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1. Introduction

Although the identity type is defined as an inductive type with only one single constructor
refl, it is arguable the hardest concept in Martin-Löf Type Theory [19] [16] [17] [18] to get
intuition for. The reason is that it is, as a type family, parametrized twice over the same
type, while the constructor only expects one argument: refl

a

: a = a, where the latter is an
alternative notation for Id(a, a). In fact, it is the simplest and most natural occurrence of
this phenomenon.

A surprising result by Hofmann and Streicher [10] is that we can not prove refl

a

to be
the only inhabitant of the type a = a, that is, the principle of unique identity proofs (UIP)
is not derivable. Some time later, Hedberg [9] formulated a su�cient condition on a type
to satisfy UIP, namely that its equality is decidable.

It took more than ten years before a more semantic explanation of the Hofmann-
Streicher discovery was found. Awodey and Warren [3] as well as, independently, Vo-
evodsky [29] explained that types can be regarded as, roughly speaking, topological spaces.
Consequently, an exciting new direction of constructive formal mathematics attracted re-
searchers from originally very separated areas of mathematics, and Homotopy Type The-
ory [27] was born.

The current article is not only on Homotopy Type Theory, but on Martin-Löf Type
Theory in general, even though we expect that the results are most interesting in the context
of Homotopy Type Theory. We start with Hedberg’s Theorem [9] and describe multiple
simple ways of strengthening it, one of them involving propositional truncation [27], also
known as bracket types [4] or squash types [6].

Propositional truncation is a concept that provides a sequel to the well-known Proposi-
tions as Types paradigm [11] [18]. If we regard a type as the correspondent of a mathematical
statement, a proposition, and its inhabitants of proofs thereof, we have to notice that there
is a slightly unsatisfactory aspect. A proof of a proposition in Mathematics is usually not
thought to contain any information apart from the fact that the proposition is true; how-
ever, a type can have any number of inhabitants, and therefore any number of witnesses of
its truth. Hence it seems natural to regard only some types as propositions, namely those
which have at most one inhabitant. The notion of propositional truncation assigns to any
type the proposition that this type is inhabited. To make the connection clearer, these
types are even called propositions, or h-propositions, in Homotopy Type Theory. With this
in mind, we want to be able to say that a type is inhabited without having to reveal an
inhabitant explicitly. This is exactly what propositional truncation k�k : U ! U (where
we write U for the universe of types) makes possible. On the other hand, should A have
only one inhabitant up to the internal equality, this inhabitant can be constructed from an
inhabitant of kAk. This is a crucial di↵erence between propositional truncation and double
negation. We consider a weak version of k�k which does not have judgmental computation
properties.

After discussing direct generalizations of Hedberg’s Theorem, we attempt to transfer
the results from the original setting, where they talk about equality types (of path spaces),
to arbitrary types. This leads to a broad discussion of weakly constant functions : we say
that f : A! B is weakly constant if it maps any two elements of A to equal elements of B.
The attribute weakly comes from the fact that we do not require these actual equality proofs
to fulfill further conditions, and a weakly constant function does not necessarily appear to
be constant in the topological models. For exactly this reason, it is in general not possible
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to factorize the function f through kAk; however, we can do it in certain special cases, and
we analyze why. This has, for example, the consequence that the truncated sum of two
proposition already has the universal property of their join, which is defined as a higher
inductive type in Homotopy Type Theory.

Particularly interesting are weakly constant endofunctions. We show that these can
always be factorized through the propositional truncation, based on the observation that
the type of fixed points of such a function is a proposition. This allows us to define a new
notion of existence which we call populatedness. We say that A is populated if any weakly
constant endofunction on A has a fixed point. This property is propositional and behaves
very similar to kAk, but we show that it is strictly weaker. On the other hand, it is strictly
stronger than the double negation ¬¬A, another notion of existence which, however, is often
not useful as it generally only allows to prove negative statements. It is worth emphasizing
that our populatedness is not a component that has to be added to type theory, but a notion
that can be defined internally. We strongly suspect that this is not the case for even the
weak version propositional truncation, but we lack a formal proof.

It turns out to be interesting to consider the assumption that every type has a constant
endofunction. The empty type has a trivial such endofunction, and so does a type of which
we know an explicit inhabitant; however, from the assumption that a type has a weakly
constant endofunction, we have no way of knowing in which case we are. In a minimalistic
theory, we do not think that this assumption implies excluded middle. However, it implies
that all equalities are decidable, i.e. a strong version of excluded middle holds for equalities.

Finally, we show that the judgmental computation rule of propositional truncation, if
it is assumed, does have some interesting consequences for the theory. The most counter-
intuitive observation is that the projection map |�| : A ! kAk does at least meta-
theoretically not hide any information. For example, it is possible to write down a term
mystN such that mystN �|�| : N ! N is the identity function, which seems to show that
the identity function factors through kNk. Of course, this is neither possible (as kNk is
equivalent to the unit type) nor actually the case.

Some parts of the Sections 3, 4, 6, 7 and 8 of this article have been published in our
previous conference paper [14].

Formalization. We have formalized [15] all of our results in the dependently typed pro-
gramming language and proof assistant Agda [21]. It is available in browser-viewable format
and as plain source code on the first-named author’s academic homepage. All proofs type
check with the current Agda version 2.3.3 and we expect them to work with future Agda
releases.

Our results have, like many results in Homotopy Type Theory, the property that they
can be formalized in a very readable way, understandable even for readers who do not have
any experience with the specific proof assistant, or formalized proofs in general. We have
tried our best and would like to encourage the reader to give it a try.

Contents. In Section 2, we specify the type theory that we work in, a standard form
Martin-Löf Type Theory. We also state basic definitions, but we try to use standard notation
and we hope that all notions are as intuitive as possible. We then revisit Hedberg’s Theorem
in Section 3 and formulate several generalizations. Next, we move on to explore weakly
constant constant functions between general types. We show that a constant endofunction
has a propositional type of fixed points and factorizes through k�k in Section 4. We
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discuss why the factorization can not always be done for functions between di↵erent types
in Section 5, together with some cases in which it is actually possible. In Section 6, we
prove that, if every type has a constant endofunction, then all equalities are decidable.
Section 7 is devoted to populatedness, a new definable notion of anonymous existence in
type theory, based on our previous observations of constant endofunctions. We examine
the di↵erences between inhabitance, populatedness, propositional truncation and double
negation, all of which are notions of existence, carefully in Section 8. Finally, Section 9
discusses consequences of the judgmental computation rule of propositional truncation, and
Section 10 presents a summary and questions which we do not know the answer of.

2. Preliminaries

Our setting is a standard version of intensional Martin-Löf Type Theory (MLTT) with type
universes that have coproducts, dependent sums, dependent products and identity types.
We give a very rough specification of these constructions below. For a rigorous treatment, we
refer to our main reference [27, Appendix A.1 or A.2]. We use standard notation whenever
it is available. If it improves the readability, we allow ourselves to implicitely uncurry
functions and write f(x, y) instead of f(x)(y) or f x y.

Type Universes. MLTT usually comes equipped with a hierarchy U0,U1,U2, . . . of uni-
verses, where U

n+1 is the type of U
n

. Without very few exceptions, we only need one
universe U and therefore omit the index. U can be understood as a generic universe or, for
simplicity, as the lowest universe U0. If we say that X is a type, we mean X : U , possibly
in some context.

Coproducts. If X and Y are types, then so is X + Y . If we have x : X or y : Y , we get
inlx : X + Y or inr y : X + Y , respectively. To prove a statement for all elements in X + Y ,
it is enough to consider those that are of one of these two forms.

Dependent Pairs. If X is a type and Y : X ! U a family of types, indexed over X,
then ⌃

X

Y is the corresponding dependent pair type, sometimes called a dependent sum or
just ⌃-type. For x : X and y : Y (x), we have (x, y) : ⌃

X

Y , and to eliminate out of ⌃
X

Y , it
is enough to consider elements of this form. We prefer to write ⌃

x:X Y (x) instead of ⌃
X

Y ,
hoping to increase readability. Instead of ⌃

x1:X ⌃
x2:X Y (x1, x2), we write ⌃x1,x2:X Y (x1, x2).

In the special case that Y does not depend on X, it is standard to write X ⇥ Y .
Dependent Functions. Given X : U and Y : X ! U as before, we have the type

⇧
X

Y , called the dependent functions type or ⇧-type. It is sometimes also referred to
as the dependent product type, although that notion can be confusing as it would fit for
⌃-types as well. If, for any given x : X, the term t is an element in Y (x), we have
�x.t : ⇧

X

Y . Synonymously to ⇧
X

Y , we write ⇧
x:X Y (x) or 8(x : X). Y (x). If the type

X is not relevant or can be inferred, we shorten the latter notation to 8x. Y (x). Instead of
⇧

x1:X ⇧
x2:X Y (x1, x2), we write ⇧

x1,x2:X B(x1, x2) or 8(x1, x2 : X). B(x1, x2).
Identity Types. Given a type X with elements x, y : X, we have the identity type or

the type of equalities, written x =
X

y. An inhabitant p : x =
X

y shows that x and y are
propositionally equal. p is called an equality proof or, having the interpretation of a type
as a space in mind, a path from x to y. Similarly, x =

X

y is called a path space. The only
introduction rule for the identity types is that, for any x : X, there is refl

x

: x =
X

x. The
elimination rule (called J ) says that, if P : (⌃

x,y:X x =
X

y)! U is a type family, it su�ces
to construct an inhabitant of ⇧

x:X P (x, x, refl
x

) in order to get an element of P (p) for any
p : ⌃

x,y:X x =
X

y. We do explicitly not assume other elimination rules such as Streicher’s
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K or uniqueness of identity proofs (UIP) [25]. If the common type of x, y can be inferred
or is unimportant, we write x = y instead of x =

X

y.
In contrast to propositional equality, definitional (also called judgmental) equality is

a meta-level concept. It refers to two terms, rather than two (hypothetical) elements,
with the same � (and, sometimes, ⌘ in a restricted sense) normal form. Recently, it has
become standard to use the symbol ⌘ for judgmental equality in order to use = solely for
propositional equality [27]. Note that the introduction rule of the latter says precisely that
two judgmentally equal terms are, as elements of some type, propositionally equal. For
definitions, we use the notation :⌘.

Applying the eliminator J for propositional equality is also referred to as path induc-
tion [27]. A variant of J that is sometimes more useful is due to Paulin-Mohring [23]: given
a point x : X and a type family P : (⌃

y:X x =
X

y) ! U , it is enough to construct an
inhabitant of P (x, refl

x

) in order to construct an inhabitant of P (y, q) for any pair (y, q).
This elimination principle, called based path induction, is equivalent to J.

As a basic example, we show that propositional equality satisfies the groupoid laws [10],
where reflexivity plays the role of identities. If we have p : x =

X

y and q : y =
X

z, we can
construct a path p

⇧
q : x =

X

z (the composition of p and q): by based path induction, it is
enough to do this under the assumption that (z, q) : ⌃

z:X y =
X

z is (y, refl
y

). But in that
case, the composition p

⇧
q is given by p. Similarly, for p : x =

X

y, there is p

�1 : y =
X

x.
It is easy to see (again by path induction) that the types p

⇧
refl

y

=
X

p and refl

x

⇧
p =

X

p

as well as p

⇧
p

�1 =
X

refl

x

are inhabited, and similarly, so are all the other types that are
required to give a type the structure of a groupoid.

An important special case of the eliminator J is substitution or transportation: if
P : X ! U is a family of types and x, y : X are two elements (or points) that are equal
by p : x =

X

y, then an element of e : P (x) can be transported along the path p to get an
element of P (y), written

p⇤(e) : P (y). (2.1)

Another useful function, similarly easily derived from J, is the following: if f : X ! Y is a
function and p : x =

X

y a path, we get an inhabitant of f(x) = f(y) in Y ,

ap

f

p : f(x) = f(y). (2.2)

Note that we omit the arguments x and y in the notation of ap
f

.
Identity types also enable us to talk about isomorphism, or (better) equivalence, of

types. We say that X and Y are equivalent, written X ' Y , if there are functions in both
directions which are the inverses of each other,

f : X ! Y (2.3)

g : Y ! X (2.4)

p : 8(x : X). g(f(x)) =
X

x (2.5)

q : 8(y : Y ). f(g(y)) =
Y

y. (2.6)

Technically, (f, g, p, q) only constitute what is usually called a type isomorphism, but from
any such isomorphism, an equivalence (in the sense of Homotopy Type Theory) can be
constructed; and the only di↵erence is that an equivalence requires a certain coherence
between the components p and q, which will not be important for us. In this sense, we do not
distinguish between isomorphims and equivalences, and only choose the latter terminology
on principle. For details, we refer to [27, Chapter 4]. A small caveat is required: We call
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types logically equivalent, written X  ! Y , if there are functions in both directions (that
is, we only have the components (2.3) and (2.4)).

Equivalent types share all internalizable properties. In fact, Voevodsky’s Univalence
Axiom (e.g. [27], [29]) implies that equivalent types are propositionally equal. For the
biggest part of our article, we do not need to assume the Univalence Axiom; however, it
will play some role in Section 9.

We sometimes use other additional principles (namely function extensionality and
propositional truncation, as introduced later). However, we treat them as assumptions
rather than parts of the core theory and state clearly in which cases they are used.

In order to support the presentation from the next section on, we define a couple of
notions. Our hope is that all of these are as intuitive as possible, if not already known.
The only notions that are nonstandard or possibly ambiguous are weak constancy, meaning
that for any pair of possible arguments for a function its values will be equal, collapsible,
meaning that a type has such a weakly constant endofunction, and path-collapsible, saying
that every path space over the type is collapsible.

Definition 2.1. We say that a type X is a proposition or propositional if all its inhabitants
are equal:

isPropX

:⌘ 8(x, y : X). x = y. (2.7)

It is a well-known fact that the path spaces of a propositional type are not only inhabited
but also propositional themselves. This stronger property is called contractible,

isContrX

:⌘ X ⇥ isPropX. (2.8)

It is easy to see that any contractible type is equivalent to the unit type. An important
class of contractible types are the singletons, or path-to/path-from types: for any a0 : A,
the type

⌃
a:A a0 = a (2.9)

is contractible, as any inhabitant is by based path induction easily seen to be equal to
(a0, refla0).

Further, X satisfies UIP, or is a set, if its path spaces are all propositional:

isSetX

:⌘ 8(x, y : X). isProp(x = y). (2.10)

The properties of being contractible, propositional or a set are all propositional themselves,
which the following properties are not.

X is decidable if it is either inhabited or empty,

decidableX

:⌘ X + ¬X. (2.11)

We therefore say that X has decidable equality if the equality type of any two inhabitants
of X is decidable:

discreteX

:⌘ 8(x, y : X). decidable(x = y). (2.12)

Based on the terminology in [20], we also call a type with decidable equality discrete.
A function (synonymously, map) f : X ! Z is weakly constant, or 1-constant, if it

maps any two elements to the same inhabitant of Y :

const f

:⌘ 8(x, y : X). f(x) = f(y). (2.13)

As weak (or 1-) constancy is the only notion of constancy that we consider in this article (if
we ignore factorizability through k�k), we call such a function f just constant for simplicity.
However, note that this notion is indeed very weak as soon as we consider functions into



NOTIONS OF ANONYMOUS EXISTENCE IN MARTIN-LÖF TYPE THEORY 7

types that are not sets, as we will see later. We call a type X collapsible if it has a weakly
constant endomap:

collX

:⌘ ⌃
f :X!X

const f. (2.14)

Finally, X is called path-collapsible if any two points x, y of X have a collapsible path space:

pathCollX

:⌘ 8(x, y : X). coll (x = y). (2.15)

For some statements, but only if clearly indicated, we use function extensionality. This
principle says that two functions f, g of the same type are equal as soon as they are pointwise
equal:

(8x. f(x) = g(x))! f = g. (2.16)

An important equivalent formulation due to Voevodsky [30] is that the type of propositions
is closed under ⇧ ; more precisely,

(8x. isProp (Y x)) ! isProp (⇧
X

Y ) . (2.17)

In the case of non-dependent functions, this means that X ! Y is propositional as soon as
Y is.

A principle that we do not assume, but which will appear in some of our discussions,
are the law of excluded middle in the form for propositions and in the form for general
types [27, Chapter 3.4]. The first says that every proposition is decidable, while the second
implies the same without the restriction to propositions.

LEM

:⌘ 8(P : U). (isPropP )! P + ¬P (2.18)

LEM1 :⌘ 8(X : U). X + ¬X. (2.19)

Note that LEM1 can be considered the natural formulation under the propositions as types
view. However, it includes a very strong form of choice which is inconsistent with the
Univalence Axiom that is assumed in Homotopy Type Theory. Therefore, we consider LEM
the “correct” formulation in our context.

3. Hedberg’s Theorem

Before discussing possible generalizations, we want to state Hedberg’s Theorem.

Theorem 3.1 (Hedberg [9]). Every discrete type satisfies UIP,

discreteX ! isSetX. (3.1)

We shortly give Hedberg’s original proof, consisting of two steps.

Lemma 3.2. If a type has decidable equality, it is path-collapsible:

discreteX ! pathCollX. (3.2)

Proof. Given inhabitants x and y of X, we get by assumption either an inhabitant of x = y

or an inhabitant of ¬(x = y). In the first case, we construct the required constant function
(x = y)! (x = y) by mapping everything to this given path. In the second case, we have
a proof of ¬(x = y), and the canonical function is constant automatically.
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Lemma 3.3. If a type is path-collapsible, it satisfies UIP:

pathCollX ! isSetX. (3.3)

Proof. Assume f is a parametrized constant endofunction on the path spaces, meaning that,
for any x, y : X, we have a constant function f

x,y

: x = y ! x = y. Let p be a path from x

to y. We claim that
p = (f

x,x

(refl
x

))�1 ⇧
f

x,y

(p). (3.4)

By path induction, we only have to give a proof if the triple (x, y, p) is in fact (x, x, refl
x

),
which is one of the groupoid laws that propositional equality satisfies. Using the fact f is
constant on every path space, the right-hand side of the above equality is independent of
p, and in particular, equal to any other path of the same type.

Hedberg’s proof [9] is just the concatenation of the two lemmata. A slightly more direct
proof can be found in the HoTT Coq repository [26] and in a post by the first named author
on the HoTT blog [12].

Lemma 3.2 uses the rather strong assumption of decidable equality. In contrast, the
assumption of Lemma 3.3 is equivalent its conclusion, so that there is no space for a strength-
ening. We include a proof of this simple claim in Theorem 3.10 below and concentrate on
weakening the assumption of Lemma 3.3. Let us first introduce the notions of stability and
separatedness.

Definition 3.4. For any type X, define

stableX

:⌘ ¬¬X ! X, (3.5)

separatedX

:⌘ 8(x, y : X). stable(x = y). (3.6)

We can see stableX as a classical condition, similar to decidableX ⌘ X + ¬X, but
strictly weaker. Indeed, we get a first strengthening of Hedberg’s Theorem as follows:

Lemma 3.5 ([27, Corollary 7.2.3]). Any separated type is a set if function extensionality
holds,

separatedX ! isSetX. (3.7)

Proof. There is, for any x, y : X, a canonical map (x = y)! ¬¬(x = y). Composing this
map with the proof that X is separated yields an endofunction on the path spaces. With
function extensionality, the first map has a propositional codomain, implying that the en-
dofunction is constant and thereby fulfilling the requirements of Lemma 3.3.

We remark that full function extensionality is actually not needed here. Instead, a
weaker version that only works with the empty type is su�cient. Similar statements hold
true for all further applications of extensionality in this paper. Details can be found in the
Agda file [1].

In a constructive setting, the question how to express that “there exists something”
in a type X is very subtle. One possibility is to ask for an inhabitant of X, but in many
cases, this is too strong to be fulfilled. A second possibility, which corresponds to our above
definition of separated, is to ask for a proof of ¬¬X. Then again, this is very weak, and
often too weak, as one can in general only prove negative statements from double-negated
assumptions.

This fact has inspired the introduction of squash types (the Nuprl book [6]), and similar,
bracket types (Awodey and Bauer [4]). These lie in between of the two extremes mentioned
above. In our intensional setting, we talk of propositional truncations, or �1-truncations [27,
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Chapter 3.7]. For any type X, we postulate that there is a type kXk that is a proposition,
representing the statement that X is inhabited. The rules are that if we have a proof of X,
we can, of course, get a proof of kXk, and from kXk, we can conclude the same statements
as we can conclude from X, but only if the actual representative of X does not matter:

Definition 3.6. We say that a type theory has weak propositional truncations if, for every
type X, we have a type kXk : U which satisfies the following properties:

(1) |�| : X ! kXk
(2) htr : isProp(kXk)
(3) rectr : 8(P : U). isPropP ! (X ! P )! kXk ! P.

Note that this amounts to saying that the operator k�k is left adjoint to the inclusion
of the subcategory of propositions into the category of all types. Therefore, it can be seen
as the propositional reflection. For x, y : kXk, we will write htr

x,y

for the proof of x =kXk y

that we get from htr.
Adopting the terminology of [27, Chapter 3.10], we say that X is merely inhabited if

kXk is inhabited. We may also say that X merely holds. However, we try to always be
precise by giving the formal type expression to support the informal statement.

The non-dependent eliminator (or recursion principle, cf. [27, Chapter 5.1]) rectr implies
the dependent one (the induction principle):

Lemma 3.7 (cf. [27, Exercise 3.17]). The propositional truncation admits the following in-
duction principle: Given a type X, a family P : kXk ! U with a proof h : 8(z : kXk). isProp(P (z)),
a term f : 8(x : X). P (|x|) gives rise to an inhabitant of 8(z : kXk). P (z).

Proof. We have a map j : X ! ⌃
z:kXk P (z) by �x.(|x|, f(x)). Observe that the codomain

of j is a proposition, combining the fact that kXk is one with h. Therefore, we get
kXk ! ⌃

z:kXk P (z), and this is su�cient, using that y =kXk z for any y, z : kXk.
In analogy to the notation rectr, we may write indtr for the term witnessing this induction

principle. However, most of our further developments will not benefit significantly, or not
a all, from the induction principle, and will be proved with rectr.

In contrast to other sources [27] we do not assume the judgmental �-rule

rectr(P, h, f, |x|) ⌘
�

f(x) (3.8)

as it is simply not necessary for our results and we do not want to make the theory stronger
than required. We do think that 3.8 is often useful, but we also think it is interesting
to make clear in which sense 3.8 makes the theory actually stronger, rather than more
convenient. We will discuss this in Section 9. A practical advantage of not assuming 3.8 is
that the truncation can be implemented in existing proof assistants more easily. Of course,
the �-rule holds propositionally as both sides of the equation inhabit the same proposition.

Note that k�k is functorial in the sense that any function f : X ! Y gives rise to a
function kfk : kXk ! kY k, even though the proof of kg � fk = kgk � kfk requires function
extensionality.

There is a type expression that is equivalent to propositional truncation:

Theorem 3.8. For any given X : U , we have

kXk  ! 8(P : U). isPropP ! (X ! P )! P. (3.9)
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A potential problem with the expression on the right-hand side is that it is not living
in universe U . This size issue is the only thing that keeps us from using it as the definition
for kXk. All other properties of the above Definition 3.6 are satisfied, at least under the
assumption of function extensionality. Voevodsky [30] uses resizing rules to get rid of the
problem.

Proof. The direction “!” of the statement is not more than a rearrangement of the as-
sumptions of property (3). For the other direction, we only need to instantiate P with kXk
and observe that the properties (1) and (2) in the definition of kXk are exactly what is
needed.

With this definition at hand, we can provide an even stronger variant of Hedberg’s
Theorem. Completely analogously to the notions of stability and separatedness, we define
h-stable and h-separated :

Definition 3.9. For any type X, define

hStableX

:⌘ kXk ! X, (3.10)

hSeparatedX

:⌘ 8(x, y : X). hStable(x = y). (3.11)

We observe that hSeparatedX is a strictly weaker condition than separatedX. Not
only can we conclude isSetX from hSeparatedX, but the converse holds as well. In the
following theorem, we also include the simple fact that path-collapsibility is equivalent to
these statements.

Theorem 3.10. For a type X in MLTT with propositional truncation, the following are
equivalent:

(1) X is a set
(2) X is path-collapsible
(3) X is h-separated.

Proof. “3) 1” is just Lemma 3.3. “1)3” uses simply the the definition of the propositional
truncation: given x, y : X, the fact thatX is a set tells us exactly that x = y is propositional,
implying that we have a map kx = yk ! (x = y). Concerning “3 ) 2”, it is enough to
observe that the composition of |�| : (x = y)! kx = yk and the map kx = yk ! (x = y),
provided by the fact that X is h-separated, is a parametrized constant endofunction.

We observe that using propositional truncation in some cases makes it unnecessary to
appeal to functional extensionality: in Lemma 3.5, we have given a proof for the simple
statement that separated types are sets in the context of function extensionality. This is not
provable in plain MLTT. Let us now drop function extensionality and assume instead that
propositional truncation is available. Every separated type is h-separated - more generally,
we have

(¬¬X ! X)! (kXk ! X) (3.12)

for any type X -, and every h-separated space is a set. Notice that the mere availability of
propositional truncation su�ces to solve a gap that function extensionality would usually
fill.

To conclude this part of the article, we want to mention that there is a slightly stronger
version of the Hedberg’s Theorem which applies to types where equality might only be
decidable locally. In fact, nearly everything we stated or proved can be done locally, and thus
made stronger. In the proof of Lemma 3.2, we have not made use of the fact that we were



NOTIONS OF ANONYMOUS EXISTENCE IN MARTIN-LÖF TYPE THEORY 11

dealing with path spaces at all: any decidable type trivially has a constant endofunction.
Concerning Lemma 3.3, we observe:

Lemma 3.11 (Local form of Lemma 3.3). A locally path-collapsible type locally satisfies
UIP:

8x0. (8y. coll(x0 = y))! 8y. isProp(x0 = y). (3.13)

Proof. The proof is identical to the one of Lemma 3.3, with the only di↵erence that we need
to apply based path induction instead of path induction.

This enables us to prove the local variant of Hedberg’s Theorem:

Theorem 3.12 ([22],[12]; Local form of Theorem 3.1). A locally discrete type is locally a
set,

8x0. (8y. decidable(x0 = y))! 8y. isProp(x0 = y). (3.14)

In the same simple way, we immediately get that the assumption of local separatedness
is su�cient.

Lemma 3.13 (Local form of Lemma 3.5). Under the assumption of function extensionality,
a locally separated type locally is a set,

8x0. (8y. stable(x0 = y))! 8y. isProp(x0 = y). (3.15)

Similarly, the local forms of the characterizations of Theorem 3.10 are still equivalent.

Theorem 3.14 (Local form of Theorem 3.10). For a type X in MLTT with propositional
truncation with a point x0 : X, the following are equivalent:

(1) for all y : X, the type x0 = y is propositional
(2) for all y : X, the type x0 = y is collapsible
(3) for all y : X, the type x0 = y is h-stable.

Note that most of our arguments can be generalized to higher truncation levels [27,
Chapter 7] in a reasonable and straightforward way. Details can be found in the first-
named author’s PhD thesis.1

4. Collapsibility implies H-Stability

If we unfold the definitions in the statements of Theorem 3.10, they all involve the path
spaces over some type X:

(1) 8(x, y : X). isProp(x = y)
(2) 8(x, y : X). coll (x = y)
(3) 8(x, y : X). hStable(x = y).

We have proved that these statements are logically equivalent. It is a natural question to
ask whether the properties of path spaces are required. The possibilities that path spaces
o↵er are very powerful and we have used them heavily. Indeed, if we formulate the above
properties for an arbitrary type A instead of path types,

(1) isPropA

1Not available yet.
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(2) collA

(3) hStableA,

we notice immediately that 1 is significantly and strictly stronger than the other two prop-
erties. 1 says that A has at most one inhabitant, 2 says that there is a constant endofunction
on A, and 3 gives us a possibility to get an explicit inhabitant of A from the proposition
that A has an anonymous inhabitant. A propositional type has the other two properties
trivially, while the converse is not true. In fact, as soon as we know an inhabitant a : A, we
can very easily construct proofs of 2 and 3, while it does not help at all with 1.

The implication 3 ) 2 is also simple: if we have h : kAk ! A, the composition
h�|�| : A! A is constant, as for any a, b : A, we have |a| = |b| and therefore h(|a|) = h(|b|).

In summary, we have 1 ) 3 ) 2 and we know that the first implication cannot be
reversed. What is less clear is the reversibility of the second implication: If we have a
constant endofunction on A, can we get a map kAk ! A? Put di↵erently, what does it take
to get out of kAk? Of course, a proof that A is h-stable is fine for that, but does a constant
endomap on A also su�ce? Surprisingly, the answer is positive, and there are interesting
applications (Section 7). The main ingredient of our proof, and of much of the rest of the
paper, is the following crucial lemma about fixed points:

Lemma 4.1 (Fixed Point Lemma). Given a constant endomap f on a type X, the type of
fixed points is propositional, where this type is defined by

fix f

:⌘ ⌃
x:X x = f(x). (4.1)

Before we can give the proof, we first need to formulate two observations. Both of them
are simple on their own, but important insights for the Fixed Point Lemma. Let X and Y

be two types.

Auxiliary Lemma 4.2 ([27, Theorem 2.11.3]). Assume h, k : X ! Y are two functions
and t : x = y as well as p : h(x) = k(x) are paths. Then, transporting along t into p can be
expressed as a composition of paths:

t⇤(p) = (ap
h

t)�1 ⇧
p

⇧
ap

k

t. (4.2)

Proof. This is immediate by path induction on t.

Even if the latter proof is trivial, the statement is essential. In the proof of Lemma 4.1,
we need a special case where x and y are the same. However, this special version cannot
be proved directly. We consider the second observation a key insight for the Fixed Point
Lemma:

Auxiliary Lemma 4.3. If f : X ! Y is constant and x1, x2 : X are points, then
ap

f

: x1 =
X

x2 ! f(x1) =Y

f(x2) is constant. In particular, ap
f

maps every loop around
x (that is, path from x to x) to refl

f(x).

Proof. If c is the proof of const f , then ap

f

maps a path p : x = y to c(x, x)�1 ⇧
c(x, y). This

is easily seen to be correct for (x, x, refl
x

), which is enough to apply path induction. As the
expression is independent of p, the function ap

f

is constant. The second part follows from
the fact that ap

f

maps refl
x

to refl

f(x).
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With these lemmata at hand, we give a proof of the Fixed Point Lemma:

Proof of Lemma 4.1. Assume f : X ! X is a function and c : const f is a proof that it is
constant. For any two pairs (x, p) and (x0, p0) : fix f , we need to construct a path connection
them.

First, we simplify the situation by showing that we can assume that x and x

0 are the
same: By composing p : x = f x with c(x, x0) : f(x) = f(x0) and (p0)�1 : f(x0) = x

0,
we get a path p

00 : x = x

0. By a standard lemma [27, Theorem 2.7.2], a path between
two pairs corresponds to two paths: One path between the first components, and one
between the second, where transporting along the first path is needed. We therefore now
get that (x, (p00)�1 ⇧

p

0) and (x0, p0) are propositionally equal: p00 is a path between the first
components, which makes the second component trivial. Write q for the term (p00)�1 ⇧

p

0.
We are now in the (nicer) situation that we have to construct a path between (x, p) and

(x, q) : fix f . Again, such a path can be constructed from two paths for the two components.
Let us assume that we use some path t : x = x for the first component. We then have to show
that t⇤(p) equals q. In the situation with (x, p) and (x0, p0), it might have been tempting to
use p00 as a path between the first components, and that would correspond to choosing refl

x

for t. However, one quickly convinces oneself that this cannot work in the general case.
By Auxiliary Lemma 4.2, with the identity for h and f for k, the first of the two terms,

i. e. t⇤(p), corresponds to t

�1 ⇧
p

⇧
ap

f

t. With Auxiliary Lemma 4.3, that term can be further
simplified to t

�1 ⇧
p. What we have to prove is now just t�1 ⇧

p = q, so let us just choose p⇧q�1

for t, thereby making it into a straightforward application of the standard lemmata.

A more elegant but possibly less revealing proof of the Fixed Point Lemma was given
by Christian Sattler:

Second Proof of Lemma 4.1 (Sattler). Given f : X ! X and c : const f as before, assume
(x0, p0) : fix f . For any x : X, we have an equivalence of types,

f(x) = x ' f(x0) = x, (4.3)

given by precomposition with c(x0, x). Therefore, we also have the equivalence

⌃
x:X f(x) = x ' ⌃

x:X f(x0) = x. (4.4)

The second of these types is (as a singleton or path-from type) contractible, while the first
is just fix f . This shows that any other inhabitant of fix f is indeed equal to (x0, p0).

We will exploit Lemma 4.1 in di↵erent ways. For the following corollary note that,
given an endomap f on X with constancy proof c, we have a canonical projection

⇡1 : fix f ! X (4.5)

and a function

✏ : X ! fix f (4.6)

✏(x) :⌘ (f(x) , c(x, f(x))) . (4.7)

Corollary 4.4. In basic MLTT, for a type X with a constant endofunction f , the type fix f

is a proposition that is logically equivalent to X. In particular, fix f has all the properties
that kXk has (Definition 3.6). Therefore, the weak propositional truncation of collapsible
types is actually definable. If k�k is part of the theory, kXk and fix f are equivalent.
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We are now in the position to prove the statement that we have announced at the
beginning of the section.

Theorem 4.5. A type X is collapsible, i.e. has a constant endomap, if and only if it is
h-stable in the sense that kXk ! X.

Proof. As already mentioned in earlier, the “if”-part is simple: given kXk ! X, we just
need to compose it with |�| : X ! kXk to get a constant endomap. The other direction is
an immediate consequence of Corollary 4.4.

We want to add the remark that collX is actually still more than required to get from
kXk to X. The following statement (together with the Theorem 4.5) shows that is is enough
to have f : X ! X which is merely constant:

Theorem 4.6. For a type X, the following are logically equivalent:

(1) X is collapsible
(2) X has an endofunction f with a proof kconst fk.

The first direction is trivial, but its reversibility is interesting. We do not think that
kconst fk implies const f .

Proof of the nontrivial direction of Theorem 4.6. Assume f is an endofunction on X. From
Lemma 4.1, we know that

const f ! isProp(fix f). (4.8)

Using the recursion principle with the fact that the statement isProp(fix f) is a proposition
itself yields

kconst fk ! isProp(fix f). (4.9)

Previously, we have constructed a map

const f ! kXk ! fix f. (4.10)

Let us write this implication as

kXk ! const f ! fix f. (4.11)

This trivially implies
kXk ⇥ kconst fk ! const f ! fix f. (4.12)

We assume kXk⇥kconst fk. From (4.9), we conclude that fix f is a proposition. Therefore,
we may apply the recursion principle of the truncation and get

kXk ⇥ kconst fk ! kconst fk ! fix f, (4.13)

which, of course, gives us
kXk ! fix f (4.14)

under the assumption 2 of the theorem. Composing |�| with (4.14) and with the first
projection, we get a constant function g : X ! X.



NOTIONS OF ANONYMOUS EXISTENCE IN MARTIN-LÖF TYPE THEORY 15

Note that, in the above proof, we could have used the induction principle 3.7 instead
of the “trick” of duplicating the assumption kconst fk.

Further, it seems to be impossible to show that the constructed function g is equal to
f . On the other hand, it is easy to prove the truncated version of this statement:

k8x. fx = gxk. (4.15)

The detailed proof can be found in our formalization [15].

5. Factorizing weakly constant Functions

In Theorem 4.5 we have seen that a constant function f : X ! X implies that X is h-
stable. On the other hand, what we have done is actually slightly more: the constructed
map f : kXk ! X has the property that

f � |�| : X ! X (5.1)

is pointwise equal to f .
It seems a natural question to ask whether the fact that f is an endofunction is required:

given a (weakly) constant function f : X ! Y , can it be factorized in this sense through
kXk?

5.1. The Limitations of weak Constancy. Let us start by giving a precise definition.

Definition 5.1. Given a function f : X ! Y between two types, we say that f factorizes
through a type Z if there are functions f1 : X ! Z and f2 : Z ! Y such that

⇧
x:X f2(f1(x)) =Y

f(x). (5.2)

In particular, we say that f factorizes through kXk if there is a function f : kXk ! Y such
that

⇧
x:X f(|x|) =

Y

f(x). (5.3)

We should indeed assume that a constant function f : X ! Y factorizes through kXk if
we expect kXk to be a quotient of X in the more “traditional” sense. Before the awareness
of possibly non-propositional identity types was risen, the quotient X/R of X by a relation
R : X ⇥ X ! U was defined to have an eliminator that allows to construct a function
f : (X/R)! Y whenever a map f : X ! Y with the property

8(x, y : X). R(x, y)! f(x) = f(y) (5.4)

is given [2]. If we want to view kXk as X divided by the chaotic relation that relates
each pair of elements of X, this elimination principle amounts exactly to the “lifting” of
a constant function X ! Y to a function kXk ! Y . This is indeed the case under the
assumption of unique identity proofs as we will see later (Theorem 5.4).

However, the homotopical view suggests that it is unreasonable to expect such a lifting
in the general case precisely because we have no way of knowing what happens on the
(higher) path spaces. Consider the case that X is the coproduct of three propositions,
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X ⌘ P + Q + R. Let us write in1 : P ! X, in2 : Q ! X, in3 : R ! X for the three
embeddings. Assume that, for some function f : X ! Y , we have three “potential paths”

c12 : ⇧p:P ⇧
q:Q f(in1p) = f(in2q), (5.5)

c23 : ⇧q:Q⇧
r:R f(in2q) = f(in3r), (5.6)

c13 : ⇧p:P ⇧
r:R f(in1p) = f(in3r). (5.7)

A priori, we do not know which of P , Q and R are inhabited so we do not know which of these
paths actually exists. Exploiting that P , Q and R are propositional, it is straightforward
to construct a proof that f is constant out of this data. Further, we get by the fact that
kXk is propositional the proofs

h12 : ⇧p:P ⇧
q:Q |in1p| = |in2q|, (5.8)

h23 : ⇧q:Q⇧
r:R |in2q| = |in3r|, (5.9)

h13 : ⇧p:P ⇧
r:R |in1p| = |in3r|. (5.10)

Let us now assume that there is a way to factorize any generic constant function through
the propositional truncation.

In our situation, we then get f : kXk ! Y . If we are further given inhabitants p : P ,
q : Q and r : R, let us observe that we have the following situation:

f(in1p)

f(in2q) f(in3r)

f(|in1p|)

f(|in2q|) f(|in3r|)

c12

c23

c13

ap

f

(|h13|)

ap

f

(|h23|)

ap

f

(|h13|)

The arrows in the above diagram are the equality proofs, where we omit the arguments
of c

ij

and h

ij

. The three unlabeled lines which “connect” the outer and the inner triangle
are given by the fact that f and f � ap� are pointwise equal.

Note that h12 ⇧ h23 = h13 is automatically satisfied since kXk is propositional. Looking
at the smallest triangle in the above diagram we can conclude that it commutes due to the
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usual functoriality of ap [27, Lemma 2.2.2], i.e. there is a proof of

ap

f

(h12) ⇧ ap
f

(h23) = ap

f

(h31). (5.11)

The large triangle will in general not commute as identity proofs are not necessarily unique.
If we only regard those parts of the diagram that do not mention the element r, we get

a quadrangle in the top-left part. A similar observation holds for p and q so that we have
three such quadrangles.

Let us go back one step. Assume that we are given the function f with the c

ij

and
(only) two points p : P and q : Q. The path type f(in1p) = f(in2q) is inhabited by
c12(p, q). However, we should not expect to be able to construct an inhabitant that is
not propositionally equal to this one. If we regard P and Q as two copies of the unit
type, the only paths that we are able to construct are built out of refl and the c

ij

. We
further argue that the terms c23 and c13 can not be used for a generic R, as we can not
know whether they actually provide any data (R could be empty). Therefore, if there is
a way to construct the factorization of f , we expect it to not give us a “new” proof of
f(in1p) = f(in2q), i.e. we expect the quadrangle to commute, and the other quadrangles by
analogous arguments. However, this contradicts the observation that the large triangle will
in general not commute.

While this is not a rigorous argument, we hope that it provides some intuition. It
seems that such a factorization would need to make some form of choice on the path spaces
if the constancy proof does not satisfy certain coherence laws. In general, we cannot make
such a non-canonical choice. We do not know whether the assumption that every constant
function factors through the propositional truncation makes it possible to derive a clearer
version of choice, such as LEM or the (propositional) axiom of choice [27, Chapter 3.8]. A
meta-theoretic proof sketch that the factorization is not possible was described to us by
Shulman [28].

5.2. Factorization for Special Cases. Even though we cannot factorize weakly constant
functions in general, we can do it in some interesting special cases.

Constructing a function out of the propositional truncation of a type is somewhat
tricky. A well-known [27, Chapter 3.9] strategy for defining a map kXk ! Y is to construct
a proposition P together with functions X ! P and P ! Y . We have already implicitly
done this in previous sections. We can make this method slightly more convenient to use if
we observe that P does not need to be a proposition, but it only needs to be a proposition
under the assumption that X is inhabited:

Principle 5.2. Let X,Y be two types. Assume P is a type such that P ! Y . If X implies
that P is contractible, then kXk implies Y . In particular, if f : X ! Y is a function that
factorizes through P , then f factorizes through kXk.

Let us shortly justify this principle. Assume that P has the assumed property. Utilizing
that the statement that P is contractible is propositional itself, we see that kXk is su�cient
to conclude that P is a proposition. This allows us to prove kXk ⇥ P to be propositional.
The map P ! Y clearly gives rise to a map kXk ⇥ P ! Y , and the map X ! kXk ⇥ P is
given by |�| and the fact that P is contractible under the assumption X.
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There are several situations in which this principle can be applied. The following
theorem does not need it as it is mostly a restatement of our previous result from Section 4.

Theorem 5.3. A weakly constant function f : X ! Y factorizes through kXk in any one
of the following cases, of which the equivalent (3) and (4) generalize all others:

(1) X is empty, i.e. X ! 0
(2) X is inhabited, i.e. 1! X

(3) X is h-stable, i.e. kXk ! X

(4) X is collapsible, i.e. has a weakly constant endofunction
(5) we have any function g : Y ! X.

Proof. (1) and (2) both imply (3). Further, (5) implies (4) as the composition g � f is a
constant endofunction on X. The equivalence of (3) and (4) is Theorem 4.5. Thus, it is
su�cient to prove the statement for (3), so assume s : kXk ! X. The required conclusion
is then immediate as f is pointwise equal to the composition of |�| : X ! kXk and f � s.

Our next statement implies what we mentioned at the beginning of Section 5: under
the assumption of unique identity proofs, the factorization is always possible.

Theorem 5.4. Let X,Y be again two types and f : X ! Y a constant function. If Y is a
set, then f factorizes through kXk.

Proof. We use Principle 5.2 and define

P

:⌘ ⌃
y:Y k⌃x:X f(x) =

Y

yk. (5.12)

Given two elements (y1, p1) and (y2, p2) in P , we need to show that they are equal. Let us
once more construct the equality via giving a pair of paths. For the second component, there
is nothing to do as p1 and p2 live in propositional types. To show y1 =

Y

y2, observe that
this type is propositional as Y is a set and we may thus assume that we have inhabitants
(x1, q1) : ⌃

x1:X f(x1) =
Y

y1 and (x2, q2) : ⌃
x2:X f(x2) =

Y

y2 instead of p1 and p2. But
f(x1) = f(x2) by constancy, and therefore y1 = y2. The maps X ! P and P ! Y are the
obvious ones and the claim follows by Principle 5.2 (or rather the preceding comment, the
strengthened version is not needed).

It is not hard to see that, assuming function extensionality, the implication of Theo-
rem 5.4 gives rise to an equivalence

(⌃
f :X!Y

const f) ' (kXk ! Y ) , (5.13)

where we use in particular that const f is propositional under the given conditions. This
is the simplest non-trivial special case of a general higher truncation elimination theorem
that will be presented in [5].

Our last example of a special case in which the factorization can be done is more
involved. However, it is worth the e↵ort as it provides valuable intuition and an interesting
application, as we will discuss below. The proof we give benefits hugely from a simplification
by Sattler who showed to us how reasoning with type equivalences can be applied here.

Theorem 5.5. Assume that function extensionality holds. If f : X ! Y is constant and
X is the coproduct of two propositions, then f factorizes through kXk.

Proof. We make use of three basic properties. For each of them, assume that A is a type
and B : A! U a type family.
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(1) neutral contractible base space: if A is propositional and a0 : A, then ⌃
A

B ' A(a0).
[27, Theorem 3.11.9 (ii)]

(2) neutral contractible exponent: if A is propositional and a0 : A, we further have
⇧

A

B ' B(a0).
(3) AC1 (the 1-“axiom of choice”): if C : (⌃

A

B) ! U is another type family, the
equivalence

�
⇧

a:A⌃
b:B(a) Z(a, b)

�
' (⌃

g:⇧
A

B

⇧
a:AC(a, g(a))) (5.14)

holds. [27, Theorem 2.15.7]

Note that the third property is called 1-axiom of choice, even though it is not an axiom
but a derivable type equivalence.

Assume X ⌘ Q + R, where Q and R are propositions. Define P to be the following
⌃-type with four components:

P

:⌘ ⌃ (y : Y )

⌃ (s : ⇧
q:Q y = f(inl q))

⌃ (t : ⇧
r:R y = f(inr r))

⇣
⇧

q:Q⇧
r:R s(q)�1 ⇧

t(r) = c(inl q , inr r)
⌘

(5.15)

In order to apply Principle 5.2 we need to construct a function P ! Y and a proof that
X implies that P is contractible.

The function P ! Y is, of course, given by a simple projection. For the other part, let
a point of X be given. Without loss of generality, we assume that this inhabitant is inl q0

with q0 : Q. As Christian Sattler has showed to us, constructing a chain of equivalences
yields a nicer proof than the “naive” approach of finding a point that is equal to any other
given inhabitant.

Let us first use the property of neutral contractible exponents (2): instead of quantifying
over all elements of Q, it su�ces to only consider q0. Applying this twice shows that P is
equivalent to the following type:

⌃ (y : Y )

⌃ (s : y = f(inl q0))

⌃ (t : ⇧
r:R y = f(inr r))

�
⇧

r:R s

�1 ⇧
t(r) = c(inl q0 , inr r)

�
.

(5.16)

The first two components together match the definition of a singleton type, showing that
this part is contractible with the canonical inhabitant (f(inl q0), refl). Applying the principle
of neutral contractible base spaces (1), the above type further simplifies to

⌃ (t : ⇧
r:R f(inl q0) = f(inr r))

�
⇧

r:R refl

�1 ⇧
t(r) = c(inl q0 , inr r)

�
.

(5.17)

We apply the AC1 (3) in the direction from right to left and use that refl is neutral and
self-inverse and neutral with respect to ⇧ to make a further transformation to

⇧
r:R ⌃ (t : f(inl q0) =B

f(inr r))

(t = c(inl q0 , inr r)) .
(5.18)

For any r : R, the dependent pair part is contractible as it is, once more, a singleton type,
so that function extensionality implies the required result.
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Theorem 5.5 was inspired by a discussion on the Homotopy Type Theory Mailing
List [28]. Shulman observed that, for two propositions Q and R, their join Q ⇤ R [27,

Chapter 6.8], defined as the (homotopy) pushout of the diagram Q

⇡1 � Q ⇥ R

⇡2�! R, is
equivalent to kQ+Rk. This means that, in the presence of higher inductive types [27,
Chapter 6], the type kQ+Rk has the (seemingly) stronger elimination rule of the join.
The second named author then asked whether higher inductive types do really improve
the elimination properties of kQ+Rk in this sense. This was discussed shortly before we
could answer the question negatively with the result of Theorem 5.5: its statement about
kQ+Rk corresponds exactly to the elimination property of Q ⇤ R. Thus, the join of two
propositions already exists in a minimalistic setting that involves truncation but no other
higher inductive types.

It is interesting to analyze how the factorizations constructed in Theorem 5.3, 5.4
and 5.5 bypass the di�culties discussed in Section 5.1. As explained above, performing
such a factorization fails in general as the proof of weak constancy does usually not satisfy
certain coherence properties and a factorization would thus require to make non-canonical
choices of paths.

(1) If the codomain of a constant function is a set as in Theorem 5.4 this is resolved
completely as parallel paths will automatically be equal.

(2) If, as in Theorem 5.5, the domain is the sum Q+R of two propositions, the constancy
proof is still not coherent in general. What we exploit is essentially that it can be
replaced by a coherent one: given f : Q + R ! Y and c : const f , a coherent
c

0 : const f can be constructed by mapping (inl q1, inl q2) to the proof that is induced
by the fact that Q is propositional, and similarly in the case of (inr r1, inr r2). In
the more interesting cases, (inl q, inr r) is sent to c(inl q, inl r), and (inr r, inl q) to
c(inl q, inr r)�1.

(3) Consider a constant function f : X ! Y together with any function g : Y ! X as
in Theorem 5.3. The function f does induce some form of asymmetry on the type
Y . Usually, this asymmetry seems to be too weak to be useful, but the function g

“sends it back” to the type X where it does allow us to make a choice of a point,
namely the fixed point of the composition.

6. Global Collapsibility implies Decidable Equality

If X is some type, having a proof of kXk is, intuitively, much weaker than a proof of X.
While the latter consists of a concrete element of X, the first is given by an anonymous
inhabitant of X. This is nothing more than the intention of the truncation: kXk allows us
to make the statement that “there exists something in X”, without giving away a concrete
element. It is therefore unreasonable to suppose that

8(X : U). kXk ! X (6.1)

can be proved, but it is interesting to consider what it would imply. Using Theorem 4.5,
we can formulate the assumption in a weaker theory that does not have truncations:

Every type has a constant endomap. (6.2)

From a constructive type of view, this is an interesting statement. It clearly follows from
LEM1: if we know an inhabitant of a type, we can immediately construct a constant
endomap, and for the empty type, considering the identity function is su�cient. Thus, we
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may understand “Every type has a constant endomap” as a form of excluded middle. It
seems to use that every type is either empty or inhabited, but there is no way of knowing
in which case we are.

If we assume (6.1), every type is h-stable. This holds in particular for path spaces and
thus, every type is h-separated. By Theorem 3.10, every type is a set which is not a consis-
tent assumption in Homotopy Type Theory. Already without the Univalence Axiom, (6.1)
implies the Axiom of Choice [27, Chapter 3.8]. If we have univalence for propositions and set
quotients, this allows us to use Diaconescu’s proof of LEM ([7], cf. [27, Theorem 10.1.14]).

Let us consider a very minimalistic type theory without univalence, without function
extensionality and without truncations. Under these conditions, 6.1 can not be expressed
directly, so let us use the equivalent 6.2 instead: let us assume that every type has a
constant endofunction (recall that this makes weak propositional truncation definable by
Corollary 4.4, even though we will not use it directly). We do not think that LEM1 can be
derived. However, what we can conclude is the 1-version of excluded middle for all path
spaces, i.e. that all types are discrete, see Lemma 6.1 and Theorem 6.2 below.

Lemma 6.1. In basic MLTT without extensionality, without truncation, and even with-
out a universe, let A be a type and a0, a1 : A two points. If for all x : A the type
(a0 = x) + (a1 = x) is collapsible, then a0 = a1 is decidable.

Before giving the proof, we state an immediate corollary (which does involve a type
universe):

Theorem 6.2. If every type has a constant endofunction then every type has decidable
equality,

(8(X : U). collX)! 8(X : U). discreteX. (6.3)

Proof of Lemma 6.1. For (technical and conceptual) convenience, we regard the elements
a0, a1 as a single map

a : 2! A (6.4)

and we use
E

x

:⌘ ⌃
i:2 a

i

= x (6.5)

in place of the type (a0 = x) + (a1 = x). This is justified by the fact that the property of
being collapsible is clearly closed under type equivalence. In a theory with propositional
truncation, the image of a can be defined to be ⌃

x:A kEx

k [27, Definition 7.6.3]. By assump-
tion, we have a family of constant endofunctions f

x

on E

x

, and by the discussion above, we
can essentially regard the type

E

:⌘ ⌃
x:A fix f

x

, (6.6)

which can be unfolded to
⌃
x:A⌃(i,p):E

x

f

x

(i, p) = (i, p), (6.7)

as the image of a. It is essentially the observation that we can define this image that allows
us to mimic Diaconescu’s argument. Clearly, a induces a map

r : 2! E (6.8)

r(i) :⌘ (a
i

, ✏(i, refl
a

i

)). (6.9)

Using that the second component is an inhabitant of a proposition, we have

r(i) = r(j)  ! a

i

= a

j

. (6.10)
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The type E can be understood as the quotient of 2 by the equivalence relation ⇠, given by
i ⇠ j ⌘ a

i

= a

j

. If E was the image of a in the ordinary sense [27, Definition 7.6.3], the
axiom of choice would be necessary to find a section of r (cf. [27, Theorem 10.1.14]). In our
situation, this section is given by a simple projection,

s : E ! 2 (6.11)

s(x, ((i, p), q)) :⌘ i. (6.12)

It is easy to see that s is indeed a section of r in the sense of 8(e : E). r(s(e)) = e.
Given (x, ((i, p), q)) : E, applying first s, then r leads to (a

i

, ✏(i, refl
a

i

)). Equality of these
expressions is equality of the first components due to the propositional second component.
But p is a proof of a

i

= x. From that property, we can conclude that, for any e0, e1 : E,

e0 = e1  ! s(e0) = s(e1). (6.13)

Combining (6.10) and (6.13) yields

a

i

= a

j

 ! s(r(i)) = s(r(j)), (6.14)

where the right-hand side is an equality in 2 and thus always decidable. In particular,
a0 = a1 is hence decidable.

7. Populatedness

In this section we discuss a notion of anonymous existence, similar, but weaker (see Sec-
tion 8.2) than propositional truncation. It crucially depends on the Fixed Point Lemma 4.1.
Let us start by discussing another perspective of what we have explained in Section 4.

Trivially, for any type X, we can prove the statement

kXk ! (kXk ! X)! X. (7.1)

By Lemma 4.5, this is equivalent to

kXk ! collX ! X, (7.2)

and hence
collX ! kXk ! X, (7.3)

which can be read as: If we have a constant endomap on X and we wish to get an inhabitant
of X (or, equivalently, a fixed point of the endomap), then kXk is su�cient to do so. We
can additionally ask whether it is also necessary: can we replace the first assumption kXk
by something weaker? Looking at formula 7.1, it would be natural to conjecture that this
is not the case, but it is. In this section, we discuss what it can be replaced by, and in
Section 8.2, we give a proof that it is indeed weaker.

For answering the question what is needed to get from hStableX to X, let us define
the following notion:

Definition 7.1 (populatedness). For a given type X, we say that X is populated, writ-
ten hhXii, if every constant endomap on X has a fixed point:

hhXii :⌘ 8(f : X ! X). const f ! fix f, (7.4)

where fix f is the type of fixed points, defined as in Lemma 4.1.
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This definition allows us to comment on the question risen above. If hhXii is inhabited
and X is collapsible, then X has an inhabitant, as such an inhabitant can be extracted
from the type of fixed points by projection. Hence, hhXii instead of kXk in 7.3 would be
su�cient as well. Therefore,

hhXii ! (kXk ! X)! X. (7.5)

At this point, we have to ask ourselves whether (7.5) is an improvement over (7.3). But
indeed, we have the following property:

Theorem 7.2. Any merely inhabited type is populated. That is, for any type X, we have

kXk ! hhXii. (7.6)

Proof. Assume f is a constant endofunction on X. The claim follows directly from Corol-
lary 4.4.

In Section 8 we will see that hhXii is in fact strictly weaker than kXk. Note that
from (7.5), Theorem 4.5 and Theorem 7.2 we immediately get the following:

Corollary 7.3. For any type X, the following statements are logically equivalent:

(1) X is collapsible,
⌃
f :X!X

const f (7.7)

(2) X is h-stable,
kXk ! X (7.8)

(3) X is inhabited if it is populated,

hhXii ! X. (7.9)

In particular, if X is a proposition, (2) is always satisfied and we may conclude hhXii ! X.

In the presence of propositional truncation, we give an alternative characterization of
populatedness. Recall that we indicate propositional truncation with the attribute merely.

Lemma 7.4. In MLTT with propositional truncation, a type is populated if and only if
the statement that it merely h-stable implies that it is merely inhabited, or equivalently, if
and only if the statement that X is h-stable implies X. Formally, the following types are
logically equivalent:

(1) hhXii
(2)

��kXk ! X

�� ! kXk
(3) (kXk ! X)! X.

Proof. We have already discussed (1) ) (3) above (cf. 7.5). (3) ) (2) follows from the
functoriality of the truncation operator. For (2) ) (1), assume we have a constant endo-
function f on X. This implies kXk ! X, thus

��kXk ! X

�� and, by assumption, kXk.
But kXk is enough to construct a fixed point of f by Corollary 4.4.
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One more characterization of populatedness, and a strong parallel to mere inhabitance,
is given by the following statement.

Theorem 7.5. In MLTT, any given type X is populated if and only if any proposition that
is logically equivalent to it holds,

hhXii  ! 8(P : U). isPropP ! (P ! X)! (X ! P )! P. (7.10)

Note that the only di↵erence to the type expression in Theorem 3.8 is that we only
quantify over sub-propositions of X, i. e. over those that satisfy P ! X, while we quantify
over all propositions in the case of kXk. This again shows that kXk is at least as strong as
hhXii.

Proof. Let us first prove the direction “!”. Assume a proposition P is given, together
with functions X ! P and P ! X. Composition of these gives us a constant endomap on
X, exactly as in the proof of Theorem 3.10. But then hhXii makes sure that this constant
endomap has a fixed point, which is (or allows us to extract) an inhabitant of X. Using
X ! P again, we get P .

For the direction “ ”, assume we have a constant endomap f . We need to construct
an inhabitant of fix f . In the expression on the right-hand side, choose P to be fix f , and
everything follows from Corollary 4.4.

The similarities between kXk and hhXii do not stop here. The following statement,
together with the direction “!” of the theorem that we have just proved, is worth to be
compared to the definition of kXk (that is, Definition 3.6):

Theorem 7.6. For any type X, the type hhXii has the following properties:

(1) X ! hhXii
(2) isProp(hhXii) (if function extensionality holds).

Proof. The first point follows immediately from the (stronger) statement of Theorem 7.2.
For the second, we use that fix f is a proposition (Lemma 4.1). By function extensionality,
a (dependent) function type is propositional if the codomain is (cf. Section 2) and we are
done.

8. Taboos and Counter-Models

In this section we look at the di↵erences between the various notions of (anonymous) inhab-
itance we have encountered. We have, for any type X, the following chain of implications:

X �! kXk �! hhXii �! ¬¬X. (8.1)

The first implication is trivial and the second is given by Theorem 7.2. Maybe somewhat
surprisingly, the last implication does not require function extensionality, as we do not need
to prove that ¬¬X is propositional: to show

hhXii ! ¬¬X , (8.2)

let us assume f : ¬X. But then, f can be composed with the unique function from the
empty type into X, yielding a constant endomap on X, and obviously, this function cannot
have a fixed point in the presence of f . Therefore, the assumption of hhXii would lead to a
contradiction, as required.
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Under the assumption of LEM, all implications of the chain 8.1 except the first can be
reversed as it is easy to show

8(X : U). (kXk + ¬kXk)! ¬¬X ! kXk. (8.3)

Constructively, none of the implications of 8.1 should be reversible. To make that precise,
we use taboos, showing that the provability of a statement would imply the provability
of another, better understood statement, that is known to be not provable. As a second
technique, we use models. In this section, we present the following discussions:

(1) We have already seen (cf. Section 6) that the assumption that the first implication
can be reversed makes all equalities decidable (and thereby propositional), a ho-
motopical taboo. As an alternative argument, if every type is h-stable, a form of
choice that does not belong to type theory is implied. Moreover, we observe that
kXk ! X can be read as “the map |�| : X ! kXk is a split epimorphism” (where
the latter notion requires to be read with care), and we show that already the weaker
assumption that it is an epimorphism implies that all types are sets.

(2) It would be wonderful if the second implication could be reversed, as this would
imply that propositional truncation is definable in MLTT. However, this is logically
equivalent to a certain weak version of the axiom of choice discussed below, which
is not provable but holds under LEM.

(3) If the last implication can be reversed, LEM holds (a constructive taboo, which
is not valid in recursive models). Together with the above observation, function
extensionality implies that LEM holds if and only if ¬¬X ! hhXii for all X.

8.1. Inhabited and Merely Inhabited. The question whether the first implication in
the chain above can be reversed has already been analyzed in Section 6. This is impossible
as long as equality is not globally decidable. Here, we wish to state another noteworthy
consequence of the collapsibility of all types,

8(X : U). collX, (8.4)

which we know to hold if every type is h-stable (Theorem 4.5). We show that it implies a
form of choice that does not pertain to intuitionistic type theory. In order to formulate and
prove this, we need a few definitions.

We say that a relation R : X ⇥X ! U is propositionally valued if

8(x y : X). isProp(R(x, y)). (8.5)

The R-image of a point x : X is

R

x

:⌘ ⌃
y:X R(x, y). (8.6)

We say that R is functional if its point-images are all propositions:

8(x : X). isPropR
x

. (8.7)

We say that two relations R,S : X ⇥X ! U have the same domain if

8(x : X). R
x

 ! S

x

, (8.8)

and that S is a subrelation of R if

8(x y : X). S(x, y)! R(x, y). (8.9)
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Theorem 8.1. If all types are collapsible, then every binary relation has a functional,
propositionally valued subrelation with the same domain.

Proof. Assume that R : X ⇥X ! U is given. For x : X, let k
x

: R
x

! R

x

be the constant
map given by the assumption 8.4 that all types are collapsible. Define further

S(x, y) :⌘ ⌃
a:R(x,y) (y, a) = k

x

(y, a). (8.10)

Then S is a subrelation of R by construction. We observe that S

x

is equivalent to fix(k
x

)
and therefore propositional (by Lemma 4.1), proving that S is functional. Together with
Corollary 4.4, this further implies

R

x

 ! fix k

x

 ! S

x

, (8.11)

showing that R and S have the same domain.
What remains to show is that S(x, y) is always a proposition. Let s, s0 : S(x, y). As S

x

is propositional we know (y, s) =
S

x

(y, s0). By the standard lemma this type corresponds
to a dependent pair type with components

p : y =
X

y (8.12)

q : p⇤(s) =
S(x,y) s

0
. (8.13)

In our case, as every type is a set, we have p = refl

y

, and q gives us the required proof of
s =

S(x,y) s
0.

Instead of the logically equivalent formulation (8.4), let us now assume the original
assumption that |�| can be reversed, that is,

8(X : U). kXk ! X. (8.14)

Note that a map h : kXk ! X is automatically a section of |�| : X ! kXk in the sense of

8(z : kXk). |h(z)| = z (8.15)

as any two inhabitants of kXk are equal. Therefore, we may read (8.14) as:

For any type X, the map |�| : X ! kXk is a split epimorphism. (8.16)

We want to consider a weaker assumption, namely

For any type X, the map |�| : X ! kXk is an epimorphism, (8.17)

where we call e : U ! V an epimorphism if, for any type W and any two functions
f, g : V !W , we have the implication

(8u. f(e u) = g(e u))! 8v. f v = g v. (8.18)

Of course, under function extensionality, e is an epimorphism if and only if, for all W, f, g,
we have

f � e = g � e! f = g. (8.19)

A caveat is required. Our definition of epimorphism is the direct naive translation of the
usual 1-categorical notion into type theory. However, the category of types and functions
with propositional equality is not only an ordinary category, but rather an (!, 1)-category.
The definition (8.18) makes sense in the sub-universe of sets [27, Chapter 10.1], where
equalities are propositional. However, the property of being an epimorphism in our sense
is not propositional and it could rightfully be argued that it might not be the “correct”
definition in a context where not every type is a set, similarly as we argued that LEM1 is a
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problematic version of the principle of excluded middle. Despite of this, we use the notion
as we think that it helps providing an intuitive meaning to the plain type expression (8.18).

Lemma 8.2. Let Y be a type. If the map |�| : (y1 = y2) ! ky1 = y2k is an epimorphism
for any points y1, y2 : Y , then Y is a set.

Proof. Assume Y, y1, y2 are given. Define two functions

f, g : ky1 = y2k ! Y (8.20)

by

f(q) :⌘ y1, (8.21)

g(q) :⌘ y2, (8.22)

that is, f and g are constant at y1 and y2, respectively.
With these concrete choices, our assumption (8.18) with e ⌘ |�| becomes

(y1 = y2 ! y1 = y2)! (ky1 = y2k ! y1 = y2) (8.23)

which, of course, implies
ky1 = y2k ! y1 = y2. (8.24)

The statement of the lemma then follows from Theorem 3.10.

In the following theorem, we include the main result of Section 6 to directly compare
it with the second part:

Theorem 8.3. In basic MLTT with weak propositional truncation,

(1) if |�| : X ! kXk is a split epimorphism for every X, then all types have decidable
equality

(2) if |�| : X ! kXk is an epimorphism for every X, then all types are sets.

Proof. The first part is a reformulation of Theorem 6.2, while the second part is a corollary
of Lemma 8.2.

8.2. Merely Inhabited and Populated. Assume that the second implication can be
reversed, meaning that we have

8(X : U). hhXii ! kXk. (8.25)

Repeated use of the Fixed Point Lemma leads to a couple of interesting logically equivalent
statements.

In the previous subsection, we have discussed that we cannot show every type to be
h-stable. However, a weaker version of this is provable:

Lemma 8.4. For every type X, the statement that it is h-stable is populated,

hhkXk ! Xii. (8.26)

To demonstrate the di↵erent possibilities that the logically equivalent formulations of
populatedness o↵er, we want to give more than one proof. The first one uses Definition 7.1:
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First proof. Assume we are given a constant endofunction f on kXk ! X. We need
to construct a fixed point of f , or correspondingly, any inhabitant of kXk ! X. By
Theorem 4.5, a constant function g : X ! X is enough for this. Given x : X, we may apply
f on the function that is everywhere x, yielding an inhabitant of kXk ! X. Applying it
on |x| gives an element of X, and we define g(x) to be this element. The proof that that f
is constant immediately translates to a proof that g is constant.

Alternatively, we can use the logically equivalent formulation of populatedness, proved
in Theorem 7.5:

Second proof. Assume P is a proposition and we have a proof of

P  ! (kXk ! X). (8.27)

We need to show P . The logical equivalence above immediately provides an inhabitant of
X ! P , and, by the rules of the propositional truncation, therefore kXk ! P . Assume
kXk. We get P , thus kXk ! X with the above equivalence, and therefore X (using the
assumed kXk again). This shows kXk ! X, and consequently, P .

If propositional truncation is available, we may also use that hh�ii can be written in
terms of k�k.

Third proof. Using Lemma 7.4, the statement that needs to be shown becomes
���
��kXk ! X

�� ! kXk ! X

���!
��kXk ! X

��
. (8.28)

By functoriality of k�k, it is enough to show
���kXk ! X

�� ! kXk ! X

�
! (kXk ! X) , (8.29)

which is immediate.

The assumption that populatedness and mere inhabitance are equivalent has a couple
of “suspicious” consequences, as we want to show now.

Theorem 8.5. In MLTT with weak propositional truncation, the following are logically
equivalent:

(1) every populated type is merely inhabited,

8(X : U). hhXii ! kXk (8.30)

(2) every type is merely h-stable,

8(X : U).
��kXk ! X

�� (8.31)

(3) every proposition is projective in the following sense:

8(P : U). isPropP ! 8(Y : P ! U). (⇧
p:P kY (p)k)! k⇧

P

Y k (8.32)

(note that this is the axiom of choice [27, Chapter 3.8] for propositions, without the
requirement that Y is a family of sets)

(4) hh�ii : U ! U is functorial in the sense that

8(X Y : U). (X ! Y )! (hhXii ! hhY ii), (8.33)

where this naming is justified at least in the presence of function extensionality which
implies that hhXii ! hhY ii is propositional, ensuring hhg � fii = hhgii � hhfii.
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Proof. We show all the implications that we know nice arguments for, and those are su�cient
(and even more than necessary) to prove the theorem.

The equivalence of the first two points follows easily from what we already know.
(1)) (2) is an application of Lemma 8.4, while (2)) (1) follows easily from Lemma 7.4.

Regarding the equivalence of the first and the last point, (1)) (4) is also immediate
by functoriality of k�k. On the other hand, if (4) holds, the map |�| gives rise to a function
hhXii ! hhkXkii, but for any propositional P , the types P and hhP ii are equivalent.

Let us now show (1)) (3). Let P be some proposition and Y : P ! U some family of
types. If we assume (1), it is then enough to prove

⇧
p:P kY (p)k ! hh⇧

P

Y ii. (8.34)

By Lemma 7.4, it is enough to show

⇧
p:P kY (p)k ! (k⇧

P

Y k ! ⇧
P

Y )! ⇧
P

Y. (8.35)

Under several assumptions, one of them being that some p0 : P is given, we need to
construct an inhabitant of Y (p0). Recall the principle of the neutral contractible exponent
that we used in the proof of Theorem 5.5. Here, it allows us to replace ⇧

P

Y by Y (p0) and
⇧

p:P kY (p)k by kY (p0)k, and the type (8.35) becomes

kY (p0)k ! (kY (p0)k ! Y (p0))! Y (p0). (8.36)

(3)) (2) can be seen easily by taking P to be kXk and Y to be constantly X.

Consider the third of the four statements in Theorem 8.5. When Y (p) is a set with
exactly two elements for every p : P , this amounts to the world’s simplest axiom of choice [8],
which fails in some toposes.

Corollary 8.6. In MLTT with weak propositional truncation, 8(X : U). hhXii ! kXk is not
derivable.

8.3. Populated and Non-Empty. If we can reverse the last implication of the chain, we
have

8(X : U).¬¬X ! hhXii. (8.37)

To show that this cannot be provable, we show that it would imply LEM, a constructive
taboo.

Theorem 8.7. With function extensionality, the following implication holds:

(8(X : U).¬¬X ! hhXii) ! LEM. (8.38)

Proof. Assume P is a proposition. Then so is the type P + ¬P (where we require function
extensionality to show that ¬P is a proposition). Hence, the identity function on P + ¬P
is constant.

On the other hand, it is straightforward to construct a proof of ¬¬ (P + ¬P ). By the
assumption, this means that P + ¬P is populated, i.e. every constant endomap on it has
a fixed point. Therefore, we can construct a fixed point of the identity function, which is
equivalent to proving P + ¬P .

The other direction is standard. Thus, we have derived:

Corollary 8.8. Under the assumption of function extensionality, all nonempty types are
populated if and only if LEM holds.



30 KRAUS, ESCARDÓ, COQUAND, AND ALTENKIRCH

9. Propositional Truncation with Judgmental Computation Rule

Propositional truncation is often defined to satisfy the judgmental computation rule [27,
Chapter 3.7],

rectr(P, h, f, |x|) ⌘
�

f(x) (9.1)

for any function f : X ! P where x : X and P is propositional. In our discussion, we
did not assume it to hold so far. We do certainly not want to argue that a theory without
this judgmental equation is to be preferred, we simply did not need it. We agree with the
very common view (see the introduction of [27, Chapter 6]) that judgmental computation
rules are often advantageous, not only for truncations, but for higher inductive types [27,
Chapter 6] in general. Without them, some expressions will need to involve a ridiculous
amount of transporting, just to make them type check, and the “computation” will have to
be done manually in order to simplify terms. If (9.1) is assumed, it suggests itself to also
assume a judgmental computation rule for the induction principle, that is

indtr(P, h, f, |x|) ⌘
�

f(x), (9.2)

where P : kXk ! U might now be a type family and f : ⇧
z:kXk P (z) is a dependent function

rather than a simple function. An interesting aspect is that, unlike the propositional rule,
it does not seem to follow from (9.1). In particular, the term constructed in Lemma 3.7
does not have the expected judgmental computation rule.

Having said this, the judgmental �-rules do have some other noteworthy consequences.
Unlike the previous results, the statements in this part of our article do need the computa-
tion rules to hold judgmentally.n So far, all our lemmata and theorems have been internal
to type theory. This is only partially the case for the results from this section, as any
statement that some equality holds judgmentally is a meta-theoretic property. We thus can
not implement such a statement as a type in a proof assistant such as Agda, but we can
still use Agda to check our claims; for example, if

p : x = y (9.3)

p

:⌘ refl

x

(9.4)

type checks, we may conclude that the equality does hold judgmentally.

9.1. The Interval. The interval I as a higher inductive type [27, Chapter 6.3] is a type
in Homotopy Type Theory that consists of two points i0, i1 : I and a path seg : i0 =I i1

between them. Its recursion, or non-dependent elimination principle says: Given

Y : U (9.5)

y0 : Y (9.6)

y1 : Y (9.7)

p : y0 = y1, (9.8)

there exists a function f : I! Y such that

f(i0) ⌘ y0 (9.9)

f(i1) ⌘ y1 (9.10)

ap

f

(seg) = p. (9.11)
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We abstain from introducing the interval’s induction principle (cf. [27, Chapter 6.3] for
details). The interval is a contractible type and as such equivalent to the unit type. However,
this does not make it entirely boring; it is the judgmental equalities that matter. Note that
the computation rules for the points are judgmental (9.9,9.10), while the rule for the path
(9.11) is only propositional.

We will now show that k2k can be regarded as the interval.

Theorem 9.1. For the type k2k, the recursion principle of the interval (including the
computational behaviour) is derivable using 9.1, and the induction principle follows from 9.2.

Proof. We only show that the recursion principle is derivable, which will be su�cient for
the proceeding developments. The induction principle can be derived very similarly. We
need to show that, under the assumptions 9.5-9.8, there is a function f : k2k ! Y such
that

f(|02|) ⌘ y0 (9.12)

f(|12|) ⌘ y1 (9.13)

ap

f

(htr|02|,|12|) = p. (9.14)

We define

g : 2! ⌃
y:Y y0 = y (9.15)

g(02) :⌘ (y0, refl) (9.16)

g(12) :⌘ (y1, p). (9.17)

As ⌃
y:Y y0 = y is contractible, g can be lifted to a function g : k2k ! ⌃

y:Y y0 = y,
and we define f

:⌘ ⇡1 � g. It is easy to check that f has indeed the required judgmental
properties 9.12 and 9.13. has the required properties. The propositional equality 9.14 is
only slightly more di�cult: First, using the definition of f and a standard functoriality
property of ap [27, Lemma 2.2.2 (iii)], we observe that ap

f

(htr|02|,|12|) may be written as

ap

⇡1
(ap

g

(htr|02|,|12|)). (9.18)

But here, the path ap

g

(htr|02|,|12|) is an equality in the contractible type (y0, refl) = (y1, p)
(note that both terms inhabit a contractible type themselves) and thereby unique. In
particular, it is (propositionally) equal to the path which is built out of two components,
the first of which can be chosen to be p (the second component can then be taken to be a
canonically constructed inhabitant of p⇤(refl) = p).

9.2. Function Extensionality. It is known that the interval I with its judgmental compu-
tation rules implies function extensionality. We may therefore conclude that propositional
truncation is su�cient as well.

Lemma 9.2 (Shulman [24]). In a type theory with I and the judgmental ⌘-law for functions
(which we assume), function extensionality is derivable.

Proof. AssumeX,Y are types and f, g : X ! Y are functions with the property h : 8x. f(x) = g(x).
Using the recursion principle of I, we may then define a family

k : X ! I! Y (9.19)
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of functions, indexed over X, such that k(x, i0) ⌘ f(x) and k(x, i0) ⌘ g(x) for all x : X;
of course, we use h(x) as the required family of paths. Switching the arguments gives a
function

k

0 : I! X ! Y (9.20)

with the property that k

0(i0) ⌘ f and k

0(i1) ⌘ g (by ⌘ for functions), and thereby
ap

k

0(seg) : f = g.

The combination of Theorem 9.1 and Lemma 9.2 implies:

Corollary 9.3. From propositional truncation with judgmental � and judgmental ⌘ for
functions, function extensionality can be derived.

9.3. Judgmental Factorization. The judgmental computation rule of k�k also allows us
to factor any function judgmentally through the propositional truncation as soon as it can
be factored in any way. This observation is inspired by and a generalization of the fact that
k2k satisfies the judgmental properties of the interval (Theorem 9.1).

Theorem 9.4. Any (non-dependent) function that factors through the propositional trun-
cation can be factored judgmentally: assume types X,Y and a function f : X ! Y between
them. Assume that there is f : kXk ! Y such that

h : 8(x : X). f(x) = f(|x|). (9.21)

Then, we can construct a function f

0 : kXk ! Y such that, for all x : X, we have

f(x) ⌘ f

0(|x|), (9.22)

which means that the type 8(x : X). f(x) = f

0(|x|) is inhabited by the function that is
constantly refl.

Proof. We define a function

g : X ! ⇧
z:kXk ⌃y:Y y = f(z) (9.23)

g(x) :⌘ �z.

⇣
f(x), h(x) ⇧ ap

f

(htr|x|,z)
⌘

(9.24)

By function extensionality and the fact that singleton types are contractible, the codomain
of g is contractible, and thus, we can lift g and get

g : kXk ! ⇧
z:kXk ⌃y:Y y = f(z). (9.25)

We define
f

0 :⌘ �z : kXk.⇡1(g z z) (9.26)

and it is immediate to check that f 0 has the required properties.
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Note that in the above argument we have only used 9.1. We have avoided 9.2 by
introducing the variable z in (9.23), which is essentially a duplication of the first argument
of the function, as it becomes apparent in (9.26).

Furthermore, we have assumed that f is a non-dependent function. The question
does not make sense if f is dependent in the sense of f : ⇧

x:X Y (x); however, it does for
f : ⇧

z:kXk Y (z). In this case, it seems to be unavoidable to use (9.2), but the above proof
still works with minimal adjustments. We state it for the sake of completeness.

Theorem 9.5. Let X be a type and Y : kXk ! U a type family. Assume we have functions

f : ⇧
x:X Y (|x|) (9.27)

f : ⇧
z:kXk Y (z) (9.28)

such that
8(x : X). f(x) =

Y (|x|) f(|x|). (9.29)

Then, we can construct a function f

0 : ⇧
z:kXk B(z) with the property that for any x : X, we

have the judgmental equality
f(x) ⌘ f

0(|x|). (9.30)

Proof. Because we allow ourselves to use (9.2) the proof becomes actually simpler than the
proof above. This time, we can define

g : ⇧
x:X ⌃

y:Y y = f(|x|) (9.31)

g(x) :⌘ (f(x), h(x)) . (9.32)

Using (9.2), we get
g : ⇧

z:kXk ⌃y:Y y = f(z). (9.33)

Then,
⇡1 � g (9.34)

fulfils the required condition.

9.4. An Invertibility Paradox. An inhabitant of kXk shows, in the language of [27],
that the type X is merely inhabited : it is inhabited, but we do not know more than that.
In particular, we do not know an inhabitant of X. It therefore seems to be a reasonable
intuition that

|�| : X ! kXk (9.35)

can be understood as an “information hiding” function: a concrete x : X is turned into an
anonymous inhabitant |x| : kXk. While this interpretation is justified to some degree as
long as we think of internal properties, it may be misleading from a meta-theoretic point
of view.

To make our point clear, we assume Voevodsky’s Univalence Axiom (see e.g. [27] for
an introduction or [29] for an original reference) which specifies the equality types of the
universe. We show that, for a nontrivial class of types, the projection map |�| can be
“pseudo-reversed”. For example, there is a term that we call mystN such that

id

0 : N! N (9.36)

id

0 :⌘ mystN �|�| (9.37)
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type checks and id

0 is the identity function on N, with a proof

p : 8(n : N). id0(n) = n (9.38)

p

:⌘ �n.refl

n

. (9.39)

We think that the possibility to do this is counter-intuitive and surprising. The term mystN
seems to contradict the intuition that |�| does not make any distinction between elements
of N; it sends any such inhabitant to the unique inhabitant of kNk. We do indeed have the
equalities

mystN(|0|) ⌘ 0 (9.40)

mystN(|1|) ⌘ 1, (9.41)

and the fact that these are not only propositional, but even judgmental, makes it even
stranger. As we know |0| =kNk |1|, it might seem that we could prove 0 =N 1 from the
equations above. Of course, this is not the case. The sketched proof of 0 =N 1 would work
if the type of mystN (which we have not talked about yet) was kNk ! N, but it is not
that simple. We show the construction to see what happens. For further discussion, see
the homotopy type theory blog entry by the first named author [13], where this result was
presented originally.

First, let us state two useful general definitions:

Definition 9.6 (Pointed Types [27, Definition 2.1.7]). A pointed type is a pair (X,x) of a
type X : U and an inhabitant x : X. We write U• for the type of pointed types,

U• :⌘ ⌃
X:U X. (9.42)

Definition 9.7 (Transitive Type). Given a typeX, we call it transitive and write isTransitiveX
if it satisfies

8(x y : X). (X,x) =U• (X, y). (9.43)

This is, of course, where univalence comes into play. It gives us the principle that a
type X is transitive if, and only if, for every pair (x, y) : X ⇥X there is an automorphism
e

xy

: X ! X such that e
xy

(x) = y.
We have the following examples of transitive types:

Example 9.8. Every type with decidable equality is transitive.

This is because decidable equality on X lets us define an endofunction on X which
swaps x and y, and leaves everything else constant. Instances for this example include
all contractible and, more generally, propositional types, but also our main candidate, the
natural numbers N.

Example 9.9. For any pointed typeX with elements x1, x2 : X, the identity type x1 =X

x2

is transitive. In particular, the loop space ⌦n(X) [27, Definition 2.1.8] is transitive for any
pointed type X.

Here, it is enough to observe that, for p1, p2 : x1 =
X

x2, the function �q.q

⇧
p1

�1 ⇧
p2 is

an equivalence with the required property.
As mentioned by Andrej Bauer in a discussion on this result [13], we also have the

following:

Example 9.10. Any group [27, Definition 6.11.1] is a transitive type.
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As for equality tyes, the reason is that there is an inverse operation, such that the
automorphism �c.c

⇧
a

�1 ⇧
b maps a to b.

Example 9.11. If X is any type and Y : X ! U is a family of transitive types, then
⇧

x:X Y (x) is transitive.

In particular, ⇥ and ! preserve transitivity of types.
We are now ready to construct myst: Assume that we are given a type X. We can

define a map

f : X ! U• (9.44)

f(x) :⌘ (X,x). (9.45)

If we know a point x0 : X, we may further define

f : kXk ! U• (9.46)

f(z) :⌘ (X,x0). (9.47)

If X is transitive, we have
8(x : X). f(x) = f(|x|). (9.48)

By Theorem 9.4, there is then a function

f

0 : kXk ! U• (9.49)

such that, for any x : X, we have

f

0(|x|) ⌘ f(x) ⌘ (X,x). (9.50)

Let us define

myst

X

: ⇧
z:kXk ⇡1(f

0(z)) (9.51)

myst

X

:⌘ ⇡2 � f 0
. (9.52)

At this point, we can see where the paradox comes from. The type of myst

X

is not just
kXk ! X; however, for any x : X, the type of f 0(|x|) is judgmentally equal to X, and we
have f

0(|x|) ⌘ x. This already proves the following:

Theorem 9.12. Let X be an inhabited transitive type. Then, there is a term myst

X

such
that the composition

myst

X

�|�| : X ! X (9.53)

type checks and is equal to the identity, where the proof

p : 8(x : X). myst

X

(|x|) =
X

x (9.54)

p(x) :⌘ refl

x

(9.55)

it trivial.
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It is tempting to unfold the type expression ⇧
z:kXk ⇡1(f

0(z)) in order to better under-
stand it. Unfortunately, this is not very feasible as this plain type expression involves the
whole proof term f

0, which, in turn, includes the complete construction of Theorem 9.4.
Note that Theorem 9.12 does not mean that the identity function factorizes through

kXk; because, being careful with this notion, this would require a retraction of |�| : X ! kXk,
which we do not have. If we are given x, y : X, we do know htr|x|,|y| : |x| =kXk |y|, but we
cannot conclude

apmyst
X

: myst

X

(|x|) =
X

myst

X

(|y|) (9.56)

as this does not type check. Instead, we only have

apdmyst
X

⇣
htr|x|,|y|

⌘
:
⇣
transport

�z.⇡1(f 0(z))(htr|x|,|y| ,myst

X

(|x|))
⌘
=

⇡1(f 0(|y|)) myst

X

(|y|),
(9.57)

where apd is the dependent version of ap [27, cf. Lemma 2.3.4]. After evaluating (that is,
using judgmental equalities to simplify some expressions), (9.57) becomes

apdmyst
X

⇣
htr|x|,|y|

⌘
:
⇣
transport

⇡1�f 0
(h|x|,|y| , x)

⌘
=

X

y. (9.58)

But this does not look wrong at all any more as ⇡1 �f 0 is an automorphism on X that sends
x to y.

Finally, we want to remark that the construction of myst does not need the full strength
of Theorem 9.4. The weaker version in which f : kXk ! Y is replaced by a fixed y0 : Y
is su�cient: in this case, f can be understood to be strictly constant. This leads to a
simplification as the dependent function types in (9.23) and (9.25) can be replaced by their
codomains.

It may be helpful to see the whole definition of myst explicitly in this variant, which is
also how it was explained originally by the first named author [13]: We define

f : X ! ⌃
A:U• A =U• (X,x0) (9.59)

f(x) :⌘ ((X,x), transitive
X

(x, x0)), (9.60)

where transitive is the proof that A is transitive. The function f in (9.44) is then simply
the composition ⇡1 � f. As the codomain of f is a singleton type, it is contractible (cf.
Definition 2.1) and thereby propositional (let us write h for the proof thereof). Hence, we
get

f

0 : kXk ! ⌃
A:U• A =U• (X,x0) (9.61)

f

0 :⌘ rectr (⌃A:U• A =U• (X,x0)) h f. (9.62)

We could now define myst

0
X

to be

myst

0
X

: ⇧kXk ⇡1 � ⇡1 � f 0 (9.63)

myst

0
X

:⌘ ⇡2 � ⇡1 � f 0 (9.64)

which has the same property as (9.52), even though it is not judgmentally the same term.
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10. Conclusion and Open Problems

In this article, generalizations of Hedberg’s Theorem have lead us to an exploration of what
we call weakly constant functions. The attribute weakly indicates that higher coherence
conditions of such a constancy proof are missing. As a consequence, it is not possible to
derive a function kXk ! Y from a weakly constant function X ! Y , but we have shown
how to do this in several non-trivial special cases. Most interesting is certainly the case
of endofunctions. A weakly constant endofunction can always be factorized through the
propositional truncation of its domain. Further, for a given X, the type which says that
every constant endofunction on X has a fixed point is propositional, enabling us to use it as
a notion of anonymous inhabitance hhXii, and we have argued that it lies strictly in between
of ¬¬X and kXk.

There are two questions for which we have not given an answer. The first is: Is weak
propositional truncation definable in Martin-Löf Type Theory? This is commonly believed
to not be the case. However, the standard models do have propositional truncation, making
it hard to find a concrete proof. Moreover, populatedness, a similar notion of anonymous
existence, is definable.

Our second question is the continuation of what we have discussed in the first half of
Section 5: Is it possible to derive a (constructive or homotopical) taboo from the assumption
that every weakly constant function can be factorized through k�k? More precisely, does
the assumption

8(X Y : U). 8(f : X ! Y ). const f ! kXk ! Y (10.1)

allow us to derive a “suspicious” statement, such as UIP for all types, some form of the
axiom of choice (cf. [27, Chapter 3.8]), or some form of excluded middle? For the assumption
that every type is collapsible, we have established a corresponding result in Section 6: It
implies that all equalities are decidable.

One example of a weakly constant function for which we do not know the status of its
factorizability is the function (9.44) which maps, for a given transitive type X, any point
x : X to (X,x) : U•. Being able to factorize it amounts to knowing an inhabitant of

8(X : U). (kXk ⇥ isTransitiveX)! ⌃
A:U A⇥ (X ! A =U X). (10.2)

We can use the functoriality of k�k to see that (10.2) implies

8(X : U). (kXk ⇥ isTransitiveX)! ⌃
A:U A⇥ kA =U Xk. (10.3)

The latter statement can be read as: Given a transitive merely inhabited type, can we find
an inhabited type that is merely equal to the first? Finally, we can ask one more short
question if we drop the transitivity condition and arrive at

8(X : U). kXk ! ⌃
A:U A⇥ kA =U Xk : (10.4)

If we have exact knowledge of a type and mere knowledge about an inhabitant, can we
“trade” it for mere knowledge of (the structure of) the type and exact knowledge about
an inhabitant? We do not expect that (10.2), (10.3) or (10.4) is derivable, but does any of
these three assumptions allow us to conclude a taboo?
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