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1 Introduction

The question how to characterize the definable elements in models of the typed A-
calculus was first answered by Plotkin and Statman [Plo73,P1080,Sta82]. Plotkin
showed that in full models with infinite base type elements invariant under logical
relations are definable upto level 2 of the type hierarchy and that Kripke logical
relations characterize definable elements at all types. It was left open whether
this characterization can be extended to arbitrary Henkin models and how to
characterize relative definability. The first question was answered by Jung and
Tiuryn who showed that invariance under Kripke logical relations with varying
arity characterize definability in arbitrary Henkin models [JT93]. Alimohamed
extended this result to categorical models and also showed that Kripke logical re-
lations with varying arity can be used to characterize relative definability [Ali95].
The result by Loader shows that Kripke logical relations with fixed arity are not
sufficient to characterize definablity over full finite models [Loa]. Kripke logical
relations with varying arity were also used by O’Hearn and Riecke to define a
semantic version of the fully abstract model of PCF [HR95] building on results
by Sieber [Sie92]. Recently, Fiore and Simpson showed that Grothendieck logical
relations, which are a Kripke Logical Relations with varying arity with an addi-
tional locality condition derived from sheaf theory can be used to characterize
definable elements in a typed A-calculus with coproducts [FS99].

We present the completeness proof of [JT93] in a slightly modernized form,
inspired by the presentation in [FS99].

2 A-calculus and Henkin models

The set of types Ty is given by a base type o and arrow types ¢ — 7. A type
context I" € Con is a finite sequence of assumptions of the form z : 0 where
z is a term variable and o € Ty. To simplify reasoning we use the following
abbrevations:

I'=x1:01,...,%p : 0y

A=y T, Ym : Tm



We assume the usual rules for the simply typed A calculus:

var Nz:obt:7 'tt:o—-71 I'Fu:o

: - lam app
Lz:o,Abz:o 'tXe’t:o—oT I'ttu:r

We shall always identify terms upto fn-equality.
An applicative structure is a pair ([—], app), s.t.

— [o] is a set for o € Ty,
— app,, € [o = 7] x [o] = [7]-

We omit the annotations o, 7 ... if they are clear from the context.
The applicative structure is extensional if for f, g € [¢ — 7] we have that:

Vz € [o].app(f,z) = app(g, z)
f=y
There are two (equivalent) ways to say that an extensional applicative struc-

ture is a Henkin model (or just A-model): combinatory models and environment
models.

2.1 Combinatory models

The structure is a typed combinatory algebra, i.e. there are constants

ko €flo = 7= 0]
Sorp E[lc =T =2p) =2 (0 =7) =20 —=p]

s.t.

app(app(k,p),q) = p
—a

app(app(app(s,p),q),r) = app(app(p,r),app(q,7))

2.2 Environment models
We interpret contexts by environments:
[I]=II{z; | 1 <i<n}.[oi]

An environment models is given by an assignment [—] which assigns to every
welltyped term I' F ¢ : o a function

[t] € [I'] — [o]
s.t.
[2](p) = p(z)
[tu](p) = app([t](p), [](p))
app([Az” t](p),p) = [t](p U {(z,p)}) where p € [o]



3 Kripke Logical Relations of varying arity

A Kripke Logical Relation (of varying arity) is given by a category W of worlds,
a functor a : W — SET (called the arity functor) and a family of relations:

R°(w) C a(w) — [o]
s.t.

f € Wv,w) h € R°(w)
hoa(f) € R°(v)

mon

We can extend the relation to a family of relations indexed over types o € Ty
R?(w) C a(w) — [0]

It is sufficient to extend the relation over arrow types: given h € a(w) — o = 7]
we say h € R777 (w) iff

feW(w,w) geR(v)
(k € a(v) = app((hoa(f))(k),g(k))) € R"(v)

We also extend the relation to contexts I' = x1 : 01,...,Zy, : 0 € Con:

RT(w) = {h1,...,hn | V1 <i <n.h; € R%(w)}
Lemma 1. The condition (mon) holds for all types:

f € W, w) h € R° (w)
hoa(f) € R%(v)

Proof. By induction over the structure of types. Given f € W(v,w) and h €
R?77 (w). To show that hoa(f) € R°(v) assume f' € W(v',v) we have to show
that

(k € a(v') = app((h o a(f) ca(f"))(k),g(k))) € R"(v')
Since a(f) ca(f') = a(f o f') we only have to use the hypothesis with f o f'.

Proposition 1 (Fundamental theorem of logical relations). Given I' -
t: o and a Kripke logical relation R we have

weW heR'(w)
(k € a(w) = [t](zi = hi(k))) € R*(w)

Proof. We show the theorem by induction over the derivation of I' ¢ : o



(var) Given I' F z; : 0;: we have that
k€ a(w) = [z;](z; — hi(k) =k € a(w) — h;(k)
= h,
€ R%i(w)
by using the premise.

(app) Assume we have derived ' mtu : 7 from I'¢t:0 > 7 and ' u : 0.
From the ind.hyp. we know that

h=k € a(w) — [t](z; — hi(k))
€ R777(w)
We choose f = 1% € W(w,w) and
g="Fk €a(w) — [u](zi = hi(k))
€ R (w)
by the other ind.hyp. Now we know that
k € a(w) — app((hoa(1*))(k), g(k))
€ R"(w)
Since
app((h o a(1"))(k), g(k)) = app(h(k), g(k))
= app([t](z: = hi(k)), [ul(zi = hi(k))
= [tu](z; = hi(k))
we arrive at
k € a(w) — [tu](z; — hi(k)) € R™(w)

(lam) Assume we have derived I' - A2t : 0 — 7 from Iz : ¢ F ¢ : 7. Given
the premises we have to show that

h = (k € a(w) — [Az°.t](z; — hi(k)))
€ R777(w)
we assume f € W(v,w) and g € R?(v).
j € a(v) — app((h o a(f))(5),9(7))
= j € a(v) = app([Az?.t](z; = (hi o a(f))(5)),9(7))
=j € a(v) = [t](z: = (hica(f))(4), = — 9(j))

Using monotonicity we have that h; o a(f) € R%(v) and hence (h,g) €
RI#:9(y). We apply the induction hypothesis to derive

Jj € a(v) = [t](zi = (hs 0 a(f))(4),z — g(j)) € R"(v)
Corollary 1. Given t : o, a Kripke logical relation R and a world w € W
(k € a(w) » [t]) € R? (w)



4 Completeness

In this section we shall construct a special Kripke logical relation which charac-
terizes the definable elements. Let TM be the category with objects are contexts
I' € Con and morphisms are substitutions.

T™M(I,A) ={y; |1 <i<m}{t| 'Ft:o;}

upto fn-equality. Composition is composition of substitutions. TM is an initial
CCC.
We use the following arity functor:
a(l') = [IT]
a(t € TM(I, Q) € [I'] = [4]
=pe[llm{zi|1<i<m} e [t:](p)

We define a Kripke logical relation by
RO ={pellm[tlp| '+ t:0}
We now verify that R corresponds to definability:

Lemma 2.
he R°(I) I'tt:o
Ibtio [=h' [JerRT) .
Proof. By induction over the structure of o: the case o follows directly from the
definition, hence we consider ¢ — 7:

q Given h € R°7™(I), i.e.
Vs € TM(A,I').Vg € R°(4A).(p € [A] = app(h([s](p)), 9(p))) € R7(4)

We choose a fresh  and consider A = I'.z : 0. We assign to s the weakening
substitution m; = x; — z; € TM(A,I'). We have I''x : 0 b x : 0 and hence
by (u) for o: [z] € R°(I'.x : 0).

Consider

f=pel'z: o]~ app(h([m](p), [z](r))
€ER (I'z:o0)
by (q) for 7 we know that there is a term Iz : o F ¢t : 7 s.t. [t] = f. We
construct I' F Az”.t : 0 — 7 and show that [Az?.t] = h. Assume p € [[7]
and p € [o]:
app([Az?.t](p),p) = [t](p U {(2,p)})

=flpU{(z,p)})

= app(h([m](p U {(z,p)})), [z](p U {(z,p)}))

= app(h(p), p)
by (ext) h(p) = [Az?.t](p) and since p was chosen arbitrary: h = [Az?.t].



u Given I' H t : ¢ —» 7 we want to show [[t] € R°77(I"). Assume as given
s € TM(A, I') and g € R7(A). By (q) for 0 we know that there is A wu: o
s.t. [u] = g- We are left to show that

f=pe[A] - app([t]([s](r), 9(p))
€ R™(A)
We show that f is definable:
app([t]([s](p)), 9(p)) = app([t]([s](p)), [v](r))

= app([[s]](0)), [1(»))
= [fslul (o)

Hence f = [[t[s]u] with A F ¢[s]u : 7 and by (u) for 7 we know that f €
R(A).

We get a general completeness result which is strong enough to characterize
relative definability:

Proposition 2. Given g € [I'] — [o] s.t.

AeTM he RI'(A)
(p € [A] = g(zi = hi(p))) € R7(4A)

then there is a I'Ft: 0 s.t. [t] = g.
Proof. We setA = I' and use (u) to derive

h=["]

€ RI(I")

Hence

g€ R(I
and using (q) we derive that thereisa I' -t : o s.t. [t] = g.
Corollary 2.

geR’() zeal)
o [t] = g9(z)

References

[Ali95] Moez Alimohamed. A characterization of lambda definability in categorical
models of implicit polymorphism. Theoretical Computer Science, 146:5-23,
1995.



[FS99] Marcelo Fiore and Alex Simpson. Lambda definability with sums via
grothendieck logical relatio ns. In Proceedings TLCA 99, number 1581 in LNCS,
pages 147-161. Springer, 1999.

[HR95] Peter W. Hearn and Jon G. Riecke. Kripke logical relations and pcf. Informa-
tion and Computation, 120, 1995.

[JT93] A. Jung and J. Tiuryn. A new characterization of lambda definability. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Applications,
volume 664 of Lecture Notes in Computer Science. Springer Verlag, 1993.

[Loa] Ralph Loader. The undecidability of lambda definibility. To appear in the
Church Festschrift.

[Plo73] G. D. Plotkin. Lambda-definability and logical relations. Technical report,
1973.

[Plo80] G. D. Plotkin. Lambda definability in the full type hierarchy. In J P Seldin and
J R Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, 1980.

[Sie92] Kurt Sieber. Reasoning about sequential functions via logical relations. In M. P.
Fourman, P. T. Johnstone, and A. M. Pitts, editors, Proc. LMS Symposium on
Applications of Categories in Computer Science, Durham 1991, volume 177 of
LMS Lecture Note Series, pages 258-269. Cambridge University Press, 1992.
LMS Lecture Notes Series, 177.

[Sta82] R. Statman. Completeness, invariance and A-definability. J. Symbolic Logic,
47(1):17-26, 1982.



