr j′)
funfold = MIunfold f
runfold ∈ { j ∈ J} (t ∈ T j)

(i ∈ I) → Path S PI PJ j (funfold j t) i → Q j t i
runfold t i (path p) =

r t i ([ inl
, (λ y → inr ( , π0 (π1 y)

, runfold (π1 (f t) ) i (π1 (π1 y))))] p)

We must then show that unfoldC is the unique morphism that makes the following
diagram commute:

G

F [ (unfoldC F α) ]F?

��

α // F [ G ]C?

unfoldC F α
��

νC F outC F // F [ νC F ]C?

As with the initial algebra case, this follows immediately from the definition:

unfoldComm ∈ ∀ { I J} {F ∈ ICont? (I ] J) J} (G ∈ ICont? I J)
(α ∈ G ⇒C? F [ G ]C?) →
(outC F ◦C? unfoldC F α) ≡⇒*

((F [ (unfoldC F α) ]C?) ◦C? α)
unfoldComm (S C? P) (f C? r) = (λ j s → refl) C? (λ j s i p → refl)

We also have to show that the unfoldC is unique; that is, any morphism that makes the
above diagram commute must be equal to unfoldC F α.

In order to show this in Agda, we are going to have to assume a second extension-
ality principle, namely that if two MI trees are bi-similar, then they are in fact equal:

postulate MIext ∈ ∀ {J S PJ} { j ∈ J} {x y ∈ MI S PJ j} →
x ≈MI y → x ∼= y

The inverse of this principle is obviously true:

MIext-1 ∈ ∀ {J S PJ} { j ∈ J} {x y ∈ MI S PJ j} →
x ∼= y → x ≈MI y

MIext-1 refl = ≈MIrefl
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It is reasonable to assume that any language with fully fledged support for co-inductive
types and extensional equality would admit such an axiom.

We can now state the property that unfoldC is, indeed, unique:

unfoldUniq ∈ ∀ { I J} {F ∈ ICont? (I ] J) J} (G ∈ ICont? I J)
(α ∈ G ⇒C? F [ G ]C?) (β ∈ G ⇒C? νC F) →
(outC F ◦C? β) ≡⇒* (F [ β ]C? ◦C? α) →
β ≡⇒* (unfoldC F α)

The proof that the shape maps agree follows from the proof that MIunfold is unique,
and the proof that the position maps agree follows the same inductive structure as
runfold. Unfortunately, because Agda lacks full support for both co-induction and ex-
tensional equality it is not feasible to complete the proof terms for these propositions in
our Agda development. The main obstacle remains mediating between bi-simulation,
the (functional) extensional equality and Agda’s built-in notion of equality. We have
completed this proof on paper, however, and we are hopeful that soon we may be in a
position to complete these proof terms in a system where the built-in equality is sensi-
ble for both functions and co-inductive types.

7 W is still enough
So far we have developed a theory of indexed containers using a rich Type Theory with
features such as WI- and MI-types. We claimed in the introduction, however, that the
theory of indexed containers could be developed even when one only has W-types. In
this section we will outline the translation of many of the definitions above into such a
spartan theory. First we will show how to obtain indexed WI-types from W-types, and
by analogy MI-types from M-types, and then we will revisit our proof of how to derive
M-types from W-types.

WI from W
How, then, can we build WI-types from W-typs? The initial step is to create a type of
pre-WI trees, with nodes containing a shape and its index, and branching over positions
and their indices:

WI′ ∈ { I ∈ Set} (S ∈ I → Set)
(P ∈ (i ∈ I) (s ∈ S i) → I → Set) → Set

WI′ {I} S P = W (( i ∈ I)× S i) (λ {(i, s) → ( i′ ∈ I)× P i s i′})

Given such a tree we want to express the property that the subtrees of such a pre-tree
have the correct index in their node information. In order to do this we need a second
W-type, which is similar to WI′, but with an extra copy of the index information stored
in that node:

WIl ∈ {I ∈ Set} (S ∈ I → Set)
(P ∈ (i ∈ I) (s ∈ S i) → I → Set) → Set

WIl {I} S P = W (I × (( i ∈ I)× S i))
(λ {(i′, i, s) → ( i′ ∈ I)× P i s i′})

There are two canonical ways to turn an element of WI’ S P into an element of
WIl S P, both of which involve filling in this extra indexing information: i) we can
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simply copy the index already stored at the node; or ii) we can push the indexes down
from parent nodes to child nodes:

lup ∈ WI′ S P → WIl S P
lup (sup ((i, s), f)) = sup ((i, (i, s)), (λ p → lup (f p)))

ldown ∈ I → WI′ S P → WIl S P
ldown i (sup (s, f)) = sup ((i, s), λ {(i′,p) → ldown i′ (f (i′,p))})

The property of a pre-tree being type correct can be stated as its two possible la-
bellings being equal. That is we can use W-types to define the WI-type as follows:

WI ∈ { I ∈ Set} (S ∈ I → Set)
(P ∈ (i ∈ I) (s ∈ S i) → I → Set) → I → Set

WI S P i =
(x ∈ (WI′ S P))×

lup { } {S} {P} x ≡ ldown { } {S} {P} i x

Having built the WI-type from the W-type, we must next build the constructor sup
which makes elements of WI-types. We rely on function extensionality to define the
constructor sup:

sup ∈ ∀ {J S PJ} → J S C? PJ K? (WI {J} S PJ) →? WI S PJ

sup {J} {S} {PJ} j (s, f) =
(sup (( , s), λ {(j,p) → π0 (f j p)}))
, cong (λ x → sup ((j, j, s), x)) (λ≡ ip → π1 (f (π1 ip)))

Proposition 10 (WI S PJ, sup) is the initial object in the category of J S C? PJ K-
algebras.

Proof We must once again show that for any J S C? PJ K-algebra (X, α) where
α ∈ J S C? PJ K? X →? X there is a unique mediating morphism WIfold ∈
WI S PJ →? X. It is simple enough to define WIfold:

WIfold ∈ ∀ {J} {S X ∈ J → Set} {PJ} →
J S C? PJ K? X →? X →
WI S PJ →? X

WIfold α j (sup ((j′, s), f),ok) with cong (π0 ◦ π0 ◦ sup-1) ok
WIfold α j (sup ((.j, s), f),ok) | refl =

α j (s, (λ j′ p → WIfold α j′ (f (j′,p),ext-1 (cong (π1 ◦ sup-1) ok) (j′,p))))

In the form below WIfold does not pass Agda’s termination checker; the direct encod-
ing via Wfold would avoid this problem, at the expense of being even more verbose.

To show that WIfold makes the initial algebra diagram commute, we must employ
the UIP principle, that any two proofs of an equality are equal:

WIcomm ∈ ∀ {J} {S X ∈ J → Set} {PJ}
(α ∈ J S C? PJ K? X →? X)

(j ∈ J) → (x ∈ J S C? PJ K? (WI S PJ) j) →
WIfold α j (sup {J} {S} {PJ} j x) ≡
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α j ( J S C? PJ K? (WIfold α) j x)
WIcomm α j (s, f) with

(cong (π0 ◦ π0 ◦ sup-1)
(cong (λ x → sup ((j, j, s), x))

(λ≡ ip → π1 (f (π0 ip) (π1 ip)))))
WIcomm α j (s, f) | refl =

cong (λ g → α j (s,g))
(λ≡ j′ → λ≡ p →

cong (λ eq → WIfold α j′ (π0 (f j′ p),eq)) UIP)

We can also show that the fold is unique:

WIfoldUniq′ ∈ ∀ {J} {X ∈ J → Set} {S ∈ J → Set}
{PJ ∈ (j ∈ J) → S j → J → Set}
(α ∈ J S C? PJ K? X →? X)

(β ∈ WI S PJ →? X) →
(β ◦? sup) ≡ (α ◦? J S C? PJ K? β) →
(j ∈ J) (x ∈ WI S PJ j) → β j x ≡ WIfold α j x

WIfoldUniq′ α β commβ j (sup ((j′, s), f),ok)

with cong (π0 ◦ π0 ◦ sup-1) ok
WIfoldUniq′ α β commβ j (sup ((.j, s), f),ok) | refl = begin

β j (sup ((j, s), f),ok)
∼=〈 cong (λ ok′ → β j (sup ((j, s), f),ok′)) UIP 〉
β j (sup ((j, s), f)

, cong (λ p → sup ((j, j, s),p))

(ext (ext-1 (cong (π1 ◦ sup-1) ok))))
∼=〈 ext-1 (ext-1 commβ j) (s, ) 〉
α j (s, λ j p → β j (f (j,p)

,ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))
∼=〈 (cong (λ n → α j (s,n))

(λ≡ j → λ≡ p →
WIfoldUniq′ α β commβ j

(f (j,p),ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))) 〉
α j (s, λ j p → WIfold α j (f (j,p)

,ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))
�

where open ∼=-Reasoning

We can use this proof that WI-types can be encoded by W to explain where Path fits
in, since it is straightforwardly encoded as a WI:

Path ∈ { I J ∈ Set} (S ∈ J → Set)
(PI ∈ (j ∈ J) → S j → I → Set)
(PJ ∈ (j ∈ J) → S j → J → Set)
(j ∈ J) → WI S PJ j → I → Set

Path {I} {J} S PI PJ j w i = WI PathS PathP (j,w)

where PathS ∈ ( j ∈ J)× WI S PJ j → Set
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PathS (j, sup (s, f)) = PI j s i ] Σ J (PJ j s)

PathP ∈ (jw ∈ ( j ∈ J)× WI S PJ j) (s ∈ PathS jw) →
( j ∈ J)× WI S PJ j → Set

PathP (j, sup (s, f)) (inl p) (j′,w′) = ⊥
PathP (j, sup (s, f)) (inr (j′′,p)) (j′,w′) =

(j′′ ≡ j′) × (f j′′ p ∼= w′)

The reader will be unsurprised to learn that a similar construction to the above
allows us to derive MI-types from M-types. The details are, once again, somewhat
obfuscated by the experimental treatment of co-induction in Agda, but are in the spirit
of the dual of the proof above.

M from W
Since we have shown that both WI and MI types can be reduced to their non-indexed
counterparts, we can finish the reduction of the logical theory of indexed containers to
W-types by showing that M types can be reduced to W types. This is a result from our
previous work on containers [2], though in the setting of indexed WI types, we can give
a better explanation. Before tackling this question directly, we first introduce the basic
definitions pertaining to final coalgebras and our implementation of them within Agda.

In category theory, an ω-chain, is an infinite diagram:

A0 A1
a0oo A2

a1oo · · · An−1 An
an−1oo An+1

anoo · · ·

In type-theory, we can represent such a chain as a pair of functions:

Chain ∈ Set1
Chain = (A ∈ (N → Set))× ((n ∈ N) → A (suc n) → A n)

A cone for a chain is an object X and family of projections πn ∈ X→ An such that, in
the following diagram, all the small triangles commute:

A0 A1
a0oo A2

a1oo · · · An−1 An
an−1oo An+1

anoo · · ·

X

π0

ii

π1

gg

π2

cc

πn−1

OO

πn

DD

πn+1

;;

The limit of a chain is the cone which is terminal amongst all cones for that chain. This
terminality condition is called the universal property of the limit. We can encode the
limit of a chain, including its projections and its universal property as follows:

LIM ∈ Chain → Set
LIM (A,a) = ( f ∈ ((n ∈ N) → A n))×

((n ∈ N) → a n (f (suc n)) ≡ f n)

π ∈ {c ∈ Chain} → (n ∈ N) → LIM c → π0 c n
π n (f,p) = f n
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comm ∈ {c ∈ Chain} (n ∈ N) (l ∈ LIM c) →
π1 c n (π {c} (suc n) l) ≡ π {c} n l

comm n (f,p) = p n
univ ∈ {c ∈ Chain} {X ∈ Set} (pro ∈ (n ∈ N) → X → π0 c n)

(com ∈ (n ∈ N) (x ∈ X) →
π1 c n (pro (suc n) x) ≡ pro n x) →

X → LIM c
univ pro com x = (λ n → pro n x), (λ n → com n x)

We are interested in certain ω-chains which can be constructed from a functor F as
follows (where ! is the unique morphism from any object into the terminal object >):

> F>!oo F2>F!oo F3>F2!oo · · ·

For the moment denote this chain Fω = ((λ n → F n >), λ n → F n !). We know
from Asperti and Longo [13] that if F is ω-continuous, i.e. that for any chain (A,a):

F (LIM (A,a)) ≈ LIM ((F ◦ A), (F ◦ a))
then the limit of F ω will be the terminal co-algebra of F. To see this we first observe
that we there is an isomorphism between the limit of a chain, and the limit of any of its
tails:

tail ∈ Chain → Chain
tail (A,a) = (A ◦ suc,a ◦ suc)

tailLIM ∈ (c ∈ Chain) → LIM c → LIM (tail c)
tailLIM (A,a) (f,p) = f ◦ suc,p ◦ suc

tailLIM-1 ∈ (c ∈ Chain) → LIM (tail c) → LIM c
tailLIM-1 (A,a) (f,p) = f′,p′

where f′ ∈ (n ∈ N) → A n
f′ zero = a (f zero)
f′ (suc n) = f n
p′ ∈ (n ∈ N) → a (f n) ∼= f′ n
p′ zero = refl
p′ (suc n) = p n

We also note that the tail of F ω is ((λ n → F (F n >)), λ n → F (F n !)), which
allows us to construct the isomorphism between F (LIM Fω) and LIM Fω:

F (LIM Fω)

≈ LIM (F ◦ (λ n → Fn >),F ◦ (λ n → Fn !)) {F is ω-continuous}
≡ LIM ((λ n → F (Fn >)), (λ n → F (Fn !))) {definition}
≈ LIM Fω { tailLIM }

This isomorphism is witnessed from right to left by the co-algebra map out. To show
that the co-algebra is terminal, we employ the universal property of LIM. Given a
co-algebra for α ∈ X → F X we construct an Fω cone:
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> F>!oo F2>F!oo F3>F2!oo · · ·

X

!

OO

f
// FX

F!

OO

Ff
// F2X

F2!

OO

F2f
// F3X

F3!

OO

· · ·

We now turn to the specific task at hand, namely the construction of M-types from
W-types, that is the capacity to construct final coalgebras of container functors from
the capacity to construct the initial algebras of container functors. In order to do this,
we must construct the iteration of container functors (to build the chain) and show
that all container functors are ω-continuous. Since we only need to build iterations of
container functors applied to the terminal object >, we build that directly. We define
the following variation of W, cut off at a known depth:

data WM (S ∈ Set) (P ∈ S → Set) ∈ N → Set where
wm> ∈ WM S P zero
sup ∈ ∀ {n} → J S C P K (WM S P n) → WM S P (suc n)

Note that WM is itself encodable as an indexed WI type (and, by the final result in
section 7, a W type):

WM′ ∈ (S ∈ Set) (P ∈ S → Set) → N → Set
WM′ S P = WI S′ P′

where
S′ ∈ N → Set
S′ zero = >
S′ (suc n) = S
P′ ∈ (n ∈ N) → S′ n → N → Set
P′ zero = ⊥
P′ (suc m) s n with m ?

= n
P′ (suc .n) s n | yes refl = P s
P′ (suc m) s n | no ¬p = ⊥

Our candidate for the final coalgebra of J S C P K is, then, the limit of the chain
WM S P, along with the truncation of a tree of depth suc n to one of depth n. This
truncation is achieved by the repeated application of the morphism part of the container
functor to the unique morphism into the terminal object. Or, more concretely:

trunc ∈ ∀ {S P} → (n ∈ N) → WM S P (suc n) → WM S P n
trunc zero (sup (s, f)) = wm>
trunc (suc n) (sup (s, f)) = sup (s, trunc n ◦ f)

Now we can build the chain of finite iterations of a container functor whose limit will
form the final coalgebra of the container functor.

M-chain ∈ (S ∈ Set) (P ∈ S → Set) → Chain
M-chain S P = WM S P, trunc

Proposition 11 All container functors are ω-continuous. That is, they preserve ω-
limits.
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Proof We want to build the isomorphism F (LIM (A,a)) ∼= LIM ((F ◦ A),F ◦ a)
in the case that F is a container functor. However, the function from left to right is
uniquely given by the universal property of LIM for all functors F ∈ Set → Set. To
show this we build the cone for the chain ((F ◦ A),F ◦ a):

FA0 FA1
Fa0oo FA2

Fa1oo · · · FAn−1 FAn
Fan−1oo · · ·

F (LIM (A,a))

Fπ0

gg

Fπ1

dd

Fπ2

[[

Fπn−1

BB

Fπn

99

The small triangles in the diagram above obviously commute, so there exists a unique
morphism from F (LIM (A,a)) into LIM ((F ◦ A),F ◦ a). All that remains then, is to
construct an inverse to this unique morphism, in the case that F ≡ J S C P K, that is
we must build a function:

ω-cont ∈ LIM ((λ n → (s ∈ S)× (P s → A n))
, λ n → λ {(s, f) → (s,a n ◦ f)})

→ (s ∈ S)× (P s → (LIM (A,a)))

Note that the shape picked at every point along the chain that we a given must be the
same, in order to make the diagrams commute. This is the key insight into constructing
this function:

ω-cont (f,p) =
(π0 (f zero), λ x →

(λ n → π1 (f n) (subst P (f0≡ n) x))
, λ n → begin

a n (π1 (f (suc n)) (subst P (f0≡ (suc n)) x))
∼=〈 exteq-1 (cong (P ◦ π0) (p n)) (λ∼= → refl)

(cong π1 (p n))
(begin

subst P (f0≡ (suc n)) x
∼=〈 subst-removable P (f0≡ (suc n)) x 〉

x
∼=〈 sym (subst-removable P (f0≡ n) x) 〉

subst P (f0≡ n) x �) 〉
π1 (f n) (subst P (f0≡ n) x) �)

where f0≡ ∈ (n ∈ N) → (π0 (f 0)) ≡ (π0 (f n))
f0≡ zero = refl
f0≡ (suc n) = trans (f0≡ n) (sym (cong π0 (p n)))
open ∼=-Reasoning

Now, since we have established that M-chain is isomorphic to the chain of itera-
tions of container functors, and that all container functors are ω-continuous, we know
that the terminal co-algebra of a container functor must be the limit of its M-chain:
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M ∈ (S ∈ Set) (P ∈ S → Set) → Set
M S P = LIM (M-chain S P)

In this section we have established that we can derive WI types from W (and by
duality we argue MI types from M) and also M types from W, by these results we
can reduce all the constructions in this paper to the setting of extensional Type-Theory
with W types, or equivalently, any Martin-Löf category. That is to say, in the move
from containers to indexed containers, we require no extra structure in our underlying
Type-Theory,

8 Strictly Positive Families
We have developed indexed containers as a representations of those indexed functors
which, intuitively, support a shapes and positions metaphor. These shapes and positions
are just as with standard containers apart from the fact they are indexed. We now turn
to the question of defining a grammar for generating indexed containers. This grammar
defines what we call the strictly positive families. Strictly positive families are in turn
defined from indexed strictly positive types as follows:

mutual
SPF ∈ (I J ∈ Set) → Set1
SPF I J = J → ISPT I
data ISPT (I ∈ Set) ∈ Set1 where
ηT ∈ (i ∈ I) → ISPT I
∆T ∈ ∀ {J K} (f ∈ J → K) (F ∈ SPF I K) → SPF I J
ΣT ∈ ∀ {J K} (f ∈ J → K) (F ∈ SPF I J) → SPF I K
ΠT ∈ ∀ {J K} (f ∈ J → K) (F ∈ SPF I J) → SPF I K
µT ∈ ∀ {J} (F ∈ SPF (I ] J) J) → SPF I J
νT ∈ ∀ {J} (F ∈ SPF (I ] J) J) → SPF I J

We show how to interpret strictly positive families as indexed containers and hence
indexed functors.

mutual
J KT? ∈ ∀ { I J} → SPF I J → ICont? I J
J F KT?

= λ j → J F j KT

J KT ∈ ∀ { I} → ISPT I → ICont I
J ηT i KT

= ηC i
J ∆T f F j KT

= ∆C f J F KT? j
J ΣT f F k KT

= ΣC f J F KT? k
J ΠT f F k KT

= ΠC f J F KT? k
J µT F j KT

= µC J F KT? j
J νT F j KT

= νC J F KT? j

Just as indexed containers support a relative monad structure, so do strictly positive
families:

mutual
ISPT ∈ ∀ { I J} → (I → J) → ISPT I → ISPT J
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ISPT γ t = t >>=T (ηT ◦ γ)

SPF ∈ ∀ { I J K} → (I → J) → SPF I K → SPF J K
SPF γ t k = ISPT γ (t k)

>>=T ∈ ∀ { I J} → ISPT I → SPF J I → ISPT J
ηT i >>=T F = F i
∆T f G j >>=T F = ∆T f (λ k → G k >>=T F) j
ΣT f G k >>=T F = ΣT f (λ j → G j >>=T F) k
ΠT f G k >>=T F = ΠT f (λ j → G j >>=T F) k
µT G j >>=T F = µT (λ k → G k >>=T [(SPF inl F), (ηT ◦ inr)]) j
νT G j >>=T F = νT (λ k → G k >>=T [ (SPF inl F), (ηT ◦ inr)]) j

As defined above this doesn’t pass Agda’s termination check, due to deriving the
ISPT from the monad instance. If we define the map of the functor directly the whole
thing obviously terminates, at the expense of having to show the two definitions of the
map for ISPT agree.

Proposition 12 (ISPT, ηT, >>=T ) is a relative monad on the lifting functor ↑ ∈
Set → Set1. Moreover, this structure is preserved under the translation to containers
J KT.

Proof To prove the structure is a relative monad we observe that the following equali-
ties hold:

For F ∈ ISPT K, G ∈ SPF J K, H ∈ ISPT I J:

H j ≡ (ηT j) >>=T H (4)
F ≡ F >>=T ηF (5)

(F >>=T G) >>=T F ≡ F >>=T (λ k → (G k) >>=T H) (6)

The first is by definition, and the others follow by induction on F. To show that
the structure is preserved by J KT it is sufficient to show that for all F ∈ ISPT J
and G ∈ SPF I J there exist mutually inverse container morphisms bindpres and
bindpres-1:

bindpres ∈ (J F >>=T G KT
) ⇒C (J F KT

>>=C J G KT?
)

bindpres-1 ∈ (J F KT
>>=C J G KT?

) ⇒C (J F >>=T G KT
)

We finish by showing how strictly positive families represent some of the key in-
dexed data types we saw in the beginning of the paper. We start by showing that, as
with indexed containers and indexed functors, strictly positive families support disjoint
unions and cartesian products.

⊥T ∈ ∀ { I} → ISPT I
⊥T = ΣT {J = ⊥} {K = >} (λ ())

]T ∈ ∀ { I} → (F G ∈ ISPT I) → ISPT I
F ]T G = ΣT {K = >} (λ b → if b then F else G)

>T ∈ ∀ { I} → ISPT I
>T = ΠT {J = ⊥} {K = >} (λ ())

×T ∈ ∀ { I} → (F G ∈ ISPT I) → ISPT I
F ×T G = ΠT {K = >} (λ b → if b then F else G)
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We can now define finite sets, vectors and lambda terms as strictly positive families.

TFin ∈ SPF ⊥ N
TFin = µT (ΣT suc (>T ]T (ηT ◦ inr)))
TVec ∈ SPF > N
TVec = µT ( ΣT {J = >} (λ → zero) (λ → >T)

]T ΣT suc (λ n → ηT (inl ) ×T ηT (inr n)))

TScLam ∈ SPF ⊥ N
TScLam = µT ( SPF (λ ()) TFin

]T (((ηT ◦ inr) ×T (ηT ◦ inr))
]T ∆T suc (ηT ◦ inr)))

Note that we have to weaken the reference to TFin in the definition of TScLam, since
under the µT we can refer to the recursive TSCLam trees, but TFin itself can refer to no
variables. We can also define the mutual types, Ne and Nf. Here, a copy of the normal
forms is defined inside the definition of the neutral terms, and vice versa:

TNeLam ∈ SPF ⊥ N
TNeLam = µT (SPF (λ ()) TFin
]T ((ηT ◦ inr) ×T TNeNf))
where TNeNf ∈ SPF (⊥ ] N) N

TNeNf = µT ( (∆T suc (ηT ◦ inr))
]T (ηT ◦ (inl ◦ inr)))

TNfLam ∈ SPF ⊥ N
TNfLam = µT ( ∆T suc (ηT ◦ inr)

]T TNfNe)
where TNfNe ∈ SPF (⊥ ] N) N

TNfNe = µT ( SPF (λ ()) TFin
]T ((ηT ◦ inr) ×T (ηT ◦ (inl ◦ inr))))

9 Conclusions
We have shown how inductive and coinductive families, a central feature in depen-
dently typed programming, can be constructed from the standard infrastructure present
in Type Theory, i.e. W-types together with Π, Σ and equality types. Indeed, we are able
to reduce the syntactically rich notion of families to a small collection of categorically
inspired combinators. This is an alternative to the complex syntactic schemes present
in the Calculus of Inductive Constructions (CIC), or in the Agda and Epigram systems.
We are able to encode inductively defined families in a small core language which
means that we rely only on a small trusted code base. The reduction to W-types re-
quires an extensional propositional equality. Our current approach using an axiom ext
is sufficient for proofs but isn’t computationally adequate. A more satisfying approach
would built on Observational Type Theory (OTT) [5].

The present paper is an annotated Agda script, i.e. all the proofs are checked by
the Agda system. We have tried hard to integrate the formal development with the
narrative. In some cases we have suppressed certain details present in the source of the
paper to keep the material readable.
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A more serious challenge are mutual inductively (or coinductively) defined families
where one type depends on another [19]. A typical example is the syntax of Type The-
ory itself which, to simplify, can be encoded by mutually defining contexts containing
terms, types in a given context and terms in a given type:

Con ∈ Set
Ty ∈ Con → Set
Tm ∈ (Γ ∈ Con) → Ty Γ → Set

In recent work [10] present a categorical semantics for this kind of definitions based
on dialgebras. However, a presentation of strictly positive definitions in the spirit of
containers is not yet available.
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