Reduction-free normalisation for a polymorphic system

Thorsten Altenkirch
Ludwig-Maximilians-Universitit
Institut fur Informatik
Oettingenstr.67, D-80538 Miinchen, Germany
E-mail: alti@informatik.uni-muenchen.de

Martin Hofmann, Thomas Streicher
Technische Hochschule Darmstadt
Fachbereich IV (Mathematik)
Schlofigartenstr. 7, D-64289 Darmstadt, Germany
E-mail: {mh|streicher}@mathematik.th-darmstadt.de

Abstract

We give a semantic proof that every term of a combi-
nator version of system F has a normal form. As the
argument is entirely formalisable in an impredicative
constructive type theory a reduction-free normalisation
algorithm can be extracted from this. The proof is pre-
sented as the construction of a model of the calculus
inside a category of presheaves. Its definition is given
entirely in terms of the internal language.

1 Introduction and Summary

In this paper we give a semantical proof of reduction-
free normalisation for Fg, a variant of Girard’s sys-
tem F based on combinators rather than A-abstraction
(for object variables). This generalises the semantical
normalisation algorithms for a simply typed systems
[2, 5, 1] to polymorphism.

As in loc.cit. we do not prove strong normalisation
but construct a function nf sending terms to terms in
normal form such that convertible terms are sent to the
same normal form and any term ¢t is convertible with
nf(t). Such a function is sufficient for practical pur-
poses as it allows for every term to compute its normal
form and thus to decide equality of terms. These “nor-
mal forms” are computed by structural induction on
terms; no notion of term-rewriting whatsoever is used.

This work is part of a larger programme aiming
at deriving reduction-free normalisation algorithms for
more complex systems such as Martin-Lof type the-

ory, Extended Calculus of Constructions (ECC), and
variants of the Logical Framework. The ultimate goal
would be to derive implementations of these systems
which would be more efficient than the existing ones be-
cause the reduction-free normalisation algorithms can
employ the interpreter of the underlying functional pro-
gramming language as e.g. Standard ML. This gain
of efficiency was the initial motivation of Berger and
Schwichtenberg for studying reduction-free normalisa-
tion. The case of simply-typed lambda calculus has
been treated in [2, 5, 1]. The richer systems like ECC
extend the simply-typed lambda calculus by two new
features: type dependency and polymorphism. We
make a first step towards the latter in this paper and
leave type dependency for future work.

The key idea of the present work (and also implicit
in [5]) is to construct a model G in which types are
interpreted as triples (A, AP™¢ A™) where A is a syn-
tactic type, AP™? is a family of “sets” indexed by con-
version classes of terms of A, and A™ is a function
mapping an element of AP™4([t]) to a normal form in
[t], i-e. convertible with ¢. Unlike in [5] where these
“sets” are ordinary sets in our model they are replaced
by presheaves over the algebraic theory of types, i.e.
contexts and type substitutions.

We summarise our main technical results. Our con-
structions are carried out within (models of) an im-
predicative Type Theory, i.e. an extensional version of
the Calculus of Constructions extended by inductive
types (e.g. similar to [8]). We prove that the category
S of constructive-set-valued presheaves over the small
category S of type substitutions forms itself a model of



impredicative type theory. We give a characterisation
of exponentials in S which allows us to construct a term
model of Fgi living inside S in which type quantifica-
tion becomes “set-theoretic” dependent product. The
main result consists of the construction of the glued
model G also inside § which can be considered as a
naive version of Tait’s computability predicates. The
desired normalisation function is an immediate corol-
lary of the correctness of this model.

2 The System Fgi

We use de Bruijn indices to represent type variables;
the judgement n F A means that A is a type with at
most n free variables and is defined as follows :

n+l1FA

0<i<n
nk V(A)

nki

nFA nkEB

V.
(VAR) nkFA=B

=) (v)

We define the category S of type substitutions as
usual: objects are natural numbers and a morphism in
S(m,n) is an n-tuple of types m F A;. Composition is
substitution which can be defined as a recursive func-
tion over the syntax. S has a terminal object 0 and
finite products which are given on objects by addition.

Ifn+1F Aand n + B then we write A[B] for
Ao(idy,,B) and Bt for Bomp 1, where m,,1 € S(n +
1,n) is the first projection. We have n + A[B] and
n+1F BT,

The terms together with their types are given by
the following rules which define a judgement n F¢: A
meaning that ¢ is a term with type n - A.

nk A nk B nkC (s)
nks:(A=B=C)=>(A=B)=>A=C ®
nk A nk B K
ntFk:A=>B=A (k)

nk A n+1FB
(w,2)

nFw: (A= V(B) = V(A" = B)
nkz:VY(AT = B) = (A= V(B))

nks:A= B nkt: A

nkst:B (aP)
n+lkt: A
nkE A(t) : V(A) (4)
nkt:V(A) nk B (A)
ntktB: A[B|

The notion of type substitution can be extended to
terms, i.e. given n+1F ¢t : A and n - B we have

n F ¢[B] : A[B] (more generally: the sets of pairs (¢, A)
for n -t : A form a presheaf over S).

Equality (convertibility) is given by the least congru-
ence generated by the following equations (we assume
implicitly that both sides have the same type):

A(t) B = t[B]

t=A(tt0)

kst=s
srst=(rt)(st)
wfCs=fsC
zfs C=fCs

Here A, B,C range over type expressions and f,s,t
range over terms.

We write n - s=t:Afornk s,t: Aand s = t.
We remark that we can define functional abstraction in
the usual way; the combinators w and z are required to
distribute such an abstraction over a type application
and abstraction, respectively.

The subset NF of terms in normal form is defined
inductively by the following grammar (where s,t € NF
and A, B, C are types):

NF =k |kt|s|st|sst|w|wtA|z|zt]|A)

So the normal forms consist of the combinators par-
tially applied to normal forms and abstractions of nor-
mal forms. We do not consider the partial application
w s for s a normal form as a normal form because as a
term it is equal to A(w st 0) by rule ETA. Similarly, we
do not consider terms of the form zst as a normal form
because such term is convertible with AX.s At which
according to the form of s may be further reduced.

3 Constructive metalanguage

We understand the previous and the following defini-
tions to be made within a constructive metalanguage
which contains an impredicative universe Prop of small
sets closed under inductive definitions. Impredicativ-
ity means that the product of an arbitrary family of
small sets is again small. Furthermore, we require sub-
set types for equality predicates (i.e. equalisers). A
model for such a metalanguage is furnished by w-Sets
and Pers/modest sets as described in [11].

We use an informal (impredicative) extensional
Martin-Lof type theory to denote constructions in the
metalanguage. In particular, we write II and X for
dependent product and sum, and we use A and jux-
taposition for abstraction and application and (—, —)
for pairing and .1, .2 for the projections. We use



the symbol Type for the universe of sets in the meta-
language and we form kinds like A — Type to de-
note the class of families of sets indexed over A. If
B : A — Type and f(z),g(x) : B(z) if z: A then we
write {z: A | f(z) = g(x)} for the subset of A where f
and g agree.

Many of our constructions are taking place in spe-
cific models of our metalanguage. We overload the
syntax of the type theoretic operations but may dis-
ambiguate by Type®, II¢, ¢ where C is the model.
Since the models are defined in terms of our construc-
tive metalanguage all internal constructions can be ex-
panded and replaced by much longer (and unreadable)
definitions in the metalanguage.

If a: A and f(a) = g(a) then we may write a : {z: A |
f(z) = g(z)}. Conversely, if a : {z: A | f(z) = g(z)}
then a : A and furthermore f(a) = g(a) may be in-
ferred. If A is a small set then so is {z: A | f(z) =

g(z)}.

For the definition of functions we either use A-
notation like in f = Az: A.t or equivalently a “point-
wise” notation like in f(z: A) = t. For iterated ap-
plication we sometimes use parentheses and commas,
eg. if f: A - IIb: B.C(b) and a: A and b: B then
we may write f(a,b) instead of f a b. We sometimes
omit arguments which can be inferred. For instance, if
f :Ma: A.B(a) — C and a: A and b: B(a) then we may
abbreviate f(a,b) by f(b).

4 Semantics of Fgk

A simple set-theoretic semantics of Fgg can be given
as follows. We interpret types as small sets, i.e. ele-
ments of the impredicative universe Prop, and terms
as elements. Type quantification is interpreted by im-
predicative quantification. Rather than spelling out
this interpretation in detail we give an abstract no-
tion of model together with a generic interpretation
function. The “set-theoretic semantics” then forms a
special case.

Definition 1 An Fqy-algebra A is given by a set | A| :
Type to interpret the types and a family of sets A :
|A| — Type to interpret the terms, and functions of

the following types :

= : |A|l x|4] = |4]
Vo (JA[ = A = A
A : IB:|A| - |Al.(IX: |A].A(B X)) —» A(V B)
Ap : TB:|A| — |Al.A(VB) - IIX: |A|.A(B X)
ap : A, B:|Al.A(A = B) x A(A) - A(B)
s : IIA,B,C:|A.
A(A=B=0)=>(A=>B)=> (A=>(0))
k : IIA,B:|Al.A(A = (B = A))
w : IIA:|A|.IIB:|A| — |A].
A((A = V(B)) = Y(A\X:|A|.A = (B X)))
z : IIA:|ALIIB:|A| — | A
ANVOAX:|Al.A = (BX))) = (A= V(B))

Note that we use = in infix notation. (Ap Bt X) is
abbreviated t{ X} and (ap A B st) is abbreviated s't.

These data are to satisfy the universal closures of
the following equations.

(ABt){X}=tX
AB(AX:|A[#{X}) =t
(s A B C)utviw = (utw)}(v'w)
(k A BYwlv = u
(w A B)u){X}v = (u'v){X}
((zA B)w)'v){X} = (u{X})'

Fix an Fgi-algebra A. By induction on derivations
we interpret types of Fqy in n free variables as func-
tions from |A|™ to |A| and terms of type A in n free
variables as functions of type ILX: |A|".A([n - A](X))
where [n F A] : |A|™ — |A| is the interpretation of the
type A. The semantic equations are straightforward:
syntactic constructs are interpreted by their semantic
counterparts. As examples we give the semantic equa-
tions for type quantification and type abstraction:

[n F V(A)] = AX: [A" VY : |Al.[n + 1 F A](X,Y))

[nF At) : V(B)] =
AX:|APANY: Al [n+1F ¢ : Bl(X,Y))

Theorem 2 (Soundness) The interpretation is well-
defined on judgements, i.e. does not depend on the

derivation chosen. Whenever n F t = t' : A then
[ntHt:A]l=[ntEt : A].



The set-theoretic semantics from above can be cast
into this abstract framework in the sense that we
have an Fgi-algebra P given by |P| = Prop and
P(X) = X. Due to the higher-order nature of the
V- and A-operators instances of Fqk-algebras do, how-
ever, not exist in abundance. We get more instances
of Fgy-algebras, in particular a term model, if we con-
sider Fgi-algebras within the presheaf category K of
contravariant functors from some small category K to
the category of (constructive) sets. In particular, we
shall define a term model inside the presheaf category
S.

Before doing this, we explain how presheaf cate-
gories form a model of our constructive metalanguage
so that all definitions made within this language (in
particular the notion of an Fgy-algebra) make sense
inside such a presheaf category.

5 Presheaves as a model of the con-
structive metalanguage

Let K be a small category. It is well-known that the
category K = SetKop of presheaves supports exten-
sional Martin-L&f type theory together with inductive
definitions even if the ambient set-theoretic universe
with respect to which K is formed is not a topos, but
only a model of Martin-Lof type theory itself. We re-
fer to [10] for the precise definition of the interpretation
of Martin-Lo&f type theory in a category of presheaves.

We only remind the reader here that dependent
types in K can be understood v/iaihe equivalence of
categories [9, p. 157] K/F = EI(F) where EI(F) =
y/F is the category of elements of the presheaf F.
It has as objects pairs (X, f) where f € F(X) and
a morphism from (X, f) to (X', f') is a K-morphism
u : X — X' such that F(u)(f') = f. We write
K(F) for E'/I(F) So for example the objects of kind

F — TypeX are the objects of K(F).

Less well-known is the existence of a small impred-
icative universe in K. Call a presheaf F' € K “small” if
for every X € K the set FI(X) is small, i.e. lies in Prop.
More generally, if G is any presheaf, we can consider
the set Small(G) of small presheaves in K(G). It is ob-
vious that the product of a family of small presheaves
is again small because its construction only involves
taking products of small sets.

By precomposition the assignment Small(_) extends
to a contravariant set-valued functor on K. This func-
tor is representable:

Theorem 3 The small presheaves over G are in bi-
jective correspondence with K-morphisms from G to

the presheaf Prop defined by Prop(X) = Small(y(X))
where y : K — K is the Yoneda embedding.

We shall henceforth identify small presheaves with the
associated morphisms into Prop and use the informal
Martin-Lof type theory explained above in Sect. 3 also
to denote constructions in presheaf categories.

5.1 Interpretation of the syntax in an Fgy-
algebra inside K

Assume an Fgg-algebra inside some category of
presheaves K. This means that we have a presheaf
|Al € K (ie. | A : TypeK) and a presheaf A € K(|A|)
(i.e. A : | Al — Type®) and constants as in Def. 1 of
the required types which are now understood w.r.t. the
internal language of K. Again by induction on deriva-
tions we can define a semantic function [] which to
n b A associates a K-morphism from |A|" to |A| and
to terms n F t : A associates a global element of the
presheaf ILX: | A|".A([n F A](X)). Viewed externally,
[+ A] assigns to I € K and X € |A|(I)™ an element
[n + A],(X) € |A|(I) natural in I and similarly for
terms. Again, we have the following soundness prop-
erty

Proposition 4 The interpretation of Fgk in an Fgi -
algebra internal to a category of presheaves is sound in
the sense that whenever n -t =1t' : A then [n - t :
Al=[nkt : A].

5.2 The term model as an Fgi-algebra

We are now ready to define the desired term model 7

internal to S. Its object of types |T| is given by the
presheaf Ty defined by

Ty(n) ={A|nt A}
Ty(F € S(m,n))(A € Ty(n)) = A[F]

Notice that Ty is (isomorphic to) the representable
presheaf y(1) = S(,1). The object of terms T € S(Ty)
is the presheaf Tm defined by

Tm(n,A)={t|nkt: A}/=
Tm(F)([tl=) = [¢[F]]=

Here = refers to judgemental equality of terms, i.e. the
set Tm(n, A) consists of equivalence classes of terms
modulo convertibility.

For the definition of the remaining components we
need the following characterisation of exponentials by
representable presheaves.



Lemma 5 Let K be a category with finite products,
A € |K]| be an object of K. For any presheaf F € K
the ezponential y(A) — F in K is isomorphic to the
presheaf F(— x A).

In particular, if F € S we may identify the presheaf
Ty — F with the presheaf FT given by F*(n) =
F(n+1). Accordingly, we define V: (Ty — Ty) — Ty
by V,(A € Ty(n + 1)) := V(A). The other compo-
nents are defined analogously by their syntactic coun-
terparts replacing exponentiation by Ty with “weaken-
ing” where appropriate.

Proposition 6 Let [—] denote the interpretation of
the syntax in the term model T. We have ([n F
Al )m(F: Ty"(m)) = A[F], whenever n F A and
([n F t : Alp)m(F: Ty"(m)) = [t[F]]=, whenever
nkt:A

5.3 The presheaf of normal forms

The normal forms are stable under generalised substi-
tution meaning that if n - ¢ : A is a normal form and
F € S(m,n) then m + t[F] : A[F] is also a normal
form. This allows us to define a presheaf NF' of normal
forms over Ty by NF(n,A) ={t € NF |ntt: A}. We
denote by i : NF' — T'm the obvious embedding of nor-
mal forms into terms. We remark that ¢ is a priori not
a monomorphism since elements of T'm are equivalence
classes by convertibility.

Proposition 7 The constructors of the inductive set
NF give rise to the following functions operating on the
presheaf NF':

ko : ITA, B: Ty.NF(A = (B = A))

ky : TTA, B: Ty.NF(A) - NF(B = A)

so:IIA,B,C: Ty NF((A= (B=>()) >
(A= B)=> (A=0))

s1 : A, B,C: Ty NF(A= (B=(C)) »
NF(A=B)= (A= 0))

s : 1A, B,C: Ty NF(A= (B=(C)) »
NF(A= B) - NF(A=C)

wo : [TA: Ty.IIB: Ty — Ty.NF((A = V(B)) =
V(AX: Ty.A = (B X)))

wy : ITA: Ty.IIB: Ty — Ty.NF(A = VY(B)) -
ILX: Ty.NF(A = (B X))

20 : TIA: Ty.IIB: Ty — Ty.NF(YO\X: Ty.A =
(BX)) = (4= V(B))

21 : TA: TyIIB: Ty — Ty.NF(YOX: Ty. A =
(B X))) » NF(A = V(B))

Anp : IIB: Ty — Ty.(ILX: Ty.NF(B X)) — NF (Y B)

The universal closures of the following equations are
valid where the right hand sides refer to the term model

i(k1(A, B,t)) = k(4, B)!(t)
i(SO(ArB:C)) = S(A,B,C)

i(sl (A7 B7 C: t)) = S(A7 B: C)z,"(t)
i(s2(4, B, C, 5,t)) = s(A, B, C)"i(s)"i(t)
i(wo(A, B)) = w(4A, B)

i(wa(4, B, t, X)) = w(A, B)li(t){X}
i(ZO(A7 B)) = Z(A7 B)

i(zl(AaB:t)) = Z(A,B)zi(t)
i(ANr(B,t)) = AAX: Ty.i(t X))

6 The glued model

Our aim here is to define an Fgi-algebra internal to
the arrow category S~ in which syntactic terms are
“glued” together with functions describing how they
act on normal forms. By the isomorphism (SetSOP)—’ =
Setsopx_’, where — is the category with two objects
0,1 and one non-identity morphism from 0 to 1 the
arrow category S~ is also a category of presheaves and
so the general theory applies.

We shall, however, only make use of the internal
language of S and construct the required objects in
S explicitly. To that end it is appropriate to em-
ploy the equivalence between families of types and
their associated display maps. More precisely, we view
an object of S as a pair (I, X) where I € § and
X : I — Type®, ie. X € S(I). Accordingly, a mor-
phism from object (I, X) to object (J,Y) in this pre-
sentation consists of a function f : I — J and a func-
tion f : IIi: 1.X (i) = Y (f¢). The exponential of (I, X)
and (J,Y) in §~ is then given by the pair I — J and
Af:I —» JILi: 1.X(i) - Y(f14). Notice the obvious
similarity with Logical Predicates and ’deliverables’. If
(I,X) is an object of S™ presented as a ‘deliverable’
then a family (in $7) over (I, X) is a pair (J,Y) where
J:I— Type and Y : IIi: 1.J (i) x X (i) — Type. The
dependent product of such a family is given by the pair
Ii: 1.J(¢) and A\f: 1L 1.J(3).10: I.1lx: X (4).Y (i, f @, z).

6.1 Types and terms in the glued model

We can now construct the desired glued model G in-
ternal to S™. Its first component will be identical to
the term model, i.e. the functor Fst : S~ — § sending
(I,X) to I maps the glued model to the term model.
For this reason we refer to the first component I of an
object (I,X) as the syntactic component and to the
second one (X) as the semantic component of (I, X).
We use the same terminology for morphisms (and ele-
ments). If A is an object of G we refer to its compo-



nents by A%Y™ and A°¢™, respectively, and so we do for
morphisms.

Accordingly, the object of types in the glued model
takes the form |G| = (Ty, Ty) where Ty : Ty — Type
is given by

Ty(A: Ty) =
YP: Tm(A) — Prop.Ilt: Tm(A).
P(t) = {t':NF(A) | (it') =t}

So an element of Ty(A) consists of a “proof-relevant
predicate on Tm(A)”, i.e. a small presheaf P indexed
over Tm(A) and for every term ¢ and element of P(t) (a
“proof” of P(t)) a normal form #' which is convertible
to term ¢t. If A : Ty(A) we refer to its components
by AP and A™, ie. we have AP™? : Tm(A) —
Prop and A™ : TIt: Tm(A).AP™4(t) — NF(A) and
if ¢: Tm(A) and t: AP"®4(¢) then i(A™ (t,t)) = t. We
also abbreviate A™ (t,t) by q(t) if ¢ and A are clear
from the context. The property “has a normal form”
itself forms an element of Ty (X) for every X: Ty, more
precisely, we define U: I1X: Ty.Ty(X) by:

U(X)Ped = At Tm(X).{t': NF(X) | i(t') =t}
u(x)™ M: Tm(X).\t:U(X)Pred(t).t

The object of terms G takes the form (Tm, Tm) where
Tm : ITA: Ty. Ty(A) x Tm(A) — Type is defined by
Tm(A, A, t) = AP™4(t). Tt remains to define the re-
quired functions on types and terms and to establish
the equations.

6.2 Interpretation of type quantification

An element of |G| =57 |G| is given by B : Ty — Ty
(the syntactic component) and B : IIX: Ty.Ty(X) —
Ty (B X) (the semantic component). From these data
we have to construct V(B,B) : Ty(V(B)) *

V(B,B)Pred(t) =

TLX: Ty.IIX: Ty(X).B(X, X)7(t{X})
V(B,B)"(t,t) =

Anr(AX: Ty.q((6(X,U(X)))))

where t : Tm(V(B)),t : V(B)Prd(t).

Notice that impredicativity of Prop € S is required
in this place. It is straightforward to verify that the
equation i(V(B,B)™ (t)) = t holds.

For the abstraction assume ¢ : IIX: Ty.Tm(B X)
and

t:IX: TyIX.Ty(X).B(X,X,t X).

INote that the syntactic component is already fixed by the
requirement that Fst induces a homomorphism from G to T

Now

Tm(¥(B),V(B,B),A(t)) =
ILX: Ty.IIX: Ty (X).B(X, X) 4 (A(t){X })

by definition. The latter equals
IX: Ty.ITX: Ty(X).B(X, X)P™(t X)
Thus we have
t: Tm(V(B),V(B,B), A(t))
and we can define
A(B,B,t,t) =1t

For application assume that ¢t : Tm(II(B)) and t :
Tm(VY(B),V(B,B),t). Like before we can show that

Tm(VY(B),V(B,B),t) =I1X: Ty.IIX: Ty(X). Tm(BX,B(X, X), t{X}
So for X: Ty and X: Ty(X), we define
Ap(B,B,t,t,X,X) = t(X,X) : Tm(BX, B(X,X), {X})

The semantic equations can be seen to hold simply by
expanding the definitions of A and Ap.

6.3 Interpretation of function types

Assume that A, B: Ty and A:Ty(A) and B: Ty(B).
We have to define the semantic component A = B :
Ty(A = B). This is done as follows:

(A = B)Pd(t: Tm(A = B)) =
{t: NF(A= B) |i(t") =t} x
Ia: Tm(A).Tm(A4, A,a) - Tm(B, B, tla)

(A = B)Y(t: Tm(A = B), t: (A = B)?Prd(t)) = t.1

Intuitively, ¢ : Tm(A = B) “satisfies” A = B if it is
convertible to a normal form and sends objects satis-
fying AP™? to objects satisfying B?"e¢.

As for term application we start from u: Tm(A =
B) and v: Tm(A) together with u: Tm(A = B,A =
B,u) and v:Tm(A,A,v). We have u.2(v,v)
Tm(B,B,ulv). This suggests to define the semantic
component of application by

ap('A7 A'7 B7 B7 u? u7 v? v) = u'2(1}7 v)7

which works as required.

It remains to define the combinators. Their def-
inition follows closely the development in [5] except
that we work in the internal language of § here. For
the k-combinator asssume A, B: Ty and A: Ty(A) and



B: Ty(B) as before. The semantic component k of the
k-combinator is an element of

Tm(A= (B=A4), (A
We define it by

k(A,A,B,B) = (ko(4, B), Aa: Tm(A).Aa: Tm(A,a).

<k1 (A, B, q(a))7
Ab: Tm(B).Ab: Tm(B, b).a))

= (B=A)), k)

To see that this is type correct we observe that in its
context a has type Tm(A,kla'b) because the latter
equals Tm(A, a) by the conversion rule for k. Again,
the semantic equation for k, i.e. the universal closure
of ap(ap(k(4,A,B,B),a),b) = a follows easily by
equality reasoning.

For the remaining combinators s, w, z we follow
the same pattern: we use the partially applied nor-
mal forms (sg,wg, etc.) as witnesses of the required
normal forms and the proof objects that the subterms
occurring in the construction satisfy the predicates are
constructed by mimicking the combinators on the se-
mantic level. For the ease of the reader we give the
definitions of the semantic combinators here.

s(4,A,B,B,C,C) =
(50 (Aa Ba C)a

du: Tm(A = B = C). D u:Tm(A = B = C,u).

(s1(4, B, C,q(u)),

Av: Tm(A = B).Av: Tm(A = B,v).
<S2(AaBaC q( ) (V)),
Aw: Tm(A).dw: Tm(A,w).
(u2w).2 (v.2w))))
W(A, 'A‘JBJB) =
<W0(Aa B)J

Au: Tm(A = V(B)).Au: Tm(A = V(B)).
AX: Ty A X: Ty (X).
<W2(A737 q(u),X),
Aa: Tm(A).da: Tm(A,a).u.2(a, X)))

Z(A7 ‘A" B7 B) =
(z0(4, B),
Au: Tm(V(AX: Ty.A = (BX))).
Aw: Tm(VOAX: Ty AX: Ty (X).A = B(X))).
<21 (Aa Ba q(ll)),
Aa: Tm(A).da: Tm(A,a).
AX: Ty AX: Ty(X).u.2(X,a)))
This completes the definition and verification of the
glued model G.

7 The normalisation function

Following the pattern already exhibited in [5, 1] we can
now extract a normalisation function from the interpre-
tation of the syntax in the glued model. Let [—]; and

[-1; denote the interpretations in G and 7, respec-
tively. Recall from Section 5.1 that [-]¢" and [-],

are natural transformations in S the fibres of which we
denote by [-]¢’, and [~],, for m € N.

Proposition 8 Assume m,n € N, F € S(m,n) =
Ty™(m), and nt A and ntt: A. We have

[n b Algh (F) = [nt Al (F) = A[F]

and also

[ntt: Al (F) =[ntt: Aly, (F) = [t[F]]=

Proof. Immediate from the definition of ¢ and
Prop. 6. O

Theorem 9 For every closed type 0 = A there exists
a constructively definable function nf 4 mapping closed
terms of type A to normal forms in such a way that if
OFt:AthenOFnf (t)=t:Aandif OFt=¢:A
then nf 4(t) and nf 4(t') are syntactically equal.

Proof. For 0 F t : A we make the definitions A :=
[OF A]**™ and t := [OF ¢ : A]*™. We define

nf () == A" o(to())
IfOFt=1t:Athen[OFt: Al =[0F ¢ : A] by
soundness and hence nf 4(t) = nf 4(t'). To see that

0Ft=mnfs(t) : A consider the following diagram?
instantiated at 0 which commutes by definition of the
glued model.

Tm(A, )

Tm([0 - A]"") ~——— NF(4)

1 — >
OF&: A"
It expresses that that i(nf(t)) = i(A™o(to(x))) = [0 F

t : A]3Y" (%). By Prop. 8 the latter equals [t]—, i.e. the
equivalence class of ¢ under conversion. O

The restriction to closed terms is immaterial as by type
abstraction the closed terms are in 1-1 correspondence
to the open ones.

2This diagram has been typeset using Paul Taylor’s Latex
package.



8 Conclusion and further work

We have given a Tait-style proof of normalisation for
a combinator version of system F. By working inside
a category of presheaves we were able to consider type
quantification as a higher-order operation which allows
for particularly simple clauses in the definition of the
“computability predicates”. We emphasise that our
proof includes 7-conversion on the level of types. In
verifying the construction of G from the term model
we have successfully employed the Lego system as a
proof assistant for the internal language of S.

Our method can be extended to full system F
based on functional abstraction instead of combinators
and including the corresponding #-rule. This can be
achieved by working in the category of presheaves over
type substitutions and weakenings of ordinary contexts
(cf. [1]). In this category the term model takes the form
of an internal CCC closed under Ty-indexed products.
Again, the glued model has the same form, but as be-
fore lives in the corresponding arrow category. A de-
tailed exposition is in preparation.

A by-product of our work consists of a semantic jus-
tification of higher-order abstract syntaz [7, 6]. We
have shown how type quantification (even in the syn-
tax) arises naturally as a higher-order operation when
working inside a category of presheaves. In the presheaf
category to be used for full system F' we can also con-
sider functional abstraction as a higher-order opera-
tion. According to whether we use full substitutions
or merely weakenings as the site of definition we ob-
tain the type (Tm(A) —» Tm(B)) - Tm(A = B) or
(Par(A) —» Tm(B)) — Tm(A = B) as the type of
functional abstraction. Here Par(A) is the semantical
counterpart to “variables” of type A as given by the
presheaf represented by A. The latter may be com-
pared to the approach described in [6]. This aspect
might be of interest in its own.

In order to effectively extract a program for normali-
sation one would have to produce a formalisation which
actually implements presheaves and natural transfor-
mations and not merely refers to them abstractly via
the internal language of S. All the definitions which
for ease of exposition we have made in terms of the
internal language have to be expanded into their set-
theoretic or rather type-theoretic formulations. There
is no principle obstacle in doing so, but obviously such
formalisation would be very laborious. For a simply-
typed system this has effectively been carried out in
[4].

From such a formalisation one can immediately de-
rive an executable function nf. This function nfis given
by type-theoretic code which can be seen as a func-

tional program.

To achieve reasonable performance this code can
be transformed into an SML program (see Appen-
dix 8). To do this one has to systematically replace
dependently-typed inductive definitions by recursive
datatypes and delete computationally-irrelevant argu-
ments.

For example the type of the semantic values which in
the type-theoretic formulation depends on types and on
(convertibility classes of) terms becomes in Standard
ML the following recursive datatype where and Nf is a
simple inductive definition of normal forms.

= u of Nf
| s_arr of Nf*x(Sem -> Sem)
| s_pi of (Sem -> Nf) -> Sem;

datatype Sem

The three constructors correspond to the three possi-
bilities of forming semantic objects explained in Sec-
tions 6.1, 6.2, and 6.3.

In order to justify these changes of data structure
a general theory is called for. Lacking such theory at
the moment we have to content ourselves with intuition
and—if desired—a brute-force verification of the SML
program using logical relations defining in which sense
the SML program simulates the type-theoretic one.

A An SML program extracted from the
construction

infixr -->;

var of int |

| pi of Ty
| —=> of Tyx*Ty;

datatype Ty

datatype Tm = s
k of Ty

W

I

I

| z of Ty
| app of Tm*Tm
| Lam of Tm

| App of Tm*Ty;

datatype Nf = sO | s1 of Nf | s2 of Nf#Nf
| X0 | k1 of Nf
| wO | wi of Nf
| z0 | z1 of Nf
I

Lam’ of Nf;

datatype Sem = s_u of Nf
| s_arr of Nf*(Sem -> Sem)
| s_pi of (Sem -> Nf) -> Sem;

fun s_u’ (s_u M) = M;



fun

fun

fun

fun

fun

1]
H

sem_app (s_arr (M,f))

sem_App (s_pi f) = f;

quote (var i) gs x
nth(gs,i) (x)

quote (_ --> _) gs (s_arr (M,_)) =
M

quote (pi A) gs (s_pi f) =
Lam’ (quote A (s_u’::gs) (f s_u’))

eval (k(A)) gs =
s_arr (kO,fn x =>
s_arr (ki(quote A gs x),fn y => x))
eval s qs =
s_arr (sO0,fn (s_arr(M,f)) =>
s_arr(s1(M) ,fn (s_arr (N,g)) =>
s_arr(s2(M,N) ,fn x =>
sem_app (f x) (g x))))
eval w gs =
s_arr (w0,fn (s_arr (M,f))
s_pi (fn q =>
(s_arr (wi(M),fn x => f x))))
eval (z(A)) gs =
s_arr (z0,fn f =>
s_arr (zl(quote A gs f),fn x =>
s_pi (fn q =>
sem_app (sem_App f q) x)))
eval (app (M,N)) gs =
sem_app (eval M qs) (eval N gs)
eval (Lam M) gs =
s_pi (fn q => eval M (q::qs))
eval (App (M,A)) gs =
sem_App (eval M gs) (quote A gs)

)
A\

nf M A = quote A [] (eval M []1);

Examples:

val
val

poly_id = Lam (app(app(s,k(var 0)),k(var 0)))
unit = (pi ((var 0) --> (var 0)));

nf poly_id unit;
nf (App(poly_id,unit)) (unit --> unit);
nf (app(App(poly_id,unit),poly_id)) unit;

References

[1]

T. Altenkirch, M. Hofmann, and T. Streicher. Cat-
egorical reconstruction of a reduction-free normalisa-
tion proof. In D. Pitt and D. Rydeheard, editors, Proc.
CTCS ’95, Springer LNCS, Vol. 953, pages 182-199,
1995.

U. Berger and H. Schwichtenberg. An inverse of the
evaluation functional for typed A-calculus. In Proceed-
ings of LICS 91, Amsterdam, pages 203-211, 1991.

(3]
[4]

[5]

[6]

[10]

[11]

R. Constable et al. Implementing Mathematics with
the Nuprl Development System. Prentice-Hall, 1986.
C. Coquand. From semantics to rules: a machine-
assisted analysis. In Borger, Gurevich, and Meinke,
editors, Proceedings of CSL ’93, pages 171-185.
Springer, LNCS, 1994.

T. Coquand and P. Dybjer. Intuitionistic model con-
structions and normalization proofs. Mathematical
Structures in Computer Science, 1993. to appear, pre-
vious version has appeared in the informal proceedings
of the BRA-Types workshop, 1993 held in Turin.

J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-
order abstract syntax in Coq. In M. Dezani and
G. Plotkin, editors, Typed Lambda Calculi and Appli-
cations, pages 124-138. Springer LNCS vol. 902, 1995.
R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. J. ACM, 40(1):143-184, Jan. 1993.
Z. Luo. Computation and Reasoning. Oxford Univer-
sity Press, 1994.

I. Moerdijk and S. M. Lane. Sheaves in Geometry and
Logic. A First Introduction to Topos Theory. Springer,
1992.

W. Phoa. An introduction to fibrations, topos theory,
the effective topos, and modest sets. Technical Report
ECS-LFCS-92-208, LFCS Edinburgh, 1992.

T. Streicher. Semantics of Type Theory. Birkh&user,
1991.



