A-calculus and types

Lecture notes
Midland Graduate School / APPSEM Spring School 2004

Thorsten Altenkirch

School of Computer Science and Information Technology, Nottingham University
txa@cs.nott.ac.uk

1 Introduction

1.1 A short history

The A-calculus was introduced by Alonzo Church in the 40ies. The initial goal
was formalisation of mathematical reasoning, I believe. Then Turing showed that
the A\-definable functions on encodings of natural numbers are the same as the
ones definable by Turing-machines. This lead to the Church-Turing thesis that
all notions of computations are equivalent in power.

Realizing the potential of A-calculus for programming, in the 50ies, McCarthy
used A-notation in the design of the programming language LISP (for LISt Pro-
cessing). This started the tradition of functional programming languages, which
lead to languages such as ML in the 80ies and Haskell in the 90ies. Both language
are based on typed versions of the A-calculus. ML following the LISP tradition is
an impure functional languages, allowing effects such that updates of the mem-
ory to occur during evaluation and further computation depend on this, while
Haskell is pure: a function is applied to the same value will always return the
same answer.

With hindsight we may say that one of the main stumbling blocks of the early
work on A-calculus was the concentration on the untyped A-calculus, which made
it hard to use to codify reasoning due to the existence of fizpoint combinators,
which allow the construction of the fixpoint of any function, e.g. negation, which
leads to logical paradoxes. Indeed, it was only in the 70ies when Dana Scott
found a semantic explanation of the untyped A-calculus, introducing domain
theory which can be used as a tool to model and reason about computations
semantically.

Typed A-calculus was introduced by Curry and Church, this system has a
much simpler semantic interpretation in terms of total functions and it can be
applied in programming to avoid the occurence of run-time errors. It was realized
by Curry and Howard that there is an interesting link between A-calculus and
logic: typed A-terms can be viewed as proofs in intuitionistic logic — this is called
the Curry-Howard-isomorphism. Another interesting connection was discovered
first by Lambek: typed A-calculus can be viewed as the theory of cartesian closed
categories (CCCs).

In the eary 70ies Girard introduced System F, a typed A-calculus to model
2nd order logic. His strong normalisation proof can be viewed as a proof of
Takeuti’s conjecture, that there is a purely syntactical consistency proof of 2nd
order logic. It is noticable that basically the same calculus was rediscovered by
Reynolds to model polymorphic functions in computer science. System F had a
big impact on the analysis and design of modern programming languages, e.g.
see Benjamin Pierce’s recent book [9] for a comprehensive overview of types for
programming languages. However, System F comes with some semantic troubles,
e.g. Reynolds had to realize that there is no simple set-theoretic model of System
F and the strong normalisation proof requires impredicative reasoning, which
makes it less interesting for foundational purposes.

Also in the early 70ies Per Martin-Lof started the development of Type
Theory, a constructive foundation of mathematics, bringing the Curry-Howard-
isomorphism to its logical conclusion by identifying types and propostions (and
consequently programs and proofs). A central concept is the notion of a de-
pendent type, i.e. a type which can depend on values. Type Theory and its
impredicative extension the Calculus of Constructions by Coquand and Huet
(basically a combination of System F and Type Theory) lead to a number of
computer aided reasoning tools such as NuPRL, LEGO, COQ and ALF. We
are now beginning to realize the potential of Type Theory for the design of
programming languages and program development tools for the proliferation of
programs, which are correct by construction. This topic will be explored in Conor
McBride’s course on Dependently Typed Programming using his recent language
and tool Epigram.

I apologize for the lack of references in this section. I hope to be able to fix
this in future versions of these notes.

1.2 Ideology and programme

These notes are based the view that typed A-calculi should be considered as
fundamental because they can be used to model total functions which are easier
to understand than partial functions and which are ultimatly more useful to
construct solutions of problems.

What is a (total) function? In Set Theory functions are represented as a
relation which is total on the domain and deterministic on the codomain. In
my view this does not reflect my intuitive understanding of a function as a
mechanism, to which I can input values of the domain and which will reply with
an element of the codomain. An important aspect of the constructive idea of a
function is that while a function is given by a mechanism, we are not allowed
to inspect it, i.e. the mechanism is hidden within a black box. This theory of a
functions can be formalized by the Bn-equality of typed A calculi. If we are only
interested in computation but not in the consequences of the black box view,
the weaker (3-equality is sufficient.

Given my views on traditional Set Theory, it may not be surprising that the
development presented in these notes takes place in a constructive metatheory.
However, I will use familiar notations and notions, whenever possible. Having

said this I am quite fond of a two-dimensional syntax, which uses rules to rep-
resent constructions in the conclusion relying on the presence of a number of
objects given in the premise.

I write ASet for A is a set and P Prop for P is a proposition and I write
a € A for a is an element of A. A central means of defining sets and propositions
are inductive definitions which show how elements of sets can be constructed
and what propositions can be proven.

1.3 Overview

In section 2 I will introduce the simply typed A calculus and will discuss some
core issues, such as substitution and a-equality, 8 and n-equality and the rela-
tion to cartesian closed categories, combinatory logic, functional encodings and
primitive datatypes like Bool or Nat. In section 3, I'll get a bit more technical
and present two proofs of normalisation for S-equality: normalisation by reduc-
tion and normalisation by evaluation. I plan to add a section on mormalisation
by evaluation for Bn-equality in a future version of these notes.

2 The simply typed A-calculus

In the following we will introduce the simply typed A-calculus, A} over a given
set of type variables or uninterpreted base types X. In the literatur frequently
the calculus with just one base type o is considered, we would write this as)\j}.
To avoid being restricted to functional encodings of data we will also consider
the simply typed A calculus with a type of Booleans A~2 or with a type of
natural numbers A7, the latter is commonly called System T and is closely
related to arithmetic. Since all our definitions are modular we may consider the
calculus with Booleans, natural numbers and type variables A32V. However,
some theorems, e.g. the decidability of gn-equality does only hold for some of
the calculi (and the proofs are be different for different calculi).

2.1 Types and terms

All the following definitions are indexed by a finite finite set of type variables
X, we use X,Y, Z for variables ranging over X'. Typical members of X include
X,Y,tZ. Given this we define the set of pure types Ty ».

Xex _orelyy
XeTyy oc—=T1€Tyy

We are going to omit the index X’ from now on, and indeed we will in general omit
indizes which can be inferred from the context. We are overloading the meta-level
notation for function space — and the symbol for function types, and again we
will overload more notations (such as the empty space representing application)
to avoid the proliferation of different symbols and names. When writing types,

we follow the convention that — is right-associative, i.e. ¢ — 7 — p reads as
oc— (1 —p).

To introduce terms we assume as given an infinite set of term variables V with
a decidable equality, i.e. we assume that given z,y € V we can constructively
show x = y V z # y. We use z,y, z for variables ranging over V and x,y,z are
typical members of V. In an implementation we are using String to represent
V. Infinity is witnessed by a function fresh which to any finite set of variables
P Cgyp, V assigns fresh P € V \ P, that is freshP ¢ P.

We introduce contexts Con which assign types to a finite set of free variables,
Con is defined inductively by

I'e Con,z eV, €Ty

() € Con I'z? € Con
We write contexts as x]'x5?...x2" omitting the initial empty context (). We

define define the set of variables and terms of type ¢ in context I', Varpo C
Tmp o, inductively, starting with the rules for variables:

x€Varrog xzF#y
r € Varpgo o x € Varry- o

The side condition in the second rule is essential to handle shadowing, i.e. x ¢
Tmyo,- o if 0 # 7. Basically we view contexts as functions P — Ty for a finite
P Cein V.

teTmro—-7 v Tmro te Tmpry., T
tu€e Tmro AXelteTmpro — 71

When writing terms we adopt the following conventions: application is left-
associative, e.g. t u v reads as (tu) v; and the scope of A extends as far as possible,
e.g. Az?.tu reads as Az“.(tu). Beware, there are a lot of different conventions
and styles used in the literature.

We will omit type or context if it can be easily inferred form the context.

In the literature t € Tmp o is usually written as I' - ¢ : o - however this
suggests that there is a notion of untyped terms which are sorted. Our view is
that typed terms are fundamental, hence the definition as a family, i.e. a set
indexed by contexts and types.

2.2 a-equality and substitution

We have introduced a named syntax as a way to refer to a binding, this syntax is
too intensional, i.e. Ax? 7. A\y?.xy is different from Aa®~7.A\b?.ab, even though
they have the same binding structure. To remedy this, we introduce the notion of
a-equality =, on typed terms, e.g. Ax" 7. Ay?.xy =, Aa’ "7.Ab%.ab. We define
a-equality for terms of the same type but in different contexts wrt to a set of
identifications of variables P inductively:
(v,y) e P t=Lu t'=Du t=F0U{(z,y)}u
r=Ly tu ="t Ax?.t = My

While it is convenient to define =, wrt P in the end we are only interested
in P = {(z,z) | « € Varpro} and on terms in the same contexts, which we
denote by =,. While the basic idea of a-equivalence seems obvious, the details
can be daunting. See my unpublished pearl [3] which discusses a-equivalence
in an untyped setting. There I also show that =, is an equivalence relation
(reflexive, symmetric and transitive) — this proof can be easily transferred to a
typed setting.

An alternative to named terms are de-Bruijn-terms, where variables are re-
placed by numbers, indicating binding depth. Consequently A just introduces an
unnamed abstraction. Both Ax? 7. Ay?.xy and A\a®~7.Ab?.ab become A" A\710.
In general deBrujn terms are representations of a-equivalence classes.

To introduce B-equality (Az?.t)u =g t[r = u] we need substitution. While
it is standard to introduce only substitution of one variable, I find it is techni-
cally better to take parallel substitution as primitive. For that purpose I define
Subst o I which assigns to all variables in I" terms typable in A of the appro-
priate types.

—

tg Substa ' t€ Tmao
() €Substa () (f,x=t) € Substaz:0

Given ¢ € Subst I' and z € Vary o we define x[t_] € Tmao

- .t Lifz=y
x”y‘ﬂ‘{xmﬁﬂﬁx¢y

Why is the case z[()] missing? Simply, because there aren’t any free variables
typable in the empty context. We continue by extending substitution to terms
te Tmpo:

(tu)li] = ¢fi] uf]
Az t)[t] = \y°.t[t,x =y] where y = fresh I’

By freshI" we mean the application of the previously introduced function
fresh to the set of variables mentioned in I'. Using a fresh variable here is essen-
tial to achieve that substitution preserves a-equality. E.g. if we would naively
substitute, this may fail: we know that Ax?.y =, Az?.y, now if (Az?.y)[y = z]
were Az?.z we had (A\x7.y[y = z]) =4 Ax?.z #, Az°.z. However, according to
our definition (Az°.y)[y = z] = Az’.z where 2’ is the fresh variable chosen. Obvi-
ously, we have to verify in detail that =, is always preserved, here I refer again
to [3].

Subsequently, we will consider only operations on terms upto =, that is we
are working with the quotient Tm% o = (Tmp o)/ =,. To avoid the proliferation
of as everywhere we just write Tm o and never do anything which is not closed
under a-equivalence.

We can compose substitutions by iterating application:

e Substal’ @€ TmpO
foi € Subst, ©

to()=0

to (i, =u) = (foi,r = ult],t o)
Moreover we can define 1y € Substy I

1y =10
11".1:(7 - (11"793 = :C)

And it shouldn’t come as a surprise that this is a category, e.g. that

I leave it as an exercise to fill in the missing sets (e.g. where do t, @, ¥ live) and
the indizes to 1.

We can now define the substitution of a single variable as a special case: given
u € Tmp o we have (1,2 = u) € Substy I'z : 0. Hence, given ¢t € Tmp,., T we
have t[x = u]| = t[(1,z = u)] € Tmp 7.

Actually, I am cheating a little bit since the variable we want to substitute
may not be at the end of the context. I am sure the reader can fix this little
problem.

2.3 (- and (Bn-equality

We will introduce two equalities on typed terms: S-equality =g and Bn-equality
=gy. While the weaker, intensional (-equality captures the idea that we can
execute functions and evaluate their arguments, the stronger, extensional (n-
equality also captures the idea that a function is a black box.

For any terms ¢,u € Tmp o we introduce ¢ :g’” u inductively as

t=pt u=gu
O u=pte=a) tu=prw PP

To make sure that =g is at least an equivalence relation we also add

t=pu u=gv
t=gwv

t=5u
2

(refl) =450

sym) (trans)

t=gt

Note that I am omitting types and contexts to improve readability, it shouldn’t
be hard to fill them in. =g, is defined by the same rules and additionally

Ix:o,r
t:ﬁn U (€) teTmro—r z:freshF()
Azt =g, A2 .u A0tz =pg,1 g

In the literature =g usually refers to the =g+ (). In my opinion this is a mongrel,
neither intensional nor extensional. Its central role in A-calculus can only be
justified historically. What I call =3 is sometimes called weak (-equality.

If we consider terms and substitutions upto gn-equality the category of con-
texts and substitution becomes a cartesian closed category, short CCC. Indeed
it is an initial CCC, that is only the equations necessary to make it cartesian
closed hold.

Let me explain what this means, to do this without too much hacking I will
bend the rules of category theory a little bit. A type o corresponds to a context
of length 1: 7 for any variable z. Now given a context I" and a type o we can
construct I' x ¢ = I'.z : 0, where z = fresh I'. Indeed, this is a product, we can
establish an isomorphism

¢x € Substa I' x 0 = (Substa I') x (Tmp o)
by
¢dx € Substp I' X 0 — (Substa I') x (Tmr o)
O (Lo =1t) = (1)
¢3! € (Subst AI') x (Tm I'g) — (Subst AT') x (Tm I' o)
o3 (B = (Lo =1)
This looks as if nothing is happening (and it is easy to see that ¢ o ¢~! and
¢! o ¢ are identities) However, notice that the x on the left hand side is our
definition of products in the category of substitutions, while the x on the right
hand side is the set-theoretic product.
So far we haven’t used =g, but only the definition of substitution. However,

cartesian closure means that there is a right adjoint to I' X o, that is we can
establish:

o, eTm?—‘ZUTng?ﬂO’HT

i.e. we have

¢_ € Tm?" T§Tm§3f’o—>r

I'xo
o t=Ax’t
o} € Tm?ﬁa -7 — Tm?ﬁXUT

o tu=uzx
We have to check that both compositions are identities:
¢ (ot) = (N’ t)a
=pn t
dp) = Xz
=pn U

Observe, that we have used the (-rule in the first and the n-rule in the second
equation. What about £7 We need £ to show that the assignment of ¢_, is natural
in I', which is an requirement for an adjunction (we also need to show this for
¢«). L refer to Neil’s course on category theory for the details of what this means.

Knowing a little bit category theory also reveals that I have been cheating: I
really need to construct products for any two contexts and not just a context and
a type and I have to define exponentials for contexts and show an appropriate
isomorphism on substitutions and not just on terms. I leave it is an exercise to
fix my cheats, but I's also like to add that my cheating isn’t so bad and can be
fixed by defining what conteztual cartesian closed category (conCCC) is. Can’t
think about a good reference for that, though.

2.4 Combinatory logic

One of the main complications of A-calculus is the presence of bound variables,
which forces us to introduce a-equality and to generate fresh variables during
substitutions. If we are only interested in (-equality we don’t need A but it is
sufficient to introduce two combinators: K and S — we define Tmspk o by omitting
A but instead introducing;:

Ko €Ty 0 =T =0 Sprp€Tm$ (0 =T —p)— (0 —7T) =0 —p

We define =4 by replacing the g-rule by

Ktu=gt Stuv=gtv(uv)

If one sees the combinators the first time, one wonders what justifies this par-
ticular choice, especially of the complicated looking S. This is best understood
by looking how we can define a derived lambda abstraction A*. First we notice
that we can define an identity combinator I, = SK K such that It =g t. Now

given ¢ € Tm%‘m 7 we define *z7.t € Tmﬁk o — T by recursion over t:
I ifex=y
* _)
A x'y_{Kyvifx#y

Nrtu=SANzt)(Nru)
Along with this definition we can establish that the §-axiom is a derived equation
(Nz.t)u =g tlr = u]. We can now define a translation assigning to a A-term
t € Tmp o a combinator term t* € Tmil‘ o by

*

=
(Ax.t)" = Nz.t”
(tu)" =t*u*

Since the (-axiom is derivable, it is clear that we have that t* =g u*, if t =3 w.
It is also easy to define a translation in the other direction: given t* € TmSk o
we define t# € Tmp o by

K# = \zy.y
S* = \zyz.x 2 (y 2)

It is not hard to show that (t*)# =g t, but interestingly (u™)* =g u fails, e.g.
(K#)* = Nzy.y = S(KK) I but K #y. S(KK)I. Maybe the reader has an idea
how to fix this (without loosing any of the other properties)?!

2.5 Functional encodings

The only types so far are type variables and function spaces. Much of the lit-
erature on the simply typed A calculus concentrates on this situation, usually
considering only the case of one type variable or base type, which for historical
reasons is called o, i.e. X = {o}. Datatypes like Bool and Nat then receive a
functional encoding:

Bool=0—0—o0

Nat =0 — (0 - 0) — o
we can certainly define constructors for these encodings, for Bool

true € Tm Bool
true = Ax°Ay°.x
false € Tm Bool
false = A\x°A\y°.y

and for Nat

zero € Tm Nat
zero = \z°. \s°7°.z
succ € Tm Nat — Nat

suce = AN \z° A\t°°.s (nzs)

However, what can we do with the encoded data? In the case of Bool it is
actually possible to define if” € Bool — ¢ — ¢ — ¢ such that if truetu =g, t
and if false t u =g,, u. However, the definition of if” (which I leave as an exercise)
is not uniform in o but proceeds by induction over ¢ and indeed only works if
there is only one base type.

Even making these simplifying assumptions the situation for Nat is restric-
tive: only the extended polynomials are definable, this are the polynomials, step
functions and their compositions (Exercise: define addition and multiplication).
E.g. not even the predecessor is definable.

Conceptually, the encodings have a strange status: we have said that the
idea of fn-equality is that functions are black boxes. However, to be able to
differentiate between different encoded values such as true and false we have to
look inside functions! Consequently, functions defined on encoded data are not
extensional wrt. the encoded data.

Moreover, it doesn’t seem to be the case that the encodings deliver a concep-
tual reduction: it seems easier to understand Bool or Nat as primitive notions
that the idea of higher order functions over an uninterpreted base type.

In System F the encodings are more usable, becuase we can define all func-
tions which are provable total in 2nd order logic. However, the other criticisms
(not extensional, no conceptual reduction) remain valid. We can also add that a
naive implementation of encoded types is inefficient and optimisation is not so
easy.

2.6 22

Since I have argued that the functional encodings are no good, let’s introduce
some proper datatypes starting with

Bool € Ty

with new term formers

t € Tmp Bool wug,u; € Tmpo
true, false € Tmp Bool iftugu; € Tmpro

and the J-equations

t=pt wy=pguy w1 =guj
iftrueupur =g uo if falseup us =g ws iftugus =g if t/ ugp

The Bn-theory is a bit more involved. Basically we want to express that given
f € Tmp Bool — o if ftrue =g, uo and ffalse =g, u1 then f =g, Az.if v uouq
for a fresh x. It turns our that we can avoid conditional equations here, but
instead add

if ttruefalse =g, t t(ifuuour) =g, if u(tug) (tur)

We can also view A2 categorically: they correspond to a contextual CCC with
a boolean object:

®Bool € TMryBoot 0 = (Tmp o) x (Tmp o)

The equational theory introduces some interesting equalities. E.g., consider

once = AfBooleBool)\l,Boolf T

thrice =)\fBOOl-»BOOl)\xBoolf (f (f 1.))

We observe that once =g, thrice. To see this, we note that, given f : Bool —
Bool, we have

[(f (f true)) =gy if (f true) (f (f true)) (f
=gy if (f true) true (f (f false
t

) (f false))
))

=g, if (f true) true (if (f false) (f true) (f false))
))
)

o~ o~ o~ o~

=gy if (f true) true (if (f false) false false)
=gy if (f true) true false

=gy ftrue

Symmetrically, we can show that f (f (f false)) =g, f false, and hence

thrice
_)\fBool—>Bool/\$Boolf (f (f Qf))
=gy AfPCTPOONGBNE g (f (f (f true))) (f (f (f false)))
=gy AfBoOITBool\gBoolif o (f true) (f false)
=5)\fBoolﬂBooleBoolf T

= once
It is easy to see that once and thrice are equal in the standard semantics where
Bool is interpreted by a two-element set Bool = {true, false} and function types
are set-theoretic function spaces. We observe that there are only four elements
in Bool — Bool = {Az.true, \x.z, \z.—z, Az.false} and that for all the four
f € Bool — Bool we have f3 = f. In [6] we show that this sort of reasoning
always works.

2.7 AN

The natural numbers are, unlike Bool, an infinite type, which has the conse-
quence that the extensional theory is no longer decidable. We introduce

Nat € Ty
with new term formers (here it stands for iterator):

n € Tmp Nat ne€TmrNat z€ Tmro s€Tmro—o
zero € Tmp Nat succn € Tmp Nat itnzse€ Tmro

and the G-equations

n=gn z=3z s=ps
itzerozs =gz it(succn)zs=gs(itnzs) itnzs=gitnzs

On-equality expresses the idea that two functions agree, if they agree on all
constructors. Different than in the case for Bool we seem unable to avoid using
a conditional equality:

h (succi) =gy f (hi)
it nzero succ =g, n itn (hzero) f =g, hn

For the fans of categories, I'd like to add that Sn-equality corresponds to having
a natural numbers object (NNO).

This theory is very strong, indeed undecidable. Just to give an example we
can define addition

add = Am, n.it mn succ

and while we can use (-eqality to calculate:
add (succ’ zero) (succ? zero) =g succ’ ™ zero

we can actually prove commutativity of addition using Bn-equality:
it mnsucc =g, it n m suc

Ezercise: Derive this equality.

We can implement the proof that Peano arithmetic is undecidable in this
theory, which is actually an equational version of arithmetic, that is it has the
same provable equalities on Nat (I haven’t checked this in detail).

An alternative to using is to introduce primitive recursion:

ne€TmrNat z€Tmpro se€TmpNat w0 — 0
precnzs € Tmpro

with the B-equalities

n=gn z=pz s=g¢
preczeroz s =g z prec(succn)zs =g sn(itnzs) precn zs =g precnzs

In the presence of products we can define prec which is correct wrt. Sn-equality.
However, the encoding is not (-equal, which may be interpreted as implying
that intensionally the iterator is insufficient. However, one may say the same
about prec since there are other forms of recursion which intensionally cannot
be implemented with prec, such as course-of-value recursion.

2.8 The untyped A calculus

The untyped A-calculus is the typed A-calculus with no type variables but one
type constant

Lam € Ty

and the equation Lam = Lam — Lam. If we don’t want to have equations on
types, we can alternatively add

f € Tmp Lam — Lam d € Tmp Lam
lam f € Tmp Lam appd € Tmp Lam — Lam

and the equations

app (lam f) =5 f lam (appd) =g, d

The untyped A-calculus doesn’t support the view that A-terms are total func-
tions. Untyped A-terms correspond to computations, which may or may not
terminate. We can show that precisely all Turing-computable functions are rep-
resentable as untyped A-terms using the encoding of natural numbers discussed
in section 2.5.

3 Normalisation

Normalisation is a central theorem of typed A-calculi giving rise to a canonical
representation of terms upto - or Sn-equality. Together with confluence it entails
decidability of equality but it also tells us that we are indeed taking about total
functions. We may also use the induction over the canonical representations to
establish further results.

The traditional approach to normalisation is based on a small-step reduction
relation obtained by directing the rules defining S-equality (leaving out symme-
try). There are a number of disadvantages of this naive approach: the small-step
relation is not directly related to a reasonable implementation of reduction, one
may say it is how a mathematician would execute a program. Also the small-step
semantics is hard to reason about, even to show confluence, or Church-Rosser,
requires some inguinuity, and it gets even worse when considering extensions of
the basic theory. It seems that we first create a lot of trouble for ourselves and
then have to work very hard to get out of it. Hence, I will present here two
different approaches: the first one replaces the small-step reductions by a big-
step reduction which can be easily implemented in a functional language such
as Haskell. We could go further and turn this implementation into an abstract
machine by making it tail-recursive. An alternative to using reduction is normal-
isation by evaluation, pioneered by Schwichtenberg and Berger [7] and further
explored in recent research. The main idea is to invert the semantic interpreta-
tion function and thus obtain a syntactic representation for an equivalence class
of terms. I will illustrate this for S-equality, e.g. see [8]. However, normalisation
by evaluation assumes that you are already able to run functional programs on
the metalevel, in particular it doesn’t lead to a machine model to implement
normalisation.

3.1 Normalisation by reduction for B-equality

Values are the result of our computation, proper values are A-abstractions and
neutral values are computations which got stuck because of free variables. In
functional programming only the first case arises because all programs are closed.
We define the set of values Valr o and neutral values Ne; o C Valp o of type o
with free variables in I" inductively

z€e€Varro te€Nero—7 veValro
x € Nero tv e Neprr

te Tmpryom U E Valp I
Az° .t{v} € Valp o

Functional values are defined using closures, i.e. delayed substitutions. We can
embed values into terms by carrying out those substitutions: given v € Valp o

or v € Ner o we define [v] € Tmp o by

[z] =2
[tu] = [t] [u]
[Az?.t{7}] = (Az”.1)[[7]]
We inductively define a big-step reduction relation, and an auxilliary relation to
reduce applications:

tcTmro ve€ValpI' fe€Valpo—7 weValpo weValpr
t{v} | v Prop fvl wProp

by

a4 f w{ijdo folw
x{v} | z[0] tu{v} J w Az? t{T} | (Ax?.t)[V]

tv,z =v] Jw
M t{vh)vdw novlnv

This bigstep reduction implements call-by-value evaluation, because arguments
are evaluated before they are passed to a function. This is also called eager eval-
uation and is used in the functional programming language SML. An alternative
is call-by-name, or lazy evaluation as implemented in Haskell (ok, this is not the
whole story). Here we put closures in the environment which only get evaluated
if we actually need them. As a consequence of the results we are going to prove
in this section, there is no (extensional) difference between call-by-value and call-
by-name for typed terms. However, since the definition of reduction itself makes
no reference to types, it also works for untyped terms. And for those there is a
difference: more programs terminate for call-by-name. An example is (Azy.y) £2,
where {2 = (Az.zx)(Azr.zz) is the prototypical diverging term. The call-by-value
evaluator gets stuck becuase it tries to evaluate {2 first, while the call-by-value
one never has a look at it. And indeed, one can show call-by-name is as good as
it gets.

Ezercise: Define call-by-name evaluation and reprove the results of this sec-
tion.

We observe some obvious properties of |}:

Lemma 3.1. Reduction is deterministic:

Hoy v Ho3 o' foldw folw

v=v w=w

Proof. By induction over the derivation of t{7} |} v and f v | w and case analysis
of the 2nd premise.

Lemma 3.2. Reduction is sound, wrt. =g:

Ho} v
t[[o]] =g [v]

Proof. Easy induction over the derivation of t{v} | v.

To show that this reduction relation can be used to decide B-equality we have
to establish confluence and normalisation. To show confluence we need a lemma
about substitution:

u(@h b How=o}bw te = {7} bo

w=w

Lemma 3.3.

Proof. By induction over t € Tmp .- 7 using properties of substitution.

Proposition 3.4 (Confluence). §-equal terms reduce to identical normal forms:

t=pt t{v} v t{} o f=pf v=pv folw vV}
v="1 w=uw

Proof. By induction over ¢t =g t'. The cases for (refl) and (sym) are obvious and
(trans) follows from lemma 3.1. The interesting case is (), here we need lemma
3.3.

We say that a term ¢ is normalizing, if it reduces to a value. We write ¢t{v} |
for this (to be precise t{v} |, iff Jv.t{v} || v). First we observe that all values
are normalizing (actually they normalize to themselves):

Lemma 3.5. All values reduce are normalizing.

[v] € Valpo
lo[{v} ¢

Proof. By induction over v € Val, 0.

To show normalisation we have to load our induction and establish a stronger
result, this is basically what is tradionally known as reducibility. We define a
logical predicate Red]. C Tmp o (and Redé C Tmp A) by recursion on o:

Redy t = V& € Vala I't{#} ||
Red7 7 "t= VU € Vala It{0} |
AVu € Tmp o.Red} u — Red} (tu)
Red) () =T
Red?®” (@, 2 = u) = Red? @ A Red%u
Note that reducible implies normalizing:

Lemma 3.6.

Red’t v e€Valp I’
t{v} |

Proof. It’s bloody obvious, isn’t it.

We show that all terms are reducible, this is called the fundamental theorem for
logical predicates:

te Tmro @€ Tmal’ Red,a
Red?, {[d]

Proposition 3.7.

Proof. by induction over t € Tmp o.

Now given t € Tmp o we will use that Red’ 15 and hence Red ¢[1] which
implies that ¢ is normalizing.
To obtain Red} 11, we show that all neutral values are reducible

Lemma 3.8.

n € Nero v € Ner A
Redrn Redf v

Proof. By induction over ¢ and A using lemma 3.5.

Proposition 3.9 (Normalisation). Every term reduces to a value.

te Tmpro v € Valpa I’
t{v} 4

Proof. By lemma 3.8 the identity substitution is reducible (Red 1r). Hence by
the fundamental theorem 3.7 we know Redt (since t = t[1]) and by lemma 3.6

t{v} |.
Corollary 3.10. =g is decidable.

Proof. If we want to check whether two terms ¢, u € Tm o are S-equal we apply
them to the identity environment 1y € Valp I' and use the normalisation prop-
erty to calculate their normalforms t[17] | v,u[1r] | w. Because of soundness
(lemma 3.2) we know that ¢ =5 v,u =g w and using confluence we can see that
v =w if and only if t =5 u.

Exercise: Extend the reduction relation and normalisation and confluence to
A2 and AN,

3.2 Normalisation by evaluation for B-equality

The idea is that we define a semantics for the calculus, i.e. an interpretation
of typed and terms such that ¢t € Tm ¢ implies [¢t] € [o] which is sound for -
equality (t =g ¢’ implies [t] = [t']) and for which can effectively invert evaluation
by a function quote” € [o] — Valo (such that quote?[t] =g t)

The definition of values closely resembles the one in the previous section,
with the only difference that we don’t use closures:

x€e€Varro t€Nero—717 veEValro
xz € Nero tv e Neprrt

te Nero t € Tmpyo T
teValpo Ax?.teValpo

We proceed by defining an interpretation of types together with a function quote
which extracts a value from a semantic object.

[X]r = NerX
quotefft =1
[o = 7lr = {(veValpo — 7, f €[olr — [7lr)
| Vo € [o]r-quoter (f) =g v (quoteT x)}

quoter"" (v, f) = v
Given (v, f) € o — 7] and =z € [o] we write (v, f)x = faz for semantic
application.

The interpretation of terms

teTmpo 176[[F]]A
[t] 7 € [o] a

is given by

[] ¥ =0z
[tu] 7= ([t] @) ([u])
(

[Ae? 4] U = Azt v € [o] — [t] (&, =v)
It is easy to see that the semantics is closed under substitution:

Lemma 3.11.

[t] (v, 2 = [u] ¥) = [tz = u]] ¥
Proof. By induction over t € Tmp zo 7.
which is neded to show equational soundness

Proposition 3.12.

t =5 t

[t] =5 [¥]

Proof. By induction over ¢ =g t’. The only interesting case is () for which we
use lemma 3.11.

It remains to show that quote actually inverts evaluation. We will use basi-
cally the same technique as in the last section, however, this time it is a logical
relation instead of a logical predicate. We define

teTmpro UE[[O’]]F FGTIH[*A 176[[Aﬂ[*
tR%v € Prop tRAU € Prop

tR¥u=t=pu
tRY™Tf =VYu € Tmpo,v € [o]r.uRfv = tuRLfv
ORV) =T
(t,x =t)R*" (7,2 = v) = tRFT A tRw

As before for logical predicates (prop. 3.7) we establish a fundamental theorem:

te Tmpro fRQﬁ

Proposition 3.13.
i RS [

Proof. by induction over t € Tmp o.

The naming already indicates that both proposition 3.7 and 3.13 are instances
of a more generic theorem. To formulate and prove this we need a notion of a
semantical interpretation, the fact that thise are closed under products and the
generic fundamental theorem for any interpretation.

To establish our main result we show

Lemma 3.14. IftR°v then t = quotev.
Proof. by induction over o.

To be able to show directly that normalisation extends to open term we need
a lemma on neutral terms:

Lemma 3.15.

ne€Nero #n&€NerA
nR7n] ARAi]

Proof. By induction over ¢ and A using lemma 3.14
We can now define a normalisation function:

te Tmpro
nft € Valp o

by
nft = quote ([¢] 11)

To see that this is indeed a normalisation function we observe that by lemma
3.12 t =g u implies nft = nf u. Furthermore exploiting lemmas 3.15, 3.14 and
proposition 3.13 we can deduce that ¢t =g nf t.

FExercise: Extend normalisation by evaluation for the 3-equalities of \™2 and
AN,

4 Going further

Due to time constraints I had to leave out some material on Normalisation by
evaluation for (n-equality, simplifying the account published in [5]. We need a
different notion of logical relations, called Kripke logical relations, see [2].

This method also extends to products (x) but coproducts (+) are a harder
nut. In [4] we used concepts from sheaf theory to solve this problem. In the
special case of A2 with no type variable there is a simple construction which
needs to a nice implementation, see [6].

Once we have got products and coproducts, we can add inductive (u) and
coinductive types (v) , e.g. Nat = uX.1 + X or streams Stream A = v X.A x X.
If we want to preserve normalisation, we have to introduce some constraints on
@ and v types to rule out types like pX.X — X which encodes the untyped \-
calculus. We can forbid — within u, which, omitting v-types, leads to a system,
which can be encoded within A= (I call this glorified arithmetic). A more
general choice are strictly positive types such as infinitely branching tree uX.1+
Nat — X. Even less restrictive are positive types such as uX.(X — Bool) —
Bool. However they have no set-theoretic model and the normalisation proof
requires impredicative reasoning. Indeed, we can encode all positive inductive
and coinductive types in System F — this encoding is sound for 3. To obtain
soundness for the Sn-equality we need parametricity in System F.

[1] introduces A** and shows strong normalisation for a small step semantics.
However, there shouldn’t be any problem to extend the technique presented here
to this situation.

Dependent types add some technical complications, because types and terms
are mutually dependent. However, the benefits in expressivity are ernomous,
we can completely formalize constructive set-theoretic reasoning within such a
system. To get a taste of this, I refer to Conor’s course.

References

1. A. Abel and T. Altenkirch. A predicative strong normalisation proof for a A-calculus
with interleaving inductive types. In Types for Proof and Programs, International
Workshop, TYPES 99, Selected Papers, volume 1956 of Lecture Notes in Computer
Science, 2000.

2. T. Altenkirch. Notes on definability and Kripke logical relations. available online,
2000.

3. T. Altenkirch. a-conversion is easy. Under Revision, 2002.

4. T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation
for typed lambda calculus with coproducts. In 16th Annual IEEE Symposium on
Logic in Computer Science, pages 303-310, 2001.

5. T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a re-
duction free normalization proof. In D. Pitt, D. E. Rydeheard, and P. Johnstone,
editors, Category Theory and Computer Science, LNCS 953, pages 182-199, 1995.

6. T. Altenkirch and T. Uustalu. Normalization by evaluation for A~2. In Functional
and Logic Programming, 2004.

7. U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed
A-calculus. In Proc. of 6th Annual IEEE Symposium on Logic in Computer Science,
pages 202-211. IEEE CS Press, 1991.

8. T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization
proofs. Mathematical Structures in Computer Science, 7(1):75-94, 1997.

9. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

