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Abstract

This thesis contains an investigation of Coquand’s Calculus of Constructions, a
basic impredicative Type Theory. We review syntactic properties of the calculus,
in particular decidability of equality and type-checking, based on the equality-
as-judgement presentation. We present a set-theoretic notion of model, CC-
structures, and use this to give a new strong normalization proof based on a
modification of the realizability interpretation. An extension of the core calculus
by inductive types is investigated and we show, using the example of infinite trees,
how the realizability semantics and the strong normalization argument can be ex-
tended to non-algebraic inductive types. We emphasize that our interpretation is
sound for large eliminations, e.g. allows the definition of sets by recursion. Finally
we apply the extended calculus to a non-trivial problem: the formalization of the
strong normalization argument for Girard’s System F. This formal proof has been
developed and checked using the LEGO system, which has been implemented by
Randy Pollack. We include the LEGO files in the appendix.
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Chapter 1

Introduction

1.1. The essence of Type Theory

The main purpose of the formalization of reasoning is to increase the confidence
into its results. This is reflected in different areas: in the engineering disciplines
fixed schemes and methods have been developed to verify the safety of a design,
e.g. the static safety of a bridge. In mathematics logical reasoning has been

formalized to make precise what can be accepted as a proof.

However, the costs connected with a complete formalization are extremely high,
the effort to to formally verify a construction is much higher than the one required
for its initial development. This is the reason that, despite its benefits, complete
formalization is rare. The most typical example for this is mathematics: being
well trained in formal reasoning, most mathematician believe that their results

could be completely formalized; however this is almost never done. !

An area where the formal validation of design would be most useful are complex
information processing systems, i.e. computer systems. Their intended behaviour
is completely understood and in principle there is no problem to formalize their

design. On the other hand given the ever growing importance of those systems

1One of the few exceptions is the AUTOMATH project [dB80], which can be viewed

as a direct predecessor of modern Type Theory.
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and their increasing complexity improved validation procedures © are becoming

more and more important.

Computer science is not only of interest for the proliferation of verification
tasks it also offers an essentially new solution for a fundamental problem of any
validation process: How do we know that a validation, i.e. a formal correctness
proof is correct? The task of checking whether a formal verification is valid can
be completely mechanized and be performed by a computer program with a qual-

itatively higher accuracy.

In this situation we are confronted with a new task: we have to design systems
for formal reasoning, which can be completely formalized and implemented on a
computer. This requires a particular attention to every syntactic detail of the
system which is not known in conventional logic. It is of special importance
that the system is conceptually simple and allows a compact and straightforward
representation of the concepts required for the verification. Otherwise we will lose
confidence in the results because the system may be unsound. We also want the
system to be universal enough that we are able to use it for a wide spectrum of

different verification tasks.

Although there is obviously not one simple answer to such a diverse set of
requirements, we believe that the study of Type Theory is especially useful in this
context. By Type Theory we understand a diversity of concepts and systems most

typically expressed in the work initiated by Per Martin-Lof. 3

To us the essence of modern Type Theory is the unification of two apparently
different aspects of formal reasoning: the membership of an object in a collection
and the relation between a proof and the proposition it verifies. Martin-Lof in

[Mar75], p.73 expresses this as follows:

2This certainly includes testing. There are different inherent limitations in both

strategies: verification and testing.

3Apart from Martin-Lof’s own work e.g. [Mar75], [Mar84], good accounts can be
found in [BCMS89] and [NPS90].



The language of the theory is richer than the language of traditional
intuitionistic systems in permitting proofs to appear as parts of propo-
sitions so that the propositions of the theory can express properties of

proofs (and not only individuals, like in first order predicate logic).

This is also called the proposition as types paradigm.

When verifying a simple program we observe that its verification follows its
computational structure. Moreover we may observe that that the proof has a
similar, although finer, structure as the object it verifies. Finally we may realize
that the proof essentially corresponds to a computational object annotated with

additional information. We have arrived at the proposition as types paradigm.

From a conventional point of view we may think that computational structures
and the accompanying proof principles are separate. From a type-theoretic view-
point we would say that a type-theoretic construct has a computational aspect.

This essentially simplifies the design of a reasoning system.

It has been observed that Type Theory can be non-conservative over a corre-
sponding conventional logic. * However, we do not consider this as a defect of
Type Theory. It seems rather to be related Martin-Lof’s statement about having
a richer theory. This is already reflected in the fact that for example the axiom of
choice is provable in Type Theory, whereas it has to be introduced as an explicit

assumption in a conventional logic.

The close association of proof and program has also a number of practically
important consequences. First of all there is the problem that a type-theoretic
construction also contains computationally irrelevant parts. Although it is not yet
clear to what degree the separation process can be automated, this does not seem

to be a fundamental problem because the user can explicitly mark the computa-

4In the case of CC see [Geu89).
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tionally irrelevant parts. This corresponds to our view that a type-theoretic

expression is a program annotated with additional information.

On the other hand it seems possible to use this additional information not
only for verification but also to improve compilation. Having more information at
compile-time makes it possible to rule out certain cases of runtime errors, i.e. we
can omit runtime checks and thereby speed up execution. We also imagine finer
type structures which make the resource use explicit; an example would be linear

types which can be used to avoid garbage collection. ©

1.2. The Calculus of Constructions

The Calculus of Constructions (CC) was introduced by T. Coquand and Huet
([CH88],[Coq85]). It can be viewed as a unification of Girard’s impredicative
system F“ and dependent types, which are the base of Martin-Lof’s Type Theory.
When Martin-Lof initially proposed a Type Theory [Mar71] he also attempted to
capture Girard’s system. However, it turned out that this system was inconsistent
because it was possible to encode System U in it. Subsequently Martin-Lof avoided
this problem by restricting himself to a predicative theory. In a way we may

consider CC as a fix to an early problem in the formulation of Type Theory.

Since its introduction CC received a lot of attention because it can be viewed
as a basic (impredicative) Type Theory. Based on work by Berardi Barendregt
[Bar92] investigated the syntactic fine structure of the calculus thereby relating
simply typed A-calculus (A7), System F and F“, a core calculus of dependent types
(the logical framework or LF) and CC in a cube (figure 1.2). Based on the cube
the notion of Pure Type Systems (PTS) has been developed which is a syntactic

generalization of the calculus of constructions and related systems ”

E.g. see [PM93a,PMW93].
6E.g. see [Wad91], but here only non-dependent types are considered.

"See [Geu93] or [Bar92].
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Figure 1-1: Barendregt’s cube

Luo extends CC to the Extended Calculus of Constructions (ECC) by adding
universes and Y-types [Luo90]. This calculus is also the standard type-theory
used in the LEGO system [LLP92]. A related system is the specification language
Gallina which is implemented in the Coq-system [D*91].

The semantics of CC has been studied by a number of authors from a categor-
ical point of view, e.g. see [HP89], in [Ehr89] the notion of a dictos is introduced,
and in [Jac91] the more general notion of a CC-category is used. A very natural
semantics based on the concept of Realizability is the w-set semantics. In [Str89] a
mild generalization (D-sets) is investigated in great detail and used to show some

independence results. ®

It should be noted that there are two different ways to present a type theory:
a presentation based on conversion as in the presentation of PTS or a presentation
where equality is a judgement, this is usually used in the presentation of Martin-
Lof Type Theory. The conversion presentation is more compact and closer to
an implementation whereas the judgement presentation can be better understood

semantically. We consider the conversion presentation rather as a shorthand for

8For our own account in terms of CC-structures see section 3.4.



the judgement presentation. This is justified by the work in [Coq91] where an

equivalence of the two presentations is established. ?

1.3. Why semantics ?

Type Theory emphasizes the syntactic aspect of reasoning. It has been argued that
the meaning of a system can be reduced to its syntactic presentation. Although
this is a valid point of view, the first question one may raise is whether this reflects
the way we understand a logical system. When we are learning or developing a
new theory or extending an old one, we try to reflect our intuitive notion of
mathematical truth and objects. To analyze a system semantically and to assign
a denotation to syntactic objects is a way to make this precise. Certainly, as
Martin-Lof pointed out !, this is merely a translation, e.g. we translate Type
Theory in Set Theory. However, we believe that such a translation can be quite

meaningful and reflects our intuitive understanding of a system.

Here we also want to stress another use of semantics: semantic notions are
extremely useful when we want to prove properties about our system, i.e. about

our syntactic presentation.

A rule or an axiom scheme is derivable when it can be constructed just by a
schematic application of the inference rules, i.e. by purely syntactic reasoning.
Derivable rules or axiom schemes will be true in every sound interpretation by the

very definition of soundness.

However, not many interesting properties are derivable. Usually we are not
so much interested in properties which hold for all interpretations but more in
some which are true for the syntax, i.e. the initial interpretation. Such properties

are called admissible. A typical example for admissible properties are consistency

9Note that Coquand verifies this fact only for Martin-L5f Type Theory, i.e. a pred-

icative theory.

10[Mar84], pp.69



properties: logical consistency (not all propositions are provable) or equational

consistency (not all equalities hold).

One way to show consistency which can also be applied to other admissible
properties is to construct a sound interpretation. If we want to establish logical
soundness we just have to give a sound interpretation such that a particular type
is denoted by the empty set (compare with theorem 3.3.4). The main effort goes
into verifying that the interpretation is indeed sound. This justifies the slogan

that we use semantic methods to show properties of syntaz.

We will use this idea to give a new version of a Strong Normalization proof for
CC which can also be extended to include inductive types with large eliminations.
We will actually construct this strong normalization argument as a modification

of the D-set semantics.

1.4. Strong normalization

The property of strong normalization will play the role of a red thread in this
thesis. First we will use it to illustrate how syntactic properties can be proven
by semantical construction. Then we will note that this view gives us a proof
which can be easily generalized to a stronger system with inductive types and
large eliminations. Finally we will use a strong normalization proof as an example

of the development of a non-trivial theorem in the Type Theory we have presented.

Strong normalization is quite an essential property of a Type Theory: it does
not only entail a number of decidability properties (decidability of equality and
decidability of type checking) but also some other useful properties, e.g. note that

the proof of the essential theorem 2.4.1 requires strong normalization. !

Less pragmatically strong normalization and its verification is interesting to us
because it lies on the borderline of semantics and syntax and therefore, in a way,

reflects the spirit of Type Theory.

" There are alternatives to strong normalization — see chapter 6, point 1.



It should be noted that the strong normalization proof for CC has been con-
sidered as notoriously difficult, e.g. see the historic account in [CG90]. We at-
tempt to debunk this myth by clearly relating the SN proof to a standard model
construction, i.e. the D-set semantics, and avoiding most of the usual syntactic
complications. It is also interesting to note that in our development we avoid the
use of Kripke-structures to present the semantics. Another feature of this con-
struction is the possibility to extend it to the case of inductive types with large

eliminations — compare this to the more conventional construction presented in

[Wer92].

1.5. The use of categories

The machinery of Category Theory has been used and proven useful for the se-
mantic investigation of Type Theories. E.g. this has been extensively studied in
the work of Thomas Streicher [Str89] '* and Bart Jacobs [Jac91]. Moreover in
[Rit92] the categorical semantics of CC is used directly as a starting point for an

implementation.

It has been noted '? that the naive use of categorical notions does not neces-
sarily produce a sound interpretation of the syntax. Often we have to introduce
additional assumptions (e.g. split fibrations, equality instead of natural isomor-
phisms) to achieve this. We also note that constructing categorical interpretations
often means that we have to represent element related concepts in terms of arrows.
E.g. to model II-types in the D-set semantics categorically we have to show that
the pullback functor has a right adjoint. In our presentation we interpret Il-types
as the subset of the set-theoretic dependent functions which have a realizer. Al-
though equivalent to the categorical construction this presentation seems more

natural.

12Gtreicher’s thesis has been published as a monograph [Str91]. In future we will refer

to the monograph only.

13E.g. see [ACCLY0]



Given that our main motivation for semantics is to show admissible properties
of the system and to do this we have to give sound interpretations, I decided not to
use categories when constructing interpretations. However, it should be noted that
the structures we define are heavily influenced by the corresponding categorical

constructions.

I consider it as desirable to improve the categorical understanding of Type
Theory and 1 believe that it should be possible to obtain a better agreement be-
tween categorical models and syntax. Some of the results presented here regarding
inductive types in Type Theory should be generalized and rephrased in terms of
Category Theory.

1.6. Inductive types

CC and related systems are called pure type systems because the only type con-
structor they contain is the function type or its generalization the Il-type. The
systems used in practice are usually impure and have some mechanism to represent
inductive types. Indeed, when looking at an example (like our own development
in chapter 5) it turns out that inductive types become the workhorse of the devel-

opment.

In an impredicative system like CC it is possible to encode inductive types
(e.g. see [Alt90]). However, these encodings can be only used for computations,
they lack the propositional strength, i.e. the induction axiom is not derivable. We
could introduce an induction axiom as a logical assumption into the system but
this would destroy the fundamental symmetry of Type Theory, because we have

no computation rules for these axioms.

The notion of inductive types is well developed in Martin-Lof’s Type Theory
(e.g. see [Dyb91]). Here inductive types are considered as a primitive notion;
induction and primitive recursion appear as two different aspects of the same type-
theoretic concept. It seems sensible to integrate impredicativity and inductive
types. In the context of the NuPRL system this has been investigated by Mendler
[Men88]. In the context of intensional Type Theory this has been the subject of a



number of more recent investigations, e.g. see [CP89,Fu92,Gog93] — see also the

discussion in chapter 4.

Inductive types roughly correspond to the datatype construct in ML or more
formally can be viewed as the solution to some domain-equations. However, not
every domain-equation corresponds to an inductive type: we restrict ourselves to
either positive or strictly positive equations. Otherwise we would not only have a
partial logic but also a propositionally inconsistent theory. However, as pointed
out by Martin Hofmann [Hof93b] general domain equations can be investigated in
a Type Theory which allows the definition of dependent types by recursion (large

eliminations).

It is also interesting to observe that the notion of dependent inductive types
or inductive families captures definitions by the initial semantics of a set of Horn
clauses. ' This is yet another example where the type-theoretic symmetry, i.e.

the proposition as types paradigm, works very well.

Although inductive types only allow primitive recursion, the concept of general
recursion can very well be represented in this framework as well-founded recursion,
which can be defined using inductive types in a natural way. !5 It is interesting
to note that this is a case where a higher-order (i.e. non-algebraic) inductive

definition is essential.

1.7. Formal proof

Much of the material presented here has evolved around an experiment in proof-
formalization: the formalization of the Strong Normalization argument for System
F in LEGO (chapter 5). This raises the question whether the system in which this
proof has been done is consistent. Although we do not answer this question in

detail (e.g. verifying the proof checker formally), we develop sufficient material to

14 Actually a generalization of Horn clauses to a higher-order case.

15See [Dyb92a), section 5.2.2.



see that the underlying Type Theory is consistent. There is yet another connection
between the experiment and the material of the other chapters: by having done
the formal development in such a great detail we have gathered some insights
about Strong Normalization arguments, which were helpful when doing the proofs

in chapters 3 and 4.

1.8. Overview

In chapter 2.1.2 we review the Calculus of Constructions. Qur primary presen-
tation is the judgement presentation using explicitly typed terms. Exploiting the
strong normalization property we will prove a number of properties about the

system and the equivalence of different presentations.

We continue with a semantic analysis of the basic calculus in chapter 3. For this
purpose we will introduce LF-structures and CC-structures. We will then verify
that CC-structures always give rise to a sound interpretation (theorem 3.2.10). We
apply CC-structures to three different model constructions: the proof-irrelevance
semantics section 3.3, the D-set semantics section 3.4 and the saturated A-set
semantics section 3.5.2. The last one allows us to establish strong normalization
as a corollary (corollary 3.5.12). A preliminary version of this work has been

presented in [A1t93h].

Using the example of general trees, i.e. a non algebraic inductive type, we
will show in chapter 4 how the D-sets semantics and the strong normalization
argument can be extended to inductive types. We present a general notion of

p-types capturing most of the examples discussed here in the appendix, A.

In chapter 5 we apply CC extended by inductive types to a concrete example:

the formal verification of a strong normalization proof for System F. This devel-



opment has been completely checked by the LEGO system '¢ and the complete
code can be found in the appendix B. This work has been presented in [Alt93a].

Let us summarize what we consider as the central points of this thesis:

1. We present a new strong normalization proof for CC based on a modification

of the Realizability semantic.

2. We investigate decidability and type reconstruction for the judgement pre-

sentation of CC using the previous result.

3. We describe a new semantic structure to interpret CC (CC-structures) which

is an alternative to categorical notions of model.

4. We extend realizability semantic and our strong normalization argument to

inductive types (using a non-trivial example) with large eliminations.

5. We show the usefulness of the theory of CC extended by inductive types
by completely formalizing a non-trivial example: the strong normalization

proof for System F.

16For a discussion of the relation between the LEGO implementation and the Type

Theory presented in this thesis see section 5.1.



Chapter 2

The Calculus of Constructions

In this chapter we will present CC and develop some of its metatheory. We diverge
from the original presentation of CC (e.g. [CH88]) in that we use the equality-as-
judgement presentation. We will exploit a semantic result which we are going to
show in the next chapter — strong normalization of stripped typable terms (Curry
terms) — to establish decidability and to justify a more implicit presentation
(Church syntax). We will also show the equivalence of the judgement and the
conversion presentation (for pure CC without the n-rule). We use a particular
notion of reduction — tight reduction — which is essential to our approach. This
presentation should be compared to [Rit92] where essentially the same goals are

achieved using categorical combinators.

2.1. The judgement presentation of CC
In our presentation we largely follow [Str91], i.e.:
o We use equality as a judgement.
e We do not confuse types and terms, i.e. we avoid chains of colons. There-

fore we have to introduce an explicit reflection operator El and differentiate

between II for types and V for Set.

21



o We consider a calculus with explicitly typed application and show later that
we can drop the annotations. This particularly simplifies the definition of

an interpretation and is also exploited in the definition of tight reduction. !

We diverge form Streicher in the following ways:

e We use de-Bruijn-indices for the presentation of the system. However, we
will exploit the usual convention that terms with named variables are a

shorthand for the de-Bruijn-presentation.
o We also mark M-abstractions with their codomain.

e We omit a number of structural rules, (see [Str91], pp. 160) like CONT-

THIN, or CREFL because they are admissible in our presentation.

2.1.1. DEFINITION (Syntax). We define contexts (I'; A € Co), types (o,7,p € Ty),
terms (M, N € Tm) and constructions (C, D € Cn) as the union of types and terms
as follows (7, 7,k € w):

Co == e|l0

Ty w= IHo.r|Set | EI(M)

Tm == i|Ao(M)" | app” (M, N) | Vo.M
Cn u= Ty|Tm

We always use de-Bruijn-indices 2

in our presentation of syntax: we represent
variables by natural numbers which corresponds to the binding depth. By doing so
we identify a-congruent terms. This choice also reflects our semantic intuition that

variables are essentially projections out of a context. However, when presenting

1See the discussion in [Str91], pp. 177.

2They have been introduced in [dB72].



a particular term, we feel free to use variables with the obvious translation into
de-Bruijn-indices, i.e we will use llz : o.M[z], Az : o(M]z])” and Vz : 0. M[z]. We

also introduce the following abbreviations: ¢ — 7 = llo.7™ and ¢ —+ A = Vo. A*.

We introduce a whole bag of notations concerning weakening, substitution and

contexts:

NOTATION. [Weakening and substitution] C*" for weakening and C[N]" for sub-
stitution (see figure 2-1) — observe that o[N]* € Ty. The argument n represents
the number of bound variables, if n = 0 then it will be omitted. We also define

repeated weakening and parallel substitution for arbitrary constructions:

c* = ¢
Ox(n+1) — (Oxn)+
Cle] = C
C[pD] = (C[DXP])[D]

The intution behind M7 is that all free variables are increased by one. This
can be used to express the usual side conditions on free variables, e.g. instead of x

is not free in M we use M which entails that M cannot see the first free variable.

NOTATION. [Operations on contexts] We denote the concatenation of contexts by
I'.A, which is defined:

I'e = T
I'(Ao) = (I''A).o

We define the length of a context |I'|:

le| = 0

To| = [T|+1

and a projection operation I'(¢) for all 7+ < |T':

Fo(i+1) = It



Weakening Substitution
Co of = o o[N|] = o
(l.o)t = Tt gt (I.o)[N] = T[N].o[N]IT
(Mo.7)t" = Tlgtr.r++) (llo.T)[N]* = Heo[N]*.7[N]*+!
1y Sett” = Set Set[N]" = Set
El(A)t" = El(A*™) EI(A)[N]* = EI(A[N]™)
i ife<n
. i+ 1 ife>n .
it = i(IN]" = ¢ N** ifi=n
1 otherwise
1 — 1 otherwise
(Ae(M)7)™ =
Tm (Ao (M)T)[N]™ =

Aot (MA D) )
(Vo.M)*" = Vot7. M+0+)
(appa.T(M7 M/))—}—n —
appcr+n.7.-l-(n+1) (M+n7 M/+n)

Ac[N](M[N]>1) N
(Vo.M[N]* = Vo[N]"M[N]**!
(app”™(M, M"))[N]"* =
app” N INH (MNT™, MY[N]™)

Figure 2—-1: Weakening and substitution



We introduce the following judgements:

T context validity,
'Fo type validity,
'Fo~r type equality,
'-M:o typing,

I'FM~ N:o equality.
We can also introduce context equality F I' ~ A but it is not needed for the

presentation of the system and therefore we consider it as a derived notion.

2.1.2. DEFINITION (Rules for Calculus of Constructions). The derivable judgement

are the least relations introduced by the following rules: 3

Context validity

Fe (EmMPTY)
FT ko
S (CoMPR)
FT.o
Type validity
ot T
Lotr (P1)
'+ Ilo.r
FT
(SET)
I' - Set
' A: Set
—_— (EL)
I' F EI(A) -
Type equality
I'Fo
S (REFL)
'Fo~o
'Fo~r
- (Sym)
'Fr~co
'Fo~r 'Er~p
(TRANS)
'Fo~p ‘

3We consider the rule notation just as a shorthand for implication. The fact that

least relations exist follows from the fact that the rules correspond to Hornformulas.



I'ko~o lobr~7
'k o7 ~Ilo'.7
' A~ B: Set
I'+ El(A) ~ El(B)

o A: Set
I'F El(Vo.A) ~ llo.EI(A)

Typing
'EM:o 'to~r

'-M:r
FT i < |T|
I'Fi:T(e)

et M:T
I'FXo(M)" : llo.T

I'M:llo.7 '-N:o
I'Fapp”™(M,N): 7[N]

ok A:Set
' FVo.A: Set

Equality
I'EM:o

'-M~M:o

'-M~N:o

'-N~M:o
'-M~N:o 'EFN~O:o

'M~0:o
'FM~N:o 'tro~71
'FM~N:71

I'ro~o' lokr~7
FerM~M:71
I'FXo(M)" ~ )\O'I(M/)T/ o7

'ro~o' loekr~7
'-M~ M :llo.r 'FN~N:0o
I'Fapp”™ (M, N) ~ appgl'T/(M’, Ny : 7[N]

(PI-EQ)

(EL-EQq)

(ALL-ELim)

(CONV)

(VAR)

(LAM)

(APP)

(ALL)

(REFL)

(SYM)

(TRANS)

(CONV-EQ)

(LAM-EQ)

(APP-EQ)



'Fo~o' ok A~ B: Set

' Vo.A~Vo' B: Set
ok M:T 'EN:o

I'Fapp”(Ao(M)",N) ~ M[N] : 7[N]

(ALL-EQ)

(BETA-EQ)

We call this system CC. [Str91] considers a system with an n-rule which we

present as follows:

I'-M:Tlo.r
I't+ /\J(app“+'7+l(M+,0))T ~ M :llo.T

(ETA-EQ)

We call the extended system CC”". In the following all properties will hold for
CC and CC" unless explicitly mentioned. We will discuss the problems with the
n-rule later (see remark 2.3.19).

2.2. Basic Properties

In this section we collect a number of trivial but important observations about
our presentation. The first important property of the system is that the rules are

consistent with substitution and weakening.

This should be compared with the presentations in [Tro87] and [Str91]. One
important difference is that we do not have weakening (or thinning) as a structural
rules but as derived rules. This is motivated by the use of de-Bruijn-indices. It
seems also natural if one wants to implement the syntax in Type Theory (e.g.

compare with the presentation of System F in chapter 5).

2.2.1. PROPOSITION (Weakening).

1.
FT.A I'-r
T AT
2.
'AFo I'Fr F'AkFo~d 'k~

PrAYFotAl k7 DAt ot~ o8



F''AFM:o 'Fr ''\AFM~N:o '~
L. AT E MTIAL 5+ D7 AT E MTIAL ~ NHAL, 5+A]

Proof. (sketch) By induction over the structure of derivations.

2.2.2. PROPOSITION (Substitution).

1.
FL.7.A 'EN:7
FT.A[N]
2.
''rAFo 'EN:T Ak o~¢o 'FN~N:7
I.A[N] F o[N]Al I A[N] F o[N]14l ~ o' [N]A
3.

I'rTtAFM:o '-N:7 Fr7AFM~M:0o 'FN~N:7
I.A[N]F M[N]AI: o[ N]A] I A[N]F M[N]A ~ M/ [N o[ N]IA

Proof. (sketch) By induction over the structure of derivations, using lemma 2.2.1.

We also have the following relations between judgements:

2.2.3. LEMMA.

'Fo
1.
FT

'EM:o

2
'koe
'tro~71

[ J
I'Fo,7
'FM~N:o
I'EM,N:o

/.

Proof. (sketch) By induction over the derivation. Note that for 2. (APP) we need

(SUBST).



The following lemma states that the type- and context-formation rules are
deterministic (i.e. invertible) and the term formation rules are invertible up-to

type equality, i.e. the only non-determinism is caused by (CONV).

2.2.4. LEMMA.
FT.o
FI' TFro

' Tlo.7
Foekr

' F Set
FT

I'F EI(A)
'Fa:p
TET() > p
I'EXo(M) :p
otk M:7 I'FTlor~p

I'Fapp””(M,N) :p
I'EM:Ilo.r I'FN:o I'F7[N]~p

s I'-VoA:p
"T.obF A:Set T FSet~p

Proof. (sketch) All rules for F I',T'F o,' = M : o are syntax-directed apart from

(CONV).

2.3. Reduction and decidability

We will use a strong normalization result for Curry terms to show that conversion
for typed terms is decidable. This is the base of a type checking algorithm. We
also obtain uniqueness of product formation as a corollary, which we will also use

to show that we can omit most of the type annotations.



2.3.1. General reduction

We will review a few general results about reduction here. 4 For this purpose
assume any (countable) set T of terms and a relation >x € T x T with the property

that that we can enumerate the one-step reductions for every M.

Usually T' will be defined inductively. When defining a reduction relation > x

we will omit the obvious structural rules and only give the reduction on redexes.

NOTATION. By >x we refer to the one-step relation, i.e. precisely one redex is
reduced. >% is the transitive closure, >% the transitive, reflexive closure and ~x

the transitive, reflexive, symmetric closure of >x.

2.3.1. DEFINITION. A term is strongly normalizing if all its reduction sequences
wrt. > x are finite, or more formally the set of strongly normalizing terms SNy C T'

is the least set closed under the following rule
\V/NETM >y N> NE SNX
M € SNy

We say > x is strongly normalizing if all terms are.

We say that > is weakly Church-Rosser if

M
% k
M1 M2

implies that there exists a M3 s.t.

M1 M2
y %
M.

>>x 1s Church-Rosser if we can replace >x in the premise by >%.

> x 1s complete if it is Church-Rosser and strongly normalizing.

4For a more extensive discussion see e.g. [Hue80]



Note that the above definition of SN x directly justifies the principle of Noethe-

rian induction by using the minimality in the definition of SNx.

2.3.2. PROPOSITION.

1. If >x s weakly Church-Rosser and strongly normalizing then it is also

Church-Rosser and therefore complete.

2. For any complete reduction ~x is decidable by calculating the normal forms

and comparing them.
Proof.
1. By noetherian induction, compare to [Hue80], lemma 2.4.

2. Easy.

However, we are not able to use this proposition directly because our reduction
is not globally strongly normalizing. Therefore we introduce a new congruence-

relation by restricting reduction:

2.3.3. DEFINITION. D%NE SNx x SNy is the restriction of >x to strongly normal-

izing terms. %%NE SNy x SNy is the transitive symmetric closure of D%N

2.3.4. COROLLARY. If >y ts weakly Church-Rosser then

1. 3N is complete and

2. 5N is decidable.
Proof. Obvious by proposition 2.3.2.

Note that ~x and ~5Y do not necessarily coincide on strongly normalizing

terms, i.e. there may be M, N € SNx s.t. M ~x N but M#3"N.



2.3.2. Curry reduction

We call terms with no type information Curry terms (A with M, N € A), they are

defined as follows:

2.3.5. DEFINITION.
Au=i| MN | XM | VM.

Weakening M** and substitution M[N]" is defined as for typed terms (in particular
v is a binder).

We use Curry terms and reduction on them to represent the computational

content of a typed term.

There is an obvious forgetful function:

2.3.6. DEFINITION (Stripping). We define a function |_| € Tm — A by:

i = i
Ao(M)T| = AM|
Vo.M| = VY|M]|
lapp”" (M, N)| = |M]|N]

This can be extended to types and contexts in an obvious way.

It should be obvious that stripping preserves weakening |[M*¢| = |M|*" and
substitution |M[N]¢| = |M|[|N|].
2.3.7. DEFINITION. > is the usual fg-reduction:
(AM)N > M[N]
In the case of CC” we also add:
AMT0) >, M

We note that weakening and substitution preserves reduction in the following

way:



2.3.8. LEMMA.
M> N
M > M
M[N] > M'[N]’

2.

N> N
M[N] >* M[N'T'

3.

Proof. By induction over the derivation of t>.
The following proposition is well known (the extension by V is irrelevant):
2.3.9. PROPOSITION. >>,>>, are Church-Rosser.

Proof. See [Bar84], pp. 277.

We will exploit the following proposition which will be shown by a semantic

construction in the next chapter:

2.3.10. PROPOSITION (Strong normalization). If ' M : o then |M| € SN.

2.3.3. Tight reduction

In our definition of judgemental equality the equality of terms depends on the
equality of their annotations. Therefore we introduce a notion of reduction on
typed terms and types which we can use to decide the equality judgement. Note
that we only allow reductions when the types coincide, here we diverge from

[Str91], pp. 169. ® We call this reduction tight reduction and refer to Streicher’s

SStreicher does not investigate reduction in great detail. He assumes a very strong
property (ibid.,p.169): uniqueness of normal forms. It seems rather unlikely that one
can prove this property directly because it is non-trivial to show subject reduction for
loose reduction. In particular this seems to require uniqueness of product formation

(ibid, p.243) which he derives as a consequence of uniqueness of normal forms.



definition as loose reduction. This restriction is essential to show the subject re-

duction property.

2.3.11. DEFINITION (Tight reduction). We define t>¢, >, C Cn x Cn as the reduc-

tion relations generated by the following rules:

El(Vo.A) >¢ o EI(A) (ALL-RED)

app”” (Aoc(M)", N) >y M[N] (BETA-RED)
ot rt1 + T

Ao (app (M™,0))" >y M (ETA-RED)

Analogue to lemma 2.3.8 we have:

2.3.12. LEMMA.

| Cp>¢ N
ot N

) C > C'
" C[N) > O[N]

5 N N’
" C[N) >} C[NY)

Proof. By induction over the derivation of >q.
2.3.13. LEMMA. > ts weakly Church-Rosser.

Proof. By exhaustive case analysis. Let us just consider the case of an overlapping

3 and n-reduction here (which is a critical pair for the loose reduction):

appa.f(/\a_(appa'+ ot (]\4+7 0))7’7 N)

(app” ™ (M, 0))[N] = app”” (M, N)

All the other cases are completely straightforward using lemma 2.3.12.



Note that it is not obvious that >¢ is Church-Rosser, indeed it is more likely

that this is not the case because the rules are not left-linear.

6

We will now show that the strong normalization property for Curry terms

implies strong normalization for tight reduction. We do this by systematically

blowing up terms such that every tight reduction can be mirrored by a reduction

on the underlying Curry term.

We define first some auxiliary notions:

1 = VX :Set. X

M(o,N) = app™" (ASet(M*)"" N)

2.3.14. LEMMA.
FT
‘FI—J_:Set
'EM:o ' N : Set
I'EM(o,Ny~M:o

3. |M(c,N)| > | M|

Proof. Fasy.

2.3.15. DEFINITION.

blow (Set
blow(EI(A)

blow (app”” (M, N)

.7)
)
)
blow (i)
)
blow(Aa(M)")

)

blow(Vo. A

We now define blow € Cn — Cn:

blow(c)(Set, blow(r))
L

blow(A)

app” (blow(M), blow(N))(7[N], blow(')) ([ V], blow(r))
Ao (blow(M))" (ITo.7, blow())(ITo.7, blow(r))
Vo.blow(A)(Set, blow(o))

6Compare with Klop’s counterexample, see [Bar84], pp. 403.



The idea behind the definition of blow is summarized in the following lemma:

2.3.16. LEMMA.

; 'Fo
Tk blow (o) : Set

) '-M:o
'Fl—blow(M):a

3. If C >¢ D then |blow(C)| > |blow(D)].

Proof.

1.,2. Just apply fact 2.3.14.

3. By induction over >. ...

2.3.17. COROLLARY.

I'Fo
o € SN;

1.

'-M:o

2 —
M € SNy

Proof. Just apply lemma 2.3.16.

2.3.4. Decidability

To derive decidability we have to show subject reduction and, alas, it is not clear

how to show this property for CC” therefore we will do this only for CC.

2.3.18. THEOREM (Subject reduction).

I'to o>y T '-M:o Mr>¢ N
'~ 'to~71 'EN:o 'FM~N:o




Proof. Note that the first part of the conclusions can be inferred from the second

by lemma 2.2.3(3,4).

By induction over >¢ exploiting lemma 2.2.4. Let’s only consider the case of a

B-reduction here:

app” " (Ac(M)7, N) >y M[N]

From

[ app” (Ao (M)", N) : p
we can infer (by lemma 2.2.4(6,8)):

'k po~7[N]
et M:T
'EFN:o

Now we only have to apply (BETA-EQ) and (CONV) to derive:

I'Fapp”™(Ao(M)",N)~ M[N]:p

2.3.19. REMARK. What is the problem with n-reduction here? Consider:
)\J(app“+'7+l(M+,0))T >y M

Assume we know

I'F Aa(app” ™" (M*,0)) : p
using lemma 2.2.4 we can conclude:
lok Mt :lot.7H!
but to apply (ETA-EQ) we need

' M:l1lo.7.

We certainly believe that the inverse of weakening, i.e. strengthening should

be admissible, i.e.

FokFM*T .7t
'EM:7




However, it is not easy to verify this rule. The essential problem is that it is not
true semantically, i.e. it fails in models with empty types. Therefore we cannot
hope that we can derive this rule using only simple properties of substitution and

weakening because they hold in all models.

However, the problem disappears when we turn around n-reduction. n-expansion
seems the semantically appropriate notion because subject reduction becomes eas-
ily derivable, i.e. indeed it is true in every sound interpretation. But n-expansion
has syntactic disadvantages: it is no longer strongly normalizing. It is also not

clear how to reconstruct the type annotations.

It is now easy to derive the core lemma:

2.3.20. LEMMA.

I'Fo,r o~N T '-M,N:o M ~N N
'Fo~r 'FM~N:o

Proof. We restrict ourselves to the second rule:

if We exploit that >~ is Church-Rosser (corollary 2.3.4 and lemma 2.3.13) to
derive that M >N I <3N N. Now we only have to use theorem 2.3.18 to
see that
'rM~L~N:o

and the result follows by (TRANS).

only if Obviously every conversion rule is mirrored by & and to see that it is

indeed ~5N we only have to use lemma 2.3.17.

2.3.21. COROLLARY (Decidability of equality).
1. If 'k o, 7 it is decidable whether I' - o ~ 7.

2. If ' M,N : o it is decidable whether ' M ~ N : o

Proof. Follows directly from lemma 2.3.20 and corollary 2.3.4.



2.4. Type reconstruction

We have presented the calculus using a very explicit notation, this has been ex-
ploited for the definition of tight reduction and it will simplify the definition of
an interpretation. Following Streicher ” we can now show that we can throw away
the ladder on which we climbed and omit types in applications and indeed also the
codomain of applications. We will also describe a type reconstruction algorithm

which is based on the decidability of equality (corollary 2.3.21).

Much of the syntactic development is based on the following property: ®

2.4.1. THEOREM (Uniqueness of product formation).

I'+ H0'1.0'2 ~ HTl.TQ

I'Foy ~ oy oy Foys~m
Proof. By lemma 2.3.20 we know:
Ilo;.09 QEN 7.7
Using completeness of >?N we have that there exists p s.t.
[loy.09 ¢ p <4 Iy

From the definition of > it is obvious that p = llp;.p2 and

o By o pr <7

oy D¢ p2 <t T

By applying theorem 2.3.18 we have:

F"O’lﬁplﬁ’/’l

F.O’l "O'Qﬁpg ~ Ty

and the result follows by (TRANS).

7[Str91], pp. 242

8Compare Lemma 4.8. [Str91],pp. 243



We will now define Church terms Tm“™™ from which all type information
apart from the domain of a A-abstraction and V is removed, and a stripping oper-
ation.

2.4.2. DEFINITION (Church syntax).

Tmvreh = | \o. M | M N | Vo.M

Ty®reh and Co“Mrh are defined as before, replacing Tm by Tm&Mreh,

We define ||_|| € Tm — Tm™ ™ by primitive recursion:
el =
Ae(M)T|| = Allo|l.[[M]]
IVo.M| = V|a|.[|M]|
lapp” ™ (M, N)|| = |IM|]IN]

This has to be extended to types and contexts in an obvious way.

We will show that Church terms determine an explicitly typed term and its
type up to judgmental equality. *
2.4.3. LEMMA.
'-M:o 'EN:T I'kFo,r
M| =[N lofl =il
'Fox~r 'EFM~N:o 'co~r

Proof. By induction over the structure of ||M|| and ||o||. The cases for types are
all straightforward (using induction hypotheses and lemma 2.2.4) and we will only

discuss abstraction and application in detail here:

abstraction

Assume
M = doy(M')?
N = An (N7
M| = [|V]]

9Compare Theorem 4.10. [Str91], pp. 245



Using lemma 2.2.4(6) we have
ot =M : oy
FmnEN 7
I'to~1lo.oy
't7~Iln.n

Using the induction hypothesis we can derive:
'Fop~mn
ey Foy~m
oy M~N: o
Hence by (PI1-EQ) and (LAM-EQ) we have:
I'tro~lloyoy I~

I'EM=MXoy (M) ~ A (N)? = N : 1loy.oy

application
Assume
M = app” (M, Ms)

N = app™™(Ni, Na)

M= [1V]]

Using lemma 2.2.4(7) we have

' M, :lloy.0y
' Ny rm
' M, 04
I'-Ny:my
I'F o~ oy M]
I'F 7~ n[ V]

Using the ind.hyp we can derive:

I'+ H0'1.0'2 ~ H7'1.7'2
'+ M1 ~ N1 : HG'1.0'2
'+ g1~ T

FFMQZNQZO}



Using theorem 2.4.1 we also have:
oy Foy~m
Hence by lemma 2.2.2 and (APP-EQ) we have:
I'F o~ oy[M] >~ n[Ny| 7

I'F M = app??2( My, My) ~ app™ (N1, Na) = M : 03[ My]

From the previous lemma we know that a typed term and its type is already
determined by its underlying Church term. This justifies the use of Church terms
to denote explicitely typed terms. Indeed, based on the decidability we can con-
struct an algorithm which computes the explicitely typed version of a Church term

and its type or signals an error if no such term exists, i.e. we have:

TR € Co™M™rh 5 Cow {1}
TRTy c COChurch > TyChurch — Ty o {J_}

TRTm c COChurch > TmChurch — (Tm > Ty) o {J_}

with the following properties:

I such that F IV A ||| =T

TR(T) =
1 if no solution exists.
- o' such that I"F o' A||I"|| =T Ao’ =0
TRY(I',o) =
1 if no solution exists.
- (M',¢") such that I"= M": o’ AT =T A ||M'|| =M A|o|| =0
TR'™(T, M) =

1 if no solution exists.

We present this algorithm which works simply be structural recursion. We
assume that NF € Cn — Cn computes the normal form of a construction which
respect to >¢. To save space we adopt the convention that failures (L) are prop-

agated.



TRCO(Q) = o
TR®(T.¢) = TR(T).TR™(T,0)
TR™(I',Tlo.r) = HOTR™(T,0). TR™(T.0,7)
Set fTRCO 1
TR™(T,Set) = { 0 #

otherwise

TRY(I EI(A) = A"y if TR™(T, A) = (A, Set)

otherwise

T (T'(3))) if TR(T) =T"Ai < T
TR™(T,4i) =

otherwise

app””(M', N"),NF(r[N'])) if

TR™(I, MN) = TR™(I', N) = (N, 0)

1 otherwise

. T Tm
TR™(I', Ao M) = T Ho'.r) if TRY(I',o) =0’ ATR"™ (.o, M) = (M', )

otherwise

- (Vo'. A", Set) if TR™(I',0) = o/ ATR™ (.0, A) = (A’, Set)
TR™(I',Vo.M) =

otherwise

{ TR™ (T, M) = (M’, llo.7)A

We will not verify this algorithm in detail but note that all the types which
are computed will always be in normal form and therefore as in corollary 2.3.21
judgemental equality is reflected by syntactic identity. It is also important to note
that we will only compute a normal form when we can be sure that the type is
valid and therefore strongly normalizing (lemma 2.3.17). Obviously, algorithm
presented here is extremely inefficient: we may recompute the types of subterms
or verify types or contexts several times and we use the ineffective tight reduction

anyway.



2.5. The conversion presentation

We already mentioned the equality-as-conversion presentation of Type Theory. In
this section we will exploit theorem 2.4.1 to show that the two presentation of CC
coincide. We will encounter yet another problem with the n-rule. To simplify the

presentation we will use the explicit syntax here.

We start by defining loose reduction which corresponds to the notion of reduc-

tion described in [Str91].

2.5.1. DEFINITION (Loose reduction). We define t>1,>1,C Cn x Cn as the reduc-

tion relations generated by the following rules:

El(Vo.A) > 1lo.EI(A) (ALL-RED)

app” (Ao’ (M)™', N) > M[N] (BETA-RED)
ot st + T

Ao (app (M™,0))" >, M (ETA-RED)

The following fact is only true for >; not for t>,;:

2.5.2. PROPOSITION. > is Church-Rosser.

Proof. Straightforward extension of proposition 2.3.9.

Using theorem 2.4.1 we can now show subject reduction for loose reduction.
Note that we needed to define tight reduction first because we used it to establish

theorem 2.4.1. The following lemma relates loose and tight reduction:

2.5.3. LEMMA (Tightening).

I'Fo o> T I'-M:o M N
Jo'TFo~o o' >y T IMTHFM~M:0o M' >¢ N

Proof. By induction over the definition of >). The interesting cases are only 3

and n. We only consider 3 here: Assume

I'-M= app‘”(z\al(Ml)T/, My):p



We have that M > M;[M;]. By using lemma 2.2.4(6,7) it can be easily established
that:
I'FTo.r ~Tlo'.7

and with theorem 2.4.1 we have that:

I'to~o

lokF7r~7

and hence:

't M~ M =app” (Aa(My)", My) : p
and obviously
M' > My[M,)].

2.5.4. THEOREM (Subject reduction for ).

I'to o> T '-M:o Mp> N
'~ 'to~71 I'EN:o 'FM~N:o

Proof. Follows from theorem 2.3.18 with lemma 2.5.3.

We show the following lemma only for 3:

2.5.5. LEMMA.

'kFo,r o T '-M,N:o M =~ N
'Fo~r 'FM~N:o

Proof. Similar to 2.3.20, using proposition 2.5.2.

Note that although the simple minded proof fails for n it seems possible to
adapt Geuver’s work [Geu93] to our presentation. Another observation is that it
is not so hard to show if we restrict ourself to ~’N which is completely justified

even from the view of an implementation.

We now define the conversion presentation of CC.

2.5.6. DEFINITION (Conversion presentation of CC). We define the judgements -~

I'''F¥ o and I' V® M : ¢ by modifying definition 2.1.2 as follows:



1. The rule (CONV) is replaced by
' M:o o T
' M:r

(CONV’)

2. All the rules regarding equality judgments are omitted.

2.5.7. THEOREM (Equivalence).

FG 'ko 'EM:o
F* G | e r*M:o

Proof. Follows directly from lemma 2.5.5.

It seems straightforward to combine this result with the one presented in the
previous section to verify the equivalence to a presentation using conversion of
Church-terms. This is already quite close to a PTS presentation. However, there
are still some differences, in particular the presentation of the A-rule, but the PTS

presentation of the A-rule seems questionable anyway. '°

10Tt seems that the problem with the expansion-postponement property in [Pol92] are

mainly caused by the way the A-rule is presented for PTSes.



Chapter 3

Semantics and strong normalization for

the core calculus

We will now analyze the system semantically and establish consistency and strong
normalization. For this purpose we will introduce the notion of a CC-structure
which is influenced by Henkin-models for simple types and by the categorical
semantics of CC. We will show that every CC-structure gives rise to a sound
interpretation and then rephrase well known model constructions in terms of CC-
structures: the proof-irrelevance interpretation and the realizability semantics (D-
sets). Finally we will present the saturated A-set model as a modification of the

realizability semantics and derive strong normalization as a corollary.

3.1. Basic notations

We will review some set-theoretic notations and define what we understand by a

sound interpretation.

NOTATION. If we write a € A, a = b we mean that A,a,b are defined and in the

appropriate relation. We use a = b € A to say a = b and a,b € A.

We use a = b to denote Kleene equality, i.e. either both a and b are defined
and equal or they are both undefined.

Analogously by @ € A we mean that if a is defined then A is defined and a € A.
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We also require some set-theoretic notation:

NOTATION. [Set-theoretic notations] Assume some encoding of pairs (a,b) to-

gether with projections w1, mq, s.t. m(a,b) = a, my(a,b) = b.

Application is a partial operation: f(z) is defined if 3!, ,)es and then equal to

We will use nested pairs to represent sequences. € is the empty sequence and
if § is a sequence and x an element then (4, ) is a new sequence. If all elements
of a sequence are in a set X then the sequence is element of X*. We denote
concatenation for nested pairs by juxtaposition, which can be defined recursively
ve = v and y(d,z) = (v4,z). Often we will use the vector notation @ to denote

variables ranging over sequences. We denote the length of a sequence by |a].

3.1.1. DEFINITION (Operations on sets). Let A be a set and {B,, B! },c4 families

of sets indexed by A. We define the following operations on sets:

Ya€ A.B, = {(a,b)]a€ Abe B,}
1la € A.Ba = {f g Ya € A.Ba | \V/QEAE”beBa(a,b) € f}

As usual we write A — B for lla € A.B.

In all our models we use classes of sets with some additional (intensional)

structure:

3.1.2. DEFINITION (Universe). A universe i is a class together with an operation

which assigns to every X € i a set X which we call the extension of X.

3.1.3. REMARK. The idea behind our definition of universes is that we want to
consider classes of sets with some additional (intensional) structure which is not
reflected in the enumeration of the elements. A typical example of this are the

D-sets definition 3.4, where to every set we associate a realizability relation.

3.1.4. DEFINITION (Interpretation). An interpretation is given by a two universes
Heo and Hry and:



1. A partial assignment of elements of ¢, to contexts:

[[l_ F]] € ﬂco

2. A partial assignment of families in Uty to type validity judgements:
{[[F k- O-]]f)/ E ﬂTY}’YEm
3. A partial assignment of families of values to terms in a context:

([T MW}, ey

Note that we assign meaning just to contexts, pairs of contexts and types and
pairs of contexts and terms. That we use the notation for judgements (i.e. F) is

just to improve readability.

3.1.5. DEFINITION (Soundness of an interpretation). We say an interpretation is

sound, if the following holds:
1. If + T then [+ I'] is defined.
2. I Tk o then [T F o] is defined.
3. T+ M : o then

[T - M] €Tly € [F T[T F o]n.

4. '+ o0 ~ 7 then
[TFeo]=]IF 7].

5 U T'F M ~ N : o then

[T+ M]=[TF NJ]€Tly<[F T[T+ o]y

Note that soundness of interpretation does not imply that we have a model

(i.e. a CC-structure), because we only say something about the behaviour of



definable elements. However, it seems to be possible to obtain a model from a

sound interpretation by restricting everything to definable elements.

This also implies that every valid type (or context) is defined and that every
typable term is defined and in the appropriate set.

Note that we never have to verify any of the congruence rules : they are
automatically true due to our choice to use equality in the semantics to interpret

the judgements.

3.1.6. REMARK. Note that we really require the sets to be identical, which is
stronger then the usual categorical formulation where we interpret equality of
types by an isomorphism of objects. However, when interpreting syntax this leads
to coherence problems, i.e. we have to be sure that every diagram which consists
only of isomorphisms commutes. Here, we go another way and avoid coherence
problems by building a canonical choice into the semantics, thus achieving equality
and not just isomorphism. ' However, note that the definition of an interpreta-
tion becomes slightly more clumsy, so maybe it would be better to have a good

understanding of coherence for the Calculus of Constructions.

3.2. CC-structures

We will unify the model constructions presented here by introducing structures
resembling Henkin models. We will do this in two steps: First we define LF-
structures ? which are sufficient to interpret dependent types with II-types (prod-
ucts) and based on this we define CC-structures to interpret the Calculus of Con-
structions. LF-structures may be compared to closed comprehension categories
(CComprC) [Jac9l], and CC-structures to CComprCs with a (fibred) weakly re-
flective subcategory with a generic object (i.e. essentially a dictos [Ehr89]).

!This was proposed to me by Thomas Streicher. He used this idea already in [Str89].

2Here we use the term LF in a loose sense to refer to a basic typed A-calculus with

dependent types(see figure 1.2).



To introduce LF-structures we define a number of semantic operations on sets

which reflect the syntactic operations in LF:

3.2.1. DEFINITION (Semantic operations). Let Abeaset, {B,, B, }aca and {Cp}e(saca.Ba)

families of sets.

projections Assume f € lla € A.B, then
[rPde = pe(Tae AB) = [(mi(p))
€ Ilpe(Xac A.Bé).Bm(p)

Pra(py. = PE(Ya€ AB,) m(p)
€ llpe(Xae AB,).Br

composition Assume f € lla € A.llb € B,.C(,4) and g € Ila € A.B, then

flgl = a€ A f(a)(g(a))
e lla € A.C(mg(a))

currying Assume f € Ilp € (Xa € A.B,).C):

Mf) = a€ A be B, f(a,b)
€ lae Allb € B,.Cpup)

LF-structures provide the basic semantic components to interpret a calculus
with dependent types: We have 1 corresponding to an empty context and ¥ for
context comprehension; to any context and family of types over it we assign the
set of sections (Sect) ® which corresponds to the interpretations of typed terms
in a context. II corresponds to Il-types. The simplest LF-structure is the full,

set-theoretic interpretation lemma 3.3.1.

3.2.2. DEFINITION (LF-structure).
L = (Ugo, try, 1,3, Sect, IT)

with

3Here our terminology is influenced by the categorical model constructions.



Heo, Uty are universes.

1 e Ue,.

° E(X € L[CO,{YQS € ﬂTy}xey) € e, s.t. E(X, {Yr}r) =Yz € 7710

Sect(X € Ueo,{Y: € ﬂTy}azeY) Clz e X.Y,.

(X € Ury, {Y; € uTy}zeY) € Ury s.t. (X, {Yo}o) Cllz € XY,

is an LF-structure if the following conditions are satisfied:

1. 1 is a one-element set.

) € Sect( X, {7Z:}z)
Y e Sect(B(X, {Yato), {Zmn }o)

3. pry vy, € Sect(X(X, {Yate), {Yri(n) 1)

|4 €Sl XAV, (Zeher ) b) g € Sect(X, {¥2}.)
' flg] € Sect(X, Z(z g(a))

J € Sect(B(X,{Yo}a) {4y }0)
*MJ) € Sect(X ALYz, {Ze biev ) o)

3.2.3. REMARK (LF). We can interpret the logical framework, i.e. the calculus

without the rules regarding Set,V and El * in LF-structures in the following way:
Assume £ = (Yo, Uy, 1, X, Sect, IT) then

[+ .]],c >~ 1
[FT.o]° = S([F )50 F o)
[T+ Hor] = (T[T F o]y {[T.0 F 7]°(v,2)}) b eprye

[[FJ l_ O:I:I’c :g prl['_F]ILJ[F'_U]IL
[Cor kit 1]° & ([[Fi:o]©)tiF1”

4Note, however, that we have to introduce some constants to have an interesting

theory because there are no syntactic objects denotable in the core calculus as described.



[T+ Xo(M)]* = M[T.oF M:7]")
[Tk app” (M, N)]* = [+ M:Hor]*[[TF N : 0]

Note that that for any I' = M : o we have [I' - M]* € Sect([ I']*, [T + o]°).

3.2.4. REMARK. In many cases one has ¢, = Ur, and Sect(X, {Y, }.) = (X, {Y,}.).

However, this is not reflected in the syntax:
e So far we have not introduced a notation for ¥-types.

e Even in the presence of Y-types the equality introduced by substitution is
syntactical identity whereas the equality introduced by contraction of pro-

jections is the judgemental equality °

This can also be compared with the difference between locally cartesian closed

categories (LCCCs) and CComprCs.

We will now define CC-structure by adding additional structure to an LF-
structure. To understand the motivation behind the following definition it is useful

to have a look at a concrete structure, e.g. 3.3.1, see also 3.3.2.

3.2.5. DEFINITION (CC-structures).
C = (L, M, SET,EL, EL™", )
with
o L = (Ugo,Upy, 1,5, Sect, IT) is an LF-structure.
o M C Uy, is the subclass of modest sels.

e SET € ﬂTy.

This leads naturally to a calculus with explicit substitutions as in [ACCL90].



e EL(A € SET) € 9 and EL™'(A € 91) € SET.
o Uxecom € X — EL(EL_I(X))

is a CC-structure if the following conditions are satisfied:

1. Sect(X,SET) = X — SET.

2. EL7(EL(A)) = A.

3. (X, {Y, € M}, € M) € M.

4. ¥x is a bijection and

f € Sect(X,{Y, € M},)
Jo f € Sect( X, {EL(EL™"(Y,))}2)

3.2.6. REMARK. Categorically, the conditions for CC can be expressed by saying
that modest sets constitute a (fibred) reflective subcategory with a generic object.
It should be noted that we do not require that EL™" is inverse to EL. Indeed this

is not the case in any of the constructions we are considering.

We will now assign an interpretation to every CC-structure and then verify

that it is sound. For the following assume as given a CC-structure
C = (£ = (Uco, 1y, 1,3, Sect, IT), MM, SET, EL, EL~", ).

We will first define two auxiliary operations:

EL(EL™'(X) if X € M

®(X € ilTy) =

X otherwise
. _ Ix(z) if X e M
ﬂXGilTy(w & X) =

x otherwise

€ 0O(X)



3.2.7. DEFINITION (Interpretation in CC-Structures). We define an interpretation

as follows:

IFe]¢ = 1
[Fr.o]® = ([ T]5 [T+ o))
[T+ Tor]" = {O(T F o]y, {[T.0 - 7[°(v,2)}o) b eprye

[I'F Set]® = {SET} cprpe

[T+ EA)] = {EL([TF AP}, e
.o 0]° 2 pryrge rrope

[Porbi+1]¢ = ([0 F )

[TE (M) 2 Dy, e, 0 Mo B M)
[Tk app” (M, N)]¢ = <1§|[}ina.f]|w o [I'+F M])[[T F N]]

[T F v Al

i

{EL™Y(I(IT F oy, {EL(IT.o F Al (v,2))}2))},

Note that we use ¥ and O to coerce the interpretation of Sets to their canonical
meanings. This technique is already used in [Str91] to give an interpretation of
CC up-to-equality instead of merely up-to-isomorphism (which would impose a

coherence problem).

We first have to verify that weakening and substitution are interpreted cor-

rectly:

3.2.8. LEMMA (Soundness of weakening). For any~ € [ I'[, v € [F T.A]" and
z € [+ 7] we have

[T.AF O']]C")/5 ~ [F.r.ATF O'+|A|]]C’)/CE5
[C.AF M[fy6 = [D.rAtE MYAY Y26

Proof. By induction over the structure of ¢ and M. Most cases follow straightfor-
wardly by just applying definition 3.2.7 and if necessary the induction hypothesis.
Let us therefore only consider the case M = i here. Note that [I' F i]]c = myoml.

We have to distinguish the following cases (see definition 2-1):



1 >=|A|

[FAFR96 = m(mi(v6))
= my(mit (yzd)) because 1 >= |A]

= [T.7ATFi+1= i+|A|]]C’y;z:5

1 < |A|

AR = mri(6)
= mo(mi(yzd)) because 1 < |A|

= [[.rATFi=itAC 28

3.2.9. LEMMA (Soundness of substitution). For any~y € [F T]° and 46 € [F T.A[N]]°

we have:

[T.rAF o]°y([T F N]y)§ = [I.A[N]F o[N]2 s
[T.r.AF M]“Y(C F N[°y)8 = [T.A[N]F M[N]*%6

Proof. By induction over the structure of ¢ and M. The same remarks as for

lemma 3.2.8 apply. Consider M = 7 again. Note that:
[T.7A F ([0 F NITY)8 = ma(mi (3(I0 F N77)8))

We have two check three cases (see definition 2-1):

i <A
mo(mi (v([T - N]79)d))
= my(m(7d) because i < |A]
= [.AF i =i[N]As

mo(m (3(IT + N77)9))
= [P+ Ny because i = |A]

= [k NTA = N]]2%6 by lemma 3.2.8



1> |A|

ma(mi (3(I1 - NI7)8))
= my(ri () because 1 > |A|

= [LAFi—1=N]ACs

3.2.10. THEOREM (Soundness). [F F]]C, [k U]]C and [I' F M]]C defines a sound

interpretation of the calculus definition 3.1.5. In particular we have that:

I'EM:o
[T+ M]¢ € Sect[ T[T + o]°
'ro~r
[TFo]f =[TF 7]
I'-M~N:o
[T+ M]° =T+ NI

Proof. We show this by mutual induction over the derivations. Many cases are

obvious, in particular:

e The definedness conditions (definition 3.1.5 1.,2.) follow directly from the

premises.

e All congruence rules and (CONV) are direct consequences of the fact that

we use semantic equality to interpret equality judgements.

(ALL-ELim)
[T+ El(Vo. A)] Y

= {ELELT'(I(IT o]y, {EL(IT.0 = AT (3, 2))}2))) )

= {O(I([ F oy, {EL([Io - AL (v, 2))}.))}
= [o.El(A)]y

(VAR) Just for n = 0:
[l.o - 0]°
= PIm€ [reo1°
Sect(S([- T, [T F o] I F o] mi(7)}-)
= Sect([F I.o]%, [I.o F o) lemma 3.2.8

m



(LAM)

[T - xo(M)]°
= Yo A([l.o+ M%)
e Sect([I]", OI([T + o], [T.0 - 7]))) ind.hyp.
= Sect([I'%, [T + Mo.7]°)

(APP)
[T+ app™ (M, N)]°

= (Vi ipge, © [T F MIOIT F NI

m

Sect([T]%, {[I.o + 7]°(~, [T F N]°y)},) ind.hyp.
= Sect([T']%, [T+ 7[N]]°) lemma, 3.2.9

(ALL) Note that properties 1 and 3 of definition 3.2.5 are required for this case.

(BETA)

[T+ app®” (Ao (M)7, N[~
(Mo = M) = NT)y

= [[.oF M]°(v, [T F N]%9)
= [I'+ M[N]]~ lemma 3.2.9

3.3. Proof irrelevance semantics

The basic idea is that the most natural way to interpret types is to interpret type-
theoretic constructs by their set-theoretic counterparts. In particular II will be
interpreted by II on sets (3.1.1), i.e. as for simply typed A-calculus one may call
this a full model. Although this approach works fine for Martin-Lof Type Theory
it has a shortcoming for impredicative systems: We have to identify all inhabitants
of sets, i.e. we interpret Set (which we should rather call Prop here) as truth values

and every inhabitant of a proposition will be mapped to a canonical one.

We note that the class of sets gives rise to an LF-structure:



3.3.1. LEMMA. Let & be the universe of sets with X = X and:

o 15 ={¢}.

o Ys(A,{B.}.) = Ya € A.B,.

o Is(A,{B,}.) = la € A.B,.

S =(6,6,1s,%s,s,1ls) is an LF-structure.

Proof. Follows directly from definition 3.2.1.

For the following let 2 = {(), 1} a canonical presentation of truth values, i.e.
false = () and true = 1. We call a set A with at most one element a singleton © |

i.e. ) and 1 are singletons.

3.3.2. REMARK (Understanding CC-structures). This interpretation as simple as
it is can be used to understand the motivation behind our definition of CC-
structures and the definition of the interpretation 3.2.7: To interpret (REFL)
we need that II preserves singletons in the following sense: If {B,},ec4 is a family
of singletons then Ila € A.B, is a singleton. However this is not sufficient to make
the interpretation of (REFL) sound because we require this set to be equal to a
canonical singleton (i.e. element of 2). This problem is solved by mapping every
singleton set to a canonical one. This is expressed by ©® = EL o EL™". This coer-
cion operation is accompanied by a bijection of values which is given by §. Now we
can understand the use of # in 3.2.7: Whenever a value in a single valued function
space is constructed it has to be coerced to the canonical representation () € true
by # and whenever it is going to be applied the unique function it represents has

to be recovered by 671,

6Note the non-standard terminology here — usually singletons are considered to be

non-empty.



3.3.3. THEOREM (8% is a CC-structure). Let Ms denote the class of singletons

and:

fal f X =10
RL3(X) = alse if

true otherwise

and Jsx(z) = ) € true (Note that Vs will be never applied if X is empty.).

St =(8,Ms,2, X — X,EL5", 0s)

is a CC-structure.
Proof. Easy.
3.3.4. COROLLARY. The calculus is logically sound.

Proof. Consider

[Fv¥5X Set] = () X =0
Xe{0,1}

by soundness (3.2.10) we know that there can not be a term = M : EI(VX5¢X)

3.4. Realizability interpretation

The essential shortcoming of the proof-irrelevance interpretation is that Set is
equationally inconsistent, i.e. all equations between elements (aka proofs) hold.
Indeed we cannot make this interpretation proof relevant and at the same time
retain the full interpretation of Il-types. This is reflected in the slogan that poly-
morphism (i.e. impredicativity) is not set-theoretic (this has been studied in the

case of System F in [Rey84]).

The solution to this problem is to restrict the elements of Il-types to depen-
dent functions which can be tracked by some partial recursive function. This is
reflected in the w-Set semantics which can be generalized by using arbitrary partial
combinatory algebras, which are called D-sets by Streicher. In [Str91] one can find
a very comprehensive study of the D-set semantics using categorical tools. Here
we will show that D-sets give rise to a CC-structure. Parts of this proof can be

reused in the strong normalization proof.



3.4.1. Partial combinatory algebras
Let us repeat some fundamental definitions here:

3.4.1. DEFINITION (Partial equivalence relation (PER)). Let A be a set and R C
A x A. Ris a partial equivalence relation, i.e. R € PER(A) if R is symmetric and

transitive. The domain of R is the subset of A where R is reflexive:
dom(R) ={a € A| aRa}.
3.4.2. DEFINITION (Quotient). We define the quotient of A wrt. R as
A/IR={pCA|p#DANVeyea(r €EpAzRy) =y € pAVsyeprRy}.

3.4.3. DEFINITION (Partial combinatory algebra (PCA)).
(D, -, k,s) with

e D is a set.
e - is a partial function D x D — D.
o k,se D
is a partial combinatory algebra if the following holds:
l.k-x-y==x
2. s-x-yis defined.
3.scxry-z=x-z-(y-2).
A PCA is non-trivial iff D is not a singleton, which is equivalent to k # s.

3.4.4. DEFINITION (Language of PCAs). Let

and =g, C Tmpe, X Tmp, the least PER generated by the three conditions for

PCAs (interpreting definedness as reflexivity as before).

Let [ = SKK and Tmpga = Tmpc,.



3.4.5. FacT. (Tmpea, ., K, S) is the initial PCA i.e. given any PCA D we have

an (obvious) partial evaluation map: (D, -, k,s), we have
[[—]]D € Tmpcpy — D

which is sound, i.e. preserves equality and definedness.

This can be extended to

15 € TmEgy — D" — D

The following is the motivating example for PCAs:

3.4.6. FAcT (Kleene application). Let {i}; be the application of the ith partial

recursive function to j. Then there are s,k € w such that (w,{_}_,s,k) is a

PCA.

We can now restate the famous theorem due to Schonfinkel in terms of PCAs:

3.4.7. THEOREM (Schonfinkel). PCAs are functional complete, i.e. for every n €
w, M € Tm}Ey there is a AM € Tmpg, such that

(AM)N = M[N]

where M [N] denotes substitution.

Proof. We define AM by induction over the structure of terms:

M = M otherwise

3.4.8. FAcT (Pairing). We have P, P;, Py € Tmpca such that

P(PMN) = M

Py(PMN) = N



Proof. Let

P = Jzy\p.pry
P = AppQzy.z)

P, = Ap.p(Azy.y)

and apply 3.4.7.

3.4.2. Interpreting dependent types

Using the well known material of the previous section we will now construct the

LF-structure of D-sets:

3.4.9. DEFINITION (D-sets).
Let D be a set then a D-set X is a pair (X, IFx) with X is a set and IFxC D x X
s.t. V cxJdiept IFx z. The class of D-sets together with the operation X which

assigns a set to every D-set constitutes the universe 2.

For the following we have to assume that there is a PCA (D, -, k,s). We will

also abuse notation and confuse terms and elements of D, e.g. Ap.d;(Pid) =

< 1
[Ap-ds(Pip)]p(dy)-
3.4.10. LEMMA. Assume X € D, {Y, € D} % and let:

Ip = ({e}, D x {e})
Ep(X {Yohex) = (B, {6 (z,9)) [ Prilbx 2 A Pyilby, y})
p(X,{Yo},ex) = ({f €, %Yo | Jient In f1,1Fn)
where lbn={(4, ) | V,exVjens IFx z =i 5 by, f(2)}

D= (D,9,1p,%p,p,[p) is an LF-structure.

Proof. 1t is obvious that 1p,1Ip(X,Y) € D to see that ¥p(X,Y) € D, assume
dy IFx z, d, Iy, y then Pd, d, IFs, (xy) (2,y).

Now, let us check the conditions (cf. definition 3.2.2) - assume {Y', € D} ¥
and {7,}

pEXP(X,Y)



1. 1p = {c} is a singleton set.
2. If df H_HD(X,Y) f then Xp.df(Plp) H_HD(ED(X,Y),{Yél(p)}p) f+{Y_z}z 7
3. P2 IPnp (50 (X 0) (Vi o) PIX (T2

4 I dy Iy (X T (Ve {70y Fyeva) ) o Ao IPTIp(x,72),) 9 then

Ax.dsx(dyr) = Sdysd, 115 (X, 70 0a) 1G]

The essence of this proof is that every operation defined in 3.1.1 can be tracked

by some A-term.

3.4.3. Interpreting constructions

The notion of a modest D-set corresponds to the singleton sets in the proof-
irrelevance interpretation and just as singletons can be canonically represented by
elements of 2, modest sets can be represented by PERs. Note that the following

definitions and the lemma do not require any computational structure on D. 8

3.4.11. DEFINITION. We call X modest, iff

\V/Lyeyviepi H‘X T A1 H‘X y—Tr =1y,

we denote the (sub-)universe of modest D-sets by 9p.

"We abuse notation slightly, i.e. Ap.d(Pid) := [[Xp.df(Plp)]]z(df).

8This is important because this means we can reuse them for the strong normalization

proof.



3.4.12. DEFINITION. Assume X € Mp, R € PER(D):

ELp(R)

(D/R,€)
191))((%’67) = {Z|ZH‘X :L'}

3.4.13. LEMMA.
1. ELD(R) e Mp.
2. Tlp( X, {Y, e Mplz e X) € Mp

3. EL3'(ELp(R)) = R

4. 9px € X = ELp(EL3 (X)) is a bijection and

Proof.
1. Follows from the definition of quotients 3.4.2.

2. Assume i lFrgxy) f, g, Now forall z € X, j IFx x we have i-j IFy, f(z),g(x)
and because Y, is modest f(x) = g(x) and therfore by extensionality f = g.

3. Expand definitions.

4. The preservation of realizers is easy to check and implies the first half of the

proposition because all D-sets concerned are modest.
Now we have sufficient material to define the CC-structure D*:

3.4.14. THEOREM (D% is a CC-structure). Let

SETp = (PER(D), D x PER(D))



then
Dt = (D, 9Mp,SETp, ElLp, EL{)l, Up)

1s a CC-structure.

Proof. Follows by lemma 3.4.10 and 3.4.13. It is easy to see that SETp fullfills
condition 1 of definition 3.2.5.

3.4.15. COROLLARY. The calculus is equationally sound.

Proof. We use the Kleene-PCA (3.4.6). ? Let

BOOL = V¥*'X2>XD>X
true = AX :Setdz,y:El(X).x

false = XX :Set. x,y: El(X).y
It is easy to see that - BOOL : Set, - true, false : EI(BOOL). We have

[ true : E(BOOL)” = {i|VrerrrVicwYpew/ RV mepVacw/RVneqi -1 -m -1 € p}
[ false: E(BOOL)]? = {i|YrerrrVicwYpew/ AV mengew/RVneqi - 1-m -1 € ¢}

Let ¢ = Mmn.m and f = Xmn.n. By 3.4.7) we know ¢-I-m-n = m and f-l-m-n =
n. Certainly ¢ € [ true : EI(BOOL)]® and f € [ false : EI(BOOL)]”. To see
that ¢ ¢ [F false: EI(BOOL)]” choose R = {(i,i) | i € w} (the discrete PER),
any [, p = {0},m = 0,g = {1},n = 1} then ¢ -l -m-n € p =0 ¢ ¢ =
{1}. Therfore [ true : EI(BOOL)]® # [F false : E(BOOL)]” and by theorems
3.2.10 and 3.4.14 T F true = false : BOOL is not derivable.

3.4.16. REMARK. There is a simpler syntactic proof of this fact: we just have to
realize that every equation which holds for typed terms is also true in the untyped

M-calculus, which is well known to be equationally consistent.

9Indeed this construction works for any consistent PCA.



There is also a syntactic proof for the logical soundness, using the strong nor-
malization proof. However, proving SN is essentially a semantic construction,

therefore it seems fair to say that there is no syntactic proof of this property.

3.4.17. REMARK. It is interesting to note that the proof irrelevance interpreta-
tion can be viewed as a special case of the D-set semantics by setting D = the

inconsistent PCA.

3.5. Strong Normalization

Strong normalization is a very essential property of the calculus which entails a
number of important corollaries. This does not only include decidability of type
checking but also facts which are not obviously related to reduction, like uniqueness

of product formation and that constructors are one-to-one.

We will here first consider strong normalization in its pure form, i.e. that all
pure lambda-terms typable in constructions are strongly normalizing. From this
we will infer by a syntactic constructions that the judgemental reduction relation

is strongly normalizing and Church-Rosser.

We want to emphasize here the fact that strong normalization proofs are essen-
tially semantical which is reflected by obtaining a strong normalization argument
as a modification of the realizability semantics. The development proceeds in a
very similar way: where we have used properties of PCAs before we will use prop-
erties of the set of strongly normalizing terms here. It is also interesting to note
that the properties of untyped reduction we have to verify are the same as for

simply typed A-calculus. '°

10F . g. SN is type closed, as it is called in [Mit90].



3.5.1. Properties of SN

We will now verify in some detail the properties of SN for > (e.g. definitions 2.3.5
(all statements about terms refer to curry terms), 2.3.1, 2.3.7) we need for the
strong normalization proof. This is done so explicitly because the extensions to

other notions of reduction follow the same pattern.

An important notion is weak head reduction: >xhqC>> is the restriction of 3
reduction to the reduction of head-redexes not inside a A-abstraction ''. We can

define > yphq inductively:

3.5.1. DEFINITION (Weak head reduction). >whaC A XA is the least relation closed

under:

M 1>yna M’

(/\M)N > whd M[N]
MN >yha M'N

Note that this works for > and ©>,,.

The following lemma, which is needed in the strong normalization argument,

corresponds to a weak form of the standardization theorem.

3.5.2. LEMMA (Weak standardization). If

M
/ &d
M1 M2

then either M, = My or there exists an M5 s.t.

M1 M2
Nld /
M;

"' This is obviously deterministic.




Proof. Simple case analysis using lemma 2.3.8.

A strongly normalizing term which is not in constructor form (e.g. equal to
AM) '? in weak head normal form is called void. Here is another — syntactic —

characterization of this set for gn-reduction:

3.5.3. DEFINITION (Void). Void C A is the smallest set closed under the following

rules:

1. 2 € Void.

, M eVoid N eSN
' MN € Void

M € SN
VM € Void

We can now summarize the syntactic properties of SN needed for the proof:

3.5.4. LEMMA (Properties of SN).

1. Void C SN,

QMMMmem
" (AM)N € SN

3 M/I>thM MN € SN
' M'N € SN

Proof.
1. Follows directly from the definition of Void.

2. By (noetherian) induction over M, N, M[N] € SN it is easy to see that all
one-step reducts of (AM)N are SN.

12Note that we do not consider V as a constructor here.



3. By induction over MN € SN. We analyze one-step reducts of M'N, note
that this can not be a (-redex because M’ >y g M. If N is reduced we
just apply the induction hypothesis, if M was reduced we have to apply
lemma 3.5.2 and then either apply the premise directly or use the induction

hypothesis.

3.5.2. Saturated )-sets

By applying definition 3.4.9 to A and A* ( sequences of A terms) we obtain the
universes of A-sets LAM and A*-sets LAM". We introduce the usual operations
on A-sets essentially following lemma 3.4.10. Note, however, that one essential
difference is that we use external sequences instead of encoding pairing internally.

This reflects the dichotomy of contexts and types in the syntax.

3.5.5. DEFINITION. Assume GG € LAM", {YV, € LAM} 5, X € LAM, {Z, €
LANM}, 5 and let:

I = ({ef{e} x {e})
e LAMm”
ZA(Gv {Yv}we§> = (Eweﬁﬁa {((Mv N)v (77 y)) | M lFe vy AN H_Y'y y})
e LAmr

Secta(G Y beg) = {f € ,gYs | 3meaM Fsee,(a,0v),) )
where lFsect, (6,v;3,)= {(M, f) | VeV ens N Fa v = M[N]IFy, f(7)}
MA(XA{Z}ex) = ({f € exZe | InmeaM Irny, (x {2210y [1 Fiax.12.30)
e LAM
where IFm, (x,12.3.)= {(M, f) | VoexVneaN Ibx © = MN k7, f(z)}

However, LAM and LAM™ do not directly give rise to an LF-structure because
we have not identified fn-equal A-terms. We will refrain from doing this and
instead we identify a subclass of saturated A sets which can be interpreted as
an LF- and CC-structure. A particular property of saturated A-sets is that all

realizers are strongly normalizing.



3.5.6. DEFINITION. We call a A-set X saturated — X € GAT — iff the following

conditions hold:

SAT1 Every realizer is strongly normalizing.

Vi xeM € SN

SAT2 There is a L x € X which is realized by every void term.

VirevoiaM IFx Lx

SAT3 The set of realizers for a certain element z is closed under weak head

expansion inside SN:

Vi o Varesn (M >wna M) — (M’ IFx z)
This can be extended to LAM™ by the following inductive definition:

1. 1, € 62AX™.

G e BAX” {X, € 6T}
UA(GAX ) ep) € BAT”

veG

3.5.7. REMARK. This is clearly influenced by the usual definition of saturated sets

for non-dependent calculi, which we may phrase as follows:

A set P C A is saturated if

1. P C SN,

2. Void C P,

3. VarePVmresn(M' >yha M) — (M' € P)

It should be obvious that if X € GAT then the set of realizer {M | 3 %M IFx z}

is saturated in the conventional sense.

1, and ¥, are operations on saturated A-sets by definition but it remains to

show that this is also true for Il,:



3.5.8. LEMMA. Assume X € GAX, {Y, € SAX} _x then Iy (X, {Y.}.) € GAT.

Proof.

SAT1 Assume M I, (x ¢v,3,) [, certainly 0 IFx Lx (SAT2 for X). Now we
know that MO IFy, — f(Lx), therefore M0 € SN (SAT1 for Y;), which
implies M € SN.

SAT2 Assume M € Void, now for every N IFx x we have that MN € Void
(SAT1 for X and definition of Void) and therefore MN Iry, Ly,. This

implies M Irm, (x {v,}.) T — Lv,, so we just set Lm, (x,(v,},) = = = Ly,.

SAT3 Assume M I, (x ¢v,1,) f, M' € SN and M’ >ypng M. For any N IFx x we
have that M N IFy, f(z). By (APP-L) M'N >yha M N and by lemma 3.5.4
(3.) M'N € SN. Using SAT3 for Y, we have that M'N IFy, f(z). Therefore
we have established that M’ b, (x v,1,) f-

We come now to the central lemma about saturated A-sets:
3.5.9. LEMMA. SAT = (6AX", SAT, 14, Xz, Sectp, 1) is an LF-structure.

Proof. With lemma 3.5.8 we know that all operations are defined on saturated

A-sets.

We have to verify the conditions for LF-structures (3.2.2). Assume G €
SAT™, {X’WY’V S GQKC}W&@, {25 S 62[1}5626.{)(_7%:

1. 1o = {e} is a singleton set.
2. 16 M Irsecty (6,07 1,) £ then MY Irsect, (56,0 1), (7, 39) SHFH.
3. 0 FSectr (S (GAY3 1) (Vi) 1) PTGAT Y,

4 E M Fsecty (GATIA (X {70y 30)}) T o IV [Fsectn (G,{x,},) ¢ then

MN H_SectA(G,{Z(%g(y))}y) f[g]



5. Assume M IFsect, (20(G.{X,}5).{Zs}s) [ -

For any v € G and N kg v we have that M[N]' = M[N0] Iz, . f(v, 1)
(using SAT2) and therefore M[N]' € SN (by SAT1).

Furthermore assume z € X, and N’ IFx 2. We have that
M[NJ'[N') = M[NN'] Ik, f(7.)

Knowing M[N]', N’, M[N]'[N'] € SN we can apply lemma 3.5.4 (2.) to con-
clude that (AM[Z\?]I)N' € SN. We can now apply SAT3 because (AM)[Z\?]N' =
AM[N]Y)N >wna M[N]'[N] to see that

(/\M)[A?]N H_Z(%I) f(77 .TL‘) = /\(f)(y)(:x)
Therefore (by discharging the assumptions) we have that

AM FSecty (G AT (X Z 0 }) 1) AS)-

Note that the restriction to saturated A-sets was only used for verifying the
last condition which corresponds to the rule (LAM). At the same place in lemma

3.4.10 the closure under F-equality was used in an essential way.

To extend SAT to a CC-structure we exploit the fact that our construction

for D-sets was independent from the computational structure:

3.5.10. THEOREM. By applying definition 3.4.12 for D = A we obtain Ma, ELy, ELy", 94,
M3t = My N SAT is the universe of modest saturated A-sets. With

SET, = {R € PER(A)|EL(R) € A%}
SETA = (SETA,SN X SETA)

we have that

SATH = (SAT, M5 SET, ELy, ELY', 94)
A A

1s a CC-structure.



Proof. Note that SET, has been defined in a way to ensure that for R € SETy
it holds that EL(R) € GAX. To see that SET, € GAX we have to apply lemma
3.5.4(1).

Condition 1 from definition 3.2.5 Sect(X,SET,) = X — SET, holds trivially,

just juse Az.x as a realizer. The other conditions follow from lemma 3.4.13.

To conclude strong normalization we have to show that the interpretation of a

typable term is realized by its subject:

3.5.11. LEMMA (Realizer lemma). For any I' - M : o we have that

T+
M| g, qsar® greagsarty [T F MITYT

Sectp (
Proof. By induction over the derivation, for (VAR),(LAM) and (APP) this is already

verified by the choice of realizers in the proof of lemma 3.5.9.

For (ALL) assume that

M IF (Mot M)

Secta ([M.0] 2T [sET]S2TF

then

VM I, jouzt [T'F v MO

ecta ([T]S2T [Set

because from the premise it follows that VM € SN and every strongly normalizing

terms realizes in SET,.
3.5.12. COROLLARY (Strong normalization). IfI' - M : o then |M| € SN.

Proof. From the properties of saturated A-sets it follows that

IPLIT)—1...0lF g+ L, L...L =1

e
by lemma 3.5.11 it follows that

Tt =

(M| = [MI[T]IT] = 1.0 Iy earer [T F M]®* I

and therefore M € SN by SAT1.



3.5.13. REMARK. It is natural to compare our approach with the categorical strong
normalization proof by Hyland and Ong [HO93]. One obvious difference is that
their approach is based on modified realizability, whereas the saturated A-sets can
be viewed as a modification of standard realizability. Another difference is that
they identify a structure on strongly normalizing terms which is weaker as PCAs

(e.g. conditionally PCAs or C-PCAs), whereas we do not use PCAs at all but a

notion of saturated sets.



Chapter 4

Inductive types

The main problem in adding inductive types to a Type Theory seems to be to
find a notation which captures all interesting cases, yet is still consistent and com-
prehensible. There are a number of different proposals, e.g. [CP89], [Dyb91],
[Dyb92a] and [PM93b] which are all similar in that they introduce a syntactically
convenient notion. In [CP89] also a notion of inductive types based on strictly
positive is proposed. This is followed up by Ore, who investigates a notion of
inductive types for ECC based on functors [Ore92]. However it seems that this
approach is pragmatically less interesting because the presentation requires an ad-
ditional effort to encode the more convenient presentations. Ore also falls short of
capturing families of inductive types which are essential for practical applications.
Here we will refrain from proposing and investigating yet another general notion
of inductive types but concentrate on showing in detail how a non-trivial example
of an inductive type (general trees) can be added to the theory and how semantics
and strong normalization can be extended. However, in appendix A we present a

set of general rules, similar to the ones proposed in [Dyb92al).

Luo and Goguen propose a generalization of ECC called Unifying Theory of
Dependent Types (UTT) [Luo92],[Gog93]. This calculus is based on a separation
of types and proposition; therefore they propose to add inductive types only to
the predicative levels of ECC and not to Prop which corresponds to Set in our
presentation. Our approach is dual: because we want to exploit the propositions-

as-types idea, we add inductive types only as set-constructors. We will not discuss
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predicative universes here but we believe they can be added as inductive types
following the proposal in [Dyb92b]. Another difference to UTT is that we em-
phasize the use of dependent inductive types on the impredicative level which are

intentionally not included in UTT.

On a semantical level it seems obvious that inductive types can be modeled by
initial T-algebras ala Hagino, ! this is already sketched in [CP89]. This approach
can also by extended to families by considering endofunctors in a slice. Ore in
[Ore92] sketches an extension of the w-set semantics for ECC to his functorial pre-
sentation of inductive types. However, this development is unsatisfactory because
he never shows that his construction gives an initial T-algebra but he uses this fact
in the definition of the semantics. It seems that to verify that his constructions is
weakly initial one has to exploit the fact that all definable functors are internal,
i.e. their effect on morphisms is tracked by a recursive function. Fu in [Fu92]
investigates initial T-algebras in the w-set semantics as well. However, he restricts
himself to non-dependent, algebraic inductive types. Even in this restricted case
his development does not seem to be convincing because he needs colimits of infi-
nite chains for decidable ? functors, which usually do not exists in the category of

w-sets. 3

It should be possible to use the construction presented here to extend the D-
set semantics to general T-algebras, where T' is internal and preserves monomor-
phisms. However, in the spirit of the model construction in chapter 2.1.2 we will

concentrate here on the concrete model construction and the direct interpretation

1See [Hag87], or [Alt90] for some examples.

2According to definition 5.3.8, p. 71, [Fu92] a decidable functors is one which pre-

serves w-sets with enumerable domain.

3The proof of proposition 5.3.9, p.71, ibid, seems incorrect: It is in general not pos-
sible to construct a finite Turing machine from any enumerable set of Turing machines.
Indeed, we do not believe that even the colimit of the w-chain generated by T'(X) = X +1

exists, although this functor is clearly decidable and has an initial T-algebra.



of the syntax. Another important consideration is that we are using a construc-
tion which easily generalizes to saturated A-sets to extend the strong normalization

argument.

An important feature of our approach to inductive types is that we allow large
eliminations, e.g. the elimination constants can use an arbitrary family of types
not just sets. This is not only essential to prove inequalities but also seems to
extend the power of the theory considerably. 4 It is therefore interesting to note
that we are able to interpret large eliminations in the D-set and the saturated
A-set semantics, thereby extending consistency and strong normalization to this

extension.

In the rest of this chapter we present general trees, discuss how they fit into
the meta-theory developed in chapter 2.1.2 and then extend D-set and strong

normalization.

4.1. Definition of trees

General trees are trees with an arbitrary set of leaves A and the branches indexed
by another arbitrary set B. E.g. assume any ' s.t. ' A, B : Set then we define

using the material presented in appendix A:

Tree = F‘N({(Aa {})7 (67 {B}>})

We have the following derived rules:

I' F Tree : Set (TREE-FORM)

1E.g. the type-theoretic presentation of negative domain equations [Hof93b], the sim-
ple minded consistency arguments as presented in [CD93] and the universe constructions

presented in [Dyb92b] essentially rely on this or a comparable mechanism.



I'Fleaf = C2

Tree

: A — Tree
(TREE-INTRO)
['Fsup = Cl.. : (B — Tree) — Tree

[''Treet o

I' F Rfee (Ila : A.o[leafa))
(ILf : B — Tree.(llb: B.o[fb]) — o[supf])

(TREE-ELIM)
_>
—  (Hz : Tree.o[z])

['.Tree - o
['Fil:1la: A.o[leafal
I'Fs:IIf: B — Tree.(Ilb: B.o[fb]) = o[supf]

I'Fa:A (TREE-COMP)
' f: B — Tree

I' b Rfeels(leafa) ~ la : o[leafd]
I' F RE, . Is(supf) ~ sf(Ax 1 B.R}.[s(fb)) : o[supf]

4.2. D-set semantics

NOTATION. Given a R € PER(D) we will denote the relation by ~p for better

readability, and by R = D/R = EL(R) the associated set of equivalence classes.

Given R € PER(D) and {S, € PER(D)}

cq e denote

V(R,{5,},) = EL™'(Ilp(R, {5,},)) € PER(D)

For any p € V(R,{S,},) we have p = 97 '(p) € HD(E,{E}T). Note that for any
d € p we have d H_Hp(ﬁ,{gr}r) P.

In the special case of a constant family we just write R — S.

4.2.1. Formation- and introduction-rules

We will now identify a PER TREEp to interpret Tree and give a sound inter-
pretation of leaf and sup. For the following we assume a fixed v € [[F]]D and let

A=[I+ A]%~,B=[It+ B]"¥.



We will use the following codes for the constructors and recursor which are

motivated by Parigot’s encodings:

dieat = Ma.Ms.la
dewp = AfAs.sf
dp = Xls.Y(Xrt.tl(Xf.sf(Xb.r(fb))))

where Y = A f.(Az.f(zx))(Az.f(zx)) or any other encoding of a fixpoint combina-
tor s.t. Y f = f(Yf) holds.

The following equations follow directly from the encoding:

4.2.1. LEMMA.

des(dleafa) = la

drls(depf) = sf(Ab.drls(fb))
Moreover we have the following properties:
4.2.2. LEMMA.

1. dleafa % dsupf

!
9 dleafa = dleafa

!
a =da

3 deupf = dsupf
f=r

Proof.

Ad 1: We have that for any d,d’ € D (djeata)(X.d)(AX.d") = d and (dgupf)(N.d)(X.d') =
d';i.e. djeara = dsupf implies d = d'.Therefore the equation cannot hold in any

consistent PCA.

Ad 2,3: Note that (djeara)/] = a and (dsupf) I = f.



Note that we need the fact that the underlying PCA is consistent for the first

clause. For the same reason this construction fails for the set-theoretic semantics.
We note that PER(D) w.r.t. the subset-ordering constitutes a complete lattice:

4.2.3. LEMMA.
(PER(D), S,()

is a complete lattice.
Proof. Straightforward.

The glb can be defined in a standard way and does not correspond to set-

theoretic union, but:

OP = (@ | VrerR C Q}

4.2.4. REMARK. If we want to extend the construction to dependent p-types we
need the slightly more general result that for any indexing set [ the set [ —
PER(D) constitutes a complete lattice with respect to the pointwise inclusion.

This is not hard to see and the rest of the construction works analogously.
We will now apply variant of Tarski’s theorem [Tar55] to construct TREEp.

4.2.5. DEFINITION (Transfinite Iteration). Let (L, C,N,J) be a complete lattice
and ® a monotone function on L, then we define for any ordinal o the transfinite

iteration ®° as:

= N0
oot = P(P)
oUs = |J{o* | a e B}

4.2.6. THEOREM (Ordinal fixpoint theorem). Let L be a complete lattice and ® a
monotone function as before. Then there exists an ordinal ag with |ag| < |L] s.L.

&0 gs the least fixpoint of ®, and we have:



o V, 0% C doo,
o Vosoy®(0°) = 07
Proof. See [Llo84], pp. 27.

4.2.7. REMARKS.

e There is an obvious dualization of this theorem which is also proven in
[Llo84]. This would be certainly useful to model coinductive types, how-
ever coinductive types are inherently difficult to handle in an intensional

type theory.

e In Tarski’s original proof ® the least fixpoint is constructed as the glb of all
pre-fixpoints

Mz | &(z) C 2}

If we only want to obtain a fixpoint then this construction is actually simpler
then the iterative version. However, we will construct the interpretation of
the recursor by another iteration parallel to the one above. It is not clear

how to do this for Tarski’s construction.

We define an operator ®p € P(D x D) — P(D x D):

{(dleafay dleafa/) | a ~4 Cl/}

bp(R) =
! U {(dsupfa dsupf/) | f ~B—R f/}

with the following properties:

4.2.8. LEMMA.

1. If d ~¢,(r) d' then one of the following cases applies:

((L) d= d]eafa A d/ = d]eafa/ N a ~ A a’

PSee [LLNS82] for a historical account of this folk theorem.



(b) d= dsupf A d = dsupf/ A f ~B—R f/

2. ®p(R € PER(D)) € PER(D)

RCR
3.
Op(R) C Pp(R)

Proof. 1. Just apply lemma 4.2.2.
2. We use the previous clause and the fact that A, B — R are PERs.

3. We apply 1. and note that B—+ RC B — R'.

We introduce the following abbreviations:
LEAFD™ = [dicat] 4o (r)
SUPDR = [dsup](B%R)—ﬂbD(R)

Clause 1. of lemma 4.2.8 implies that LEAFp™ and SUPp” are disjoint and one-

to-one, i.e.:

—

1. V,e3V, 55l EAFD(a) # SUPD"(f)

_LEAFp"(a) = LEAF"(d)

2.V, i
a = a’
5 v ___SUPYT(f) = SUPL"([")
: f,J'éeB—R

=7y
4.2.9. LEMMA. There is an ordinal oy with |ag| < |D| s.t. ®F is the least fizpoint

of ®p and we have that for all a: 6% - 6?;).

Proof. Follows from theorem 4.2.6 and lemma 4.2.8 (2,3). We have &3 C &3 and

by lemma 4.2.8(1.) we get that the inclusion holds on the level of classes.

We can now give a sound interpretation of the formation and introduction

rules:



4.2.10. LEMMA. The following is a sound interpretation of Tree, leaf and sup:

[T F Tree]”y = TREEp

— P

€ [I'F Set]”~
[l Fleaf]’y = LEAFp

— LEAFDTREED

€ [ITF A— Tree]”y
[l Fsup]®y = SUPp

— SUPDTREED

€ [I'F (B — Tree) — Tree]]

Proof. Obviously we have that TREEp € SET = PER(D) and for the constructors
we just have to exploit that ®p(TREEp) = TREEp (lemma 4.2.9).

4.2.2. Elimination- and computation-rules

To interpret the recursor assume a family of D-sets {X;}ieTrER, and

I € Tp(A{X, o~ }a)

LEAFp(a)

s € HD(B — TREED,{HD(B,{XJ?(E’)}E,) — XSIﬁD\(f)}f)

We also choose some realizer d; IF [ and d; IF s. First we will construct the set-
theoretic part of the recursor by transfinite iteration for every « and then verify

by transfinite induction that it is tracked by dg.
We define Up(l,s)* € 1Tt € 93X, as follows:

\I/D(Z,S)O = @
Wo(l, (1) = { T i
s(fy,be B Up(l,s)*(f(b)) ift =SUPp™ (f)

Up(l,s)UP(1) = Wp(l,s)*(t) wherea=nN{a€B|te >}

To see that the X; in the partial product above is always defined we have to
remember that ®> C T/R—ﬁp (lemma 4.2.9).



a+1 :

The case analysis for Up(l,s)**" is deterministic and disjoint as a consequence

of lemma 4.2.8.

Note that the successor step only defines a partial function because s only
allows realizable functions for its second argument. We will now show that W% is

always total and has a uniform realizer:

4.2.11. LEMMA. For all o and all t € %,d, € t we have:
1. Up(l,s)*(t) € X;
2. drdidsd; IFx, Wp (1, 5)%(t)

Proof. By transfinite induction over a:

a =0 All clauses are trivial.

a=d +1

t = LEAFp(a)

1. We know that « € A and therefore: Up(l,s)*t(t) = l(a) €
XLEAFp(a)
2. By definition of LEAFp: d; = djeard, with d, € a. Using lemma

4.2.1 we can conclude:
delds(dleafda) = dlda I+ l(a)

t = SUPp(f)

1. We know that f € B/—>\6%. Assume df € f we can show using

the induction hypothesis for 2.:

~

di = 2b.drdid,(dsb) s, 0x,1) h = b € B Uan(l,5)*(f(b))

and h € llp(B,{Xfw) }s). Therefore:

Up(l,s)** (1) = s(f,h) € Xsupp(s)



2. We use lemma 4.2.1:

dpdid, (dywpd;) = dydpdy
Ik s(f,h)

a =B Follows directly from the induction hypothesis.

We can now conclude that Wp(l,s)* is a sound interpretation of the recursor:

4.2.12. COROLLARY.

1.
\IID(Z,S)QO € HD(TREED,{Xt}t)
Un(l, s) (LEAFp(a)) = I(a)
Up(l,5)(SUPp(f)) = s(f,be B~ qlp(l,s)ao(f(b)))
2.

[ € Tp(A,{X1EAFp(a)ta)

— s € HD(B—>TREED,{HD(By{Xf(b)}b) —+ X
= V(1)

with X = [T Tree - ¢]”~.

Tree

validates (TREE-ELIM) and (TREE-COMP).

Proof. 1. The first line is a direct consequence of lemma 4.2.11. Note that
Up(l,s)* = Up(l,s)*t! and therefore the equations follow directly from

the definition of Wp(l,s)**!.

2. This is just a reformulation of 1.

4.2.13. REMARK. It is interesting to note that this construction does not depend
on the particular type of the recursor or on the choice of equations but only on

the fact that the type of the recursor represents a complete covering and the right



hand side of the equations are structurally smaller then the left hand side — using
the terminology of [Coq92b]. Therefore it seems straightforward to extend this
semantics to the case of arbitrary pattern matching definitions as described ibid.

This remark also applies to the development presented in the next section.

4.3. Saturated A-sets

The interpretation for the saturated A-set semantics proceeds in essentially the
same way as for the D-set semantics. However, we have to extend some syntactic

lemmas to trees.

4.3.1. Syntactic properties

We will first extend the notion of reduction, weak-head reduction and void terms
in a consistent way. We extend the Curry terms (definition 2.3.5) by the following
new constants:

A = ... | Tree | leaf | sup | Rrpee

and the stripping map is extended by | R ee| = Rree and is the identity for the

other new cases. Reduction is extended by new (-rules:

RTreeMlMs(leana) > MzMa

(TREE-BETA)
RTreeMlMs(Supr> > MSMf()\b.RTreeMlMs(be))

>wha includes (TREE-BETA ) and is closed under

N >yna N’

(TREE-APP)
R'TreeMlMsN > whd R/Tree]\4l]‘4s]\/vl ‘

which is valid for > automatically. We extend Void by the following clauses:

NeVoid M, M, eSN
Rrree MiM N € Void

Tree € Void



By whnf we denote the partial function which assigns to every term its weak
head normal form so it exists. Note that we do not need Church Rosser here

because >yphq 1s obviously deterministic.
The fact that we have extended the reduction in a coherent way reflects itself

in the fact the we can extend lemma 3.5.2:

4.3.1. LEMMA (Extended weak standardization). lemma 3.5.2 holds for the extended

system.

Proof. The case analysis of lemma 3.5.2 has to be extended by the new cases

generated by tree reduction. They are all straightforward.

Using the previous lemma we can show an extended version of lemma 3.5.4

with new clauses for the reduction of trees:

4.3.2. LEMMA (Properties of SN).

1. Void C SN,

M, N, M[N] € SN
(AM)N € SN

M’ >wha M MN € SN
M'N € SN

MM, M, € SN
RTreeMlMs(leana) € SN

M, M p(Ab.Rree MiM,(Mb)) € SN
Rivee Mi M (supMy) € SN

RTreeMlMsMu S SN7 Mt > whd Mu7 Mt S SN
RTreeMlMth S SN

Proof. For the first three cases we only describe the changes to the proof of lemma

3.5.4:



1. We only have to consider the new clause for Ry and observe that void terms
are never constructors and therefore for N € Void Rrpee MiM,N cannot be a

redex.
2. As for lemma 3.5.4.

3. Note that if M’ >yng M then M'N is not a redex. Therefore the argument

from lemma 3.5.4 applies without change.
4. By induction over reductions of M;, M, M,.
5. By induction over reductions of M;, M, M, M,.

6. Asin clause 3.: If My >ywhq M, then Rpee MiM;M; is not a redex. Therefore
we have only to consider reductions in M;, My, M;. If M, is reduced we need

lemma 4.3.1 to apply the induction hypothesis.

4.3.2. Formation and introduction-rules

The definition of the interpretation function in the saturated A-set model follows
the development of the D-set semantic very closely, i.e. in many places we have

just to replace the CC-structure D by SAT. Remember that
SETA = {R € PER(A) | EL(R) € 62(%}
plays the role of PER(D) now. In the following I will rather concentrate on the
differences to the previous section.
We define operators @ 4, Psa7 € P(A x A) = P(A x A):

{(leaf M, leafM,/) | My ~4 My}

s ur(R) =
U {(supMy,supMy:) | My ~p_p My}

It is not the case that ®% ,-(R) preserves saturatedness, therefore we define:

{(N,N") | M, N € SN A whnf(N), whnf(N') € Void}
Dsar(R) =
U {(M,N) | M,N € SNAwhnf(M) ~¢,, (r) whnf(N)}



4.3.3. LEMMA (Compare to 4.2.8). 1. If M ~g¢,.(ry M' then one of the fol-

lowing cases applies:

(a) whnf(M) = leaf M, A whnf(M') = leaf M, A M, ~4 M,
(b) whnf(M) = supMs A whnf(M') = supMp A My ~p_r Mps

(¢) whnf(M), whnf(M') € Void

2. (I)SAT(R € SETA) € SET,

RCR
3.
Psar(R) C Psar(R)

Proof.

1. Note that all M € dom(®%,-(R)) are non-void weak-head normal forms.

Therefore @547 does not confuse anything.

2. That ®s47(R) € PER(A) can be verified analgously 4.2.8. That ®s47 is

saturated follows directly from the definition.

3. As for 4.2.8.

We define:

LEAFSJL\TR = [leaf]A_>q>SAT(R)

SUPsar™ = [supl(BsR)sdsar(R)

1R = Void € ®s47(R)

As before LEAFs 47", SUPs 47", L are disjoint and one-to-one.

4.3.4. LEMMA (Compare 4.2.9). There is an ordinal oy with |og| < |D| s.t. ®5%+

is the least fixpoint of ®sar and we have that for all o: ®% 7 C O+

Proof. Analogous to 4.2.9.



4.3.5. LEMMA. The following is a sound interpretation of Tree, leaf and sup:

Tk Tree]]SAT’y = TREEsar
= O5ur
€ [IF Set]®*7y
Il Fleaf]*7y = LEAFs4r
= LEAFg 7 "FEsAT
€ [Pk A= Tree]®*7y
[T sup]*7y = SUPsur
— SUPSA’TTREESAT

€ [Pk (B — Tree) — Tree]**7y

Proof. Analogous to 4.2.10.

4.3.3. Elimination- and computation-rules

To interpret the recursor assume a family of saturated A-sets: {X;}ietrERS,, and

L€ Tsar(4, {XLEAFSAT( )} )

s € Hsar(B — TREEsa7,{lIsar(B, {Xf(b)}b) - X

SUP s A7(f }f)

We also choose some M; IF [ and M, IF s.

We define Ws4r(l,5)* € Tt € @2 4. X; as follows:

\IIS.AT(l) S)O = @

I(a) if t = LEAFs47%" (a)
Wsar(ls) (1) = s(f.b€ B Usar(l,s)(f(b))) if t = SUPsar™ (f)
Lx, if t = L%ar

Usar(l,s)VP(1) = Wsur(l,s)%(t)  wherea=N{a €|t e d}
4.3.6. LEMMA (Compare to 4.2.11). For all o and all t € 6%, M; € t we have:

1. \IISAT(Z,S)a(t) € Yt



2. RTreeMlMth H_Xt \IIS-AT(l?S)a(t)

Proof. By transfinite induction over «, as before only the successor case is inter-

esting:
a=ao +1

t = LEAFs47(a)

1. We know that ¢ € A and therefore: Usar(l,s)*T(t) = l(a) €
XLEAFSAT(EL)

2. By definition of LEAFs47: whnf(M;) = leaf M, with M, € a. We

reason by the length of the weak-head reduction of M,
n=0

RTreeMlMs(leana) >whd MM, H_XLEAFsAT(a) l(a)
by lemma 4.3.2 (4.) and SAT-3 for X1 gar,,,(a) We have:
RTreeMlMs(leana) H_XLEAFsAT(a) l(a)

n=n’+1 In a similar fashion apply lemma 4.3.2 (6.) and SAT-3

for XLEAFSAT(a)-
t = SUPsa7(f)

1. We know that f € B :\@AT- Assume My € [ we can show using

the induction hypothesis for 2.:

~

M, = Xb.RTreeMlMs(be) ||—HSAT(B7{Xf(b)}b) h=5bc¢ B — \IISAT(L S)a(f(b))

and h € llsa7(B,{Xfu }s). Therefore:

Usar(l,s)** (1) = s(f,h) € Xsupgs,r()

2. As for the LEAFs 47 but using lemma4.3.2 (5.) and (6.) this time.

4.3.7. COROLLARY (Compare to 4.2.12).



Usar(l,s)* € Hsar(TREEsar, {X:}:)
Uour (L, ) (LEAFs 7 (a)) = I(a)
Usar(l,8)*(SUPsar(f)) = s(f,b€ B \IISAT(Z,S)QO(]?(Z))))

[[F }_ R%I‘ee]]SATfy =

I € Nsar(A,{XLEAFs () fa)
— s € llsa7(B — TREEsa7, {Ilsa7(B, {Xf(b)}b> — X

SU@U)}J‘)
= \DEOAT(L ‘9)

with X = [[.Tree F 6]°*7 5.

validates (TREE-ELIM) and (TREE-COMP).

Proof. As for 4.2.12.

4.3.4. Strong normalization

We can now derive strong normalization by extending the reasoning in section 3.5.

4.3.8. LEMMA (Compare 3.5.11). For any I' F M : o we have that

M| Ik sarey [T'F M)A

ecta ([CT5A7 Y [TFo]

Proof. By induction over derivations. For the rules of the core calculus we can
reuse the original proof using lemma 4.3.2 instead of 3.5.4. From the construction

it should be obvious that:

leaf I LEAFgs4r

sup IF SUPgar
Tree I TREEsar
Rvee IF [[Rcr ]]SAT

Tree

4.3.9. COROLLARY (Strong normalization). IfI' = M : o then |M| € SN.



Proof. Analogous corollary 3.5.12.

4.3.10. REMARK. The extension of the results from chapter 2.1.2 is straightfor-
ward but laborious and will not be carried out here. The possible reductions in
the annotations of the recursor make it necessary to extend the blowing-up map,

definition 2.3.16.



Chapter 5

Application: Proving SN for System F

In the following we are going to apply the Type Theory developed in the previous
chapters, i.e. CC extended by inductive sets ! , to a non trivial problem: to for-
mally verify the strong normalization result for System F as presented in [GLT89)].
This development has been completely formalized in LEGO see the appendix B

for a complete and commented listing.

Using Type Theory to verify results about Type Theory or A-calculus has a
twofold purpose: We can test the practicability of the system in an area which
is well known to us and therefore can easily be communicated and we are able
to verify properties of our implementation. This may seem circular at first but
note that for the correctness of a type theoretic system implementation details
are more essential than abstract meta-theoretic considerations. Another answer

2 Our choice of strong

to this objection is the possibility of cross-verification.
normalization can be justified with the essential role this problem or more generally

the question of decidability plays for the implementation of Type Theories.

In the context of the BRA on logical frameworks there has been some related

work, just to mention a few examples:

1Since this example was developed before the material in the previous chapters, there

is a slight mismatch: At one point we will use an inductive type in a universe (VEC).

2This has recently been proposed by Dowek, see [Dow93].
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e Berardi partially implemented strong normalization for System F in pure CC

also using LEGO, [Ber91].

o C. Coquand verified the decidability of equality in the simply typed A-
calculus in ALF [Mag92], an implementation of Martin-Lof’s Type Theory
with pattern matching, [Coq92a).

e Huet implemented the the residual theory of g-reduction in pure A-calculus

in Gallina/Coq, [Hue93].

e McKinna and Pollack implemented large parts of the meta theory of Pure
Type Systems in LEGO, [MP93].

5.1. Using LEGO

LEGO is a proof development system based on Type Theory which has been
implemented by Randy Pollack. The main documentation for LEGO is [LP92],
a good introduction can be found in [Hof92], where LEGO is used for program

verification.

5.1.1. The Type Theory

The standard Type Theory used in the LEGO system is ECC. However we will
not use the predicative type universes in any essential way and consider LEGO as
an implementation of the calculus described in chapter 2. LEGO uses the Church
presentation of terms but it goes even further and allows the suppression of type
information if it can be automatically inferred. See 5-1 for a quick overview of
the syntax but for more detailed information [LLP92] should be consulted. Note
that the judgement I' I o is represented in LEGO by a typing judgement and that
LEGO does not distinguish between V and II or use El.

An essential element of the LEGO system is that we do not have to come up

with a proof term ourselves but that we can generate one by using built-in proof



Our notation | LEGO notation | Remarks
[x:SIM explicit
Ax o.M
[x|sIM implicit
Mz : o7 {x:S}T explicit
El(Vz : 0.T) {xIs}M implicit
M N explicit
MN
MIN implicit
Pro
Set P
Set defined
(T kFo S:Type(0)

Figure 5-1: Syntax of terms in LEGO

tactics. Therefore most of the constructions in appendix B are not presented as
A-terms directly but as the sequence of tactics by which they are generated. For
details we refer again to [1.P92].

5.1.2. The Logic

The basic logical connectives (/\,\/,not and Ex) are defined using an impred-
icative encoding see figure 5-2. However, instead of Leibniz Equality we define

propositional equality EQ as an inductive type.

Theoretically, it would have been better to use inductive types for all logical
connectives, because they come with stronger elimination rules and it seems a
bit of a waste to introduce impredicativity just to encode basic logical connec-
tives. However, the current Refine tactic of LEGO is tuned for the impredicative

encodings.

It is also an essential disadvantage that we only have the weak eliminations

when we want to use the proposition as types paradigm. Given that the proof on



Usual notation

Lego notation

Definition

A/\NB or
ANB {C|Prop}(A->B->C) -> C
and A B
AN/ B or
AV B {C|Prop}(A->C) -> (B->C) -> C
or A B
A= B A ->B {_:A)B
As B (iff A B) (and (A->B) (B->A))
1 (falsity) absurd {C:Prop} C
-A not A A -> absurd
A (P x)
Ve € A.P(x) (i) 2o primitive
{x1A} (P x)
Ex[a:AJP a or
dz € A.P(x) {C|IProp}({a:A}(P a) -> C) -> C
Ex P
r=yeX (EQ x y) inductive type

Figure 5—-2: Logical connectives in Lego




which this development is based is not type-theoretic this turns out to be a minor

problem, but see section 5.3.1.

5.1.3. Inductive types

When this work was done (August 1992) there was no mechanism in LEGO to
define inductive types. 3 Therefore we introduce inductive types just by assuming
the constants used and by adding the typed reduction rules to the system. Con-
sider, as an example, the type of natural numbers (see appendix B.3. Using the

notation defined in A we would define

Nat = pun({(Ao=¢€,{}), (A1 =¢,{Bio=¢€})})
Set

This specification can be written in a more readable way by directly presenting
the types of the canonical elements and at the same time introducing names for

set former and canonical elements:
mu [Nat:Set] (zero:Nat,succ:Nat->Nat)
This is translated into the following LEGO declarations:

$[Nat : Set]
$[zero : Nat]

$[succ : Nat->Nat]}

$[RecNat : {P:Nat->Type(0)}
(P zero)
->({n:Nat}(P n)->(P (succ n)))

-> {n:Nat}P n];

3This situation has changed now, due to the work by Claire Jones [Jon93].



[[P:Nat->Type(0)] [z:P zero] [f:{n:Nat}(P n)->(P (succ n))]
[n:Nat]
RecNat P z f zero ==> z

|| RecNat P z £ (succ n) ==> f n (RecNat P z f n)];

Note that we simulate large eliminations by quantifying over Type(0) instead of

Prop.

If we want to define a function over natural numbers, we may declare it first

in an ML-like fashion:

add : Nat->Nat->Nat
rec add zeron = n

| add (succ m) n = succ (add m n)

which can be (mechanically) translated into the following LEGO code using the

recursor (here we use a derived non-dependent recursor RecNatN* to simplify the

typing):

[RecNatN[C|Type(0)] = RecNat ([_:Nat]C)];

[add = RecNatN ([n:Natln)
([m:Nat] [add_m:Nat->Nat] [n:Nat]succ (add_m n))];

We can only define functions by primitive recursion in this way, but note that
we get more than the usual primitive recursive functions because we have higher

order functions.

It is interesting to consider inductive types with dependent constructors like

the type of vectors:

4We adopt the convention that RN stands for the non-dependent version of recursor

R.



[A:Set]mul[Vec:Nat->Set] (v_nil:Vec zero,

v_cons:A->{n|Nat} (Vec n)->(Vec succ n))
or the family of finite sets:

mu[Fin:Nat->Set] (f_zero:{n:Nat}Fin (succ n),

f_succ:{n|Nat}(Fin n)->(Fin (succ n)))

Vectors resemble lists but differ in that the length of the sequence is part of its
type. Therefore we have Vec: Set->Nat->Set in contrast to List : Set->Set,
i.e. Vec A 3% is the type of sequences of type A of length 3. Finite sets are a
representation of subsets of natural numbers less than a certain number, i.e. Fin

n corresponds to {i |1 < n}.

As already remarked we need the large eliminations to show inequalities, like
the fourth Peano axiom: Vn.0 # n 4+ 1. When using dependent inductive types
the proofs of these proposition also have a computational usage. An example is a

run-time-error-free lookup function for vectors:®

v_nth : {nl|Nat}(Fin n)->(Vec A n)->A

rec v_nth| (succ n) (f_zero n) (v_cons a _) a

| v_nth|(succ n) (f_succ i) (v_cons _ 1) v_nthln i 1

Using these error-free functions not only simplifies the verification of functions
using vectors; it also allows, in principle a more efficient compilation of code

involving dependent types.”

>The official LEGO syntax for this is Vec A (succ (succ (succ zero))).

6l.e. v.nth (f_succ (fzero 3)) : (Vec A 5)->A extracts the second element

out of a sequence of five.

"The idea of using dependent types to avoid run-time-errors was first proposed by

Healfdene Goguen to me.



Another use of dependent inductive types is the definition of predicates as the
initial semantics of a set of Horn clauses. An example is the definition of the

predicate < (LE) for natural numbers:

mu [LE:Nat->Nat->Set] (
leO:{n:Nat}LE zero n,

lel:{m,n|Nat}(LE m n)->(LE (succ m) (succ n)))

5.2. A guided tour through the formal proof

In the following I am going to explain the formalized proof. For more detailed
information it may be worthwhile to study the LEGO code or better to run the
proofs through the system.

5.2.1. The untyped A-calculus

We define untyped A-terms (Tm) using de Bruijn indices [dB72] as the following

inductive type:

mu[Tm:Set] (var : Nat->Tm,
app : Tm->Tm->Tm,

lam : Tm->Tm)

We define the operations weakening weak : Nat->Tm->Tm (corresponding to M*")
(introduction of dummy variables) and substitution subst : Nat->Tm->Tm->Tm
(corresponding to M[N]™)by primitive recursion over the structure of terms using
the appropriate recursor (see appendix B.3). The first parameter indicates the
number of bound variables — weak0 and subst0 are defined as abbreviations, i.e.

subst0 M N substitutes the free variable with index 0 in M by N.® We also define

8Although we only use weakO and substO in the following definition we really have

to export the general versions because we have to use them whenever we want to



repeated weakening rep_weak0:Nat->Tm->Tm which is needed to simulate parallel

substitution.

In the course of the proof we need a number of facts about weakening and

substitution:

Goal {1:Nat}{M,N:Tm}EQ (subst 1 (weak 1 M) N) M;

Goal {1’,1:Nat}{M:Tm}(LE 1’ 1)->
(EQ (weak (succ 1) (weak 1’ M))
(weak 1’ (weak 1 M)));

Goal {1’,1:Nat}{M,N:Tm}(LE 1’ 1)->
(EQ (subst (succ 1) (weak 1’ M) N)

(weak 1’ (subst 1 M N)));

Goal {1:Nat}{M,N1,N2:Tm}
EQ (subst 1 (subst (succ 1) M N1) N2)

(subst 1 (subst 1 M (weak0 N2)) N1);

Goal {m,1:Nat}{M1,M2,N:Tm}
EQ (subst m (subst (succ (add m 1)) M1 N) (subst 1 M2 N))

(subst (add m 1) (subst m M1 M2) N);

It is interesting to note that those properties are often ignored in informal
reasoning but they require quite an effort when formalizing it. However, we should
not forget that technical errors, like omitting bound variables, can easily happen

and make the whole reasoning unsound.

prove anything about substitution or weakening in general (i.e. for terms containing

A-abstractions).



Another observation is that it pays off that we use de Bruijn indices from now
on because our reasoning will be essentially algebraic using the laws above. We

never have to carry around and manipulate side conditions about free variables.

We define the one-step reduction relation® by the following inductive type:

mu[Step: Tm->Tm->Set] (
beta : {M,N:Tm}Step (app (lam M) N) (substO M N),
app_l : {M,M’ ,N:Tm}(Step M M’)->(Step (app M N) (app M’ N)),
app_r : {M,M’,N:Tm}(Step M M’)->(Step (app N M) (app N M?)),
xi : {M,N:Tm}(Step M M’)->(Step (lam M) (lam M’)) )

This amounts to translating the usual Horn clauses defining the reduction relation

into the constructors for an inductive type.

5.2.2. Strong Normalization

One of the main technical contributions which simplify the formalization of the
proof is the definition of the predicate strongly normalizing by the following in-
ductive type:1°

mu [SN:Tm->Set] (
SNi : {M:Tm}({N:Tm}(Step M N)->(SN N))->(SN M))
In other words: we define SN as the set of elements for which Step is well founded.

More intuitively: SN holds for all normal forms because for them the premise

of SNi is vacuously true. Now we can also show that all terms which reduce in

We are going to define Red (the reflexive, transitive closure of Step) later (section

5.3.1). Note, however, that we never need it for the strong normalization proof.

10Tt is interesting to note that this inductive type is not algebraic or equivalently
does not correspond to a specification by a set of Horn formulas. Compare this to the

predicate Acc as defined in [Dyb92a], section 5.2.2.



one step to a normal form are SN and so on for an arbitrary number of steps. On
the other hand these are all the terms for which SN holds because SN is defined

inductively.

We will use the non-dependent version of the recursor !

RecSNN : {P:Tm->Type}
({M:Tm} ({N:Tm}(Step M N)->SN N)->({N:Tm}(Step M N)->P N)->P M)
->{M|Tm} (SN M)->P M];

to simulate induction over the length of the longest reduction of a strongly nor-
malizing term — in terms of [GLT89] this is induction over v(M). Observe that
we never have to formalize the concept of the length of a reduction or to define
the partial function v. '? It is also interesting that the important property that

SN is closed under reduction shows up as the destructor for this type (SNd).

5.2.3. System F

The type expressions of System F have essentially the same structure as untyped
M-terms. However, in contrast to the definition of Tm we will use a dependent
type here, which makes the number of free variables explicit. This turns out to be

useful when we define the semantic interpretation of types later.'?

mu[Ty:Nat->Set] (t_var : {n|Nat}(Fin n)->(Ty n),
arr : {n|Nat}(Ty n)->(Ty n)->(Ty n),
pi : {nlNat}(Ty (succ n))->(Ty n) )

HThis corresponds to the principle of Noetherian Induction [Hue80].

12Note that bounded and noetherian coincide for 3-reduction because it is finitely

branching (Kénig’s lemma).

13We could have used a dependent type for Tm as well, but we never need to reason

about the number of free variables of an untyped term.



Ty ¢ represents type expressions with ¢ free variables.

When defining weakening and substitution for Ty we observe that the types

actually tell us how these operations behave on free variables:

t_weak : {1:Nat}(Ty (add 1 n))->(Ty (succ (add 1 n)))
t_subst : {1:Nat}(Ty (add (succ 1) n))->(Ty n)->(Ty (add 1 n))

Although these functions are operationally equivalent to weak and subst we have
to put in more effort to implement them. We do this by deriving some special

recursors from the standard recursor.™

We now define contexts and derivations as:

[Con[m:Nat] = Vec (Ty m)];

mu[Der:{m,n|Nat}(Con m n)->Tm->(Ty m)->Set] (

Var : {m,n|Nat}{G:Con m n}{i:Fin n}
Der G (var (Fin2Nat i)) (v_nth i G)

App : {m,nINat}{G|Con m n}{s,t|Ty m}{M,N|Tm}
(Der G M (arr s t))
-> (Der G N s)
-> (Der G (app M N) t)

Lam : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))

Pi_e: {m,n|Nat}{G|Con m n}{s:Ty (succ m)}{t:Ty m}{M|Tm}
(Der G M (pi s))
-> (Der G M (t_subst0 s t))

Pi_i: {m,n|Nat}{G|Con m n}{s:Ty (succ m)}{M|Tm}
(Der (v_map t_weakO G) M s)

141t seems that we could save a lot of effort here by using Thierry Coquand’s idea of

considering definitions by pattern matching as primitive [Coq92b].



-> (Der G M (pi s)) )

In the rule Var we use Fin because this rule is only applicable to integers smaller
than the length of the context. Here we have to coerce it to a natural number first

(Fin2Nat) because var requires Nat as an argument.

v_map t_weak0 G means that all the types in G are weakened — this is equiv-
alent to the usual side condition in the standard definition of Il-introduction. It is
nice to observe how well the types of t_subst0 and t_weakO fit for the definition

of the rules.

5.2.4. Candidates

One of the essential insights about strong normalization proofs is that they require
another form of induction than proofs of other properties of typed A-calculi like
the subject reduction property or the Church-Rosser property. We cannot show
strong normalization just by induction over type derivations or by induction over
the length of a reduction. They correspond to a model construction, i.e. they are

essentially semantical.

The idea of Candidates of Reducibility can be summarized as follows:
1. Every Candidate only contains strongly normalizing terms.

2. For every operation on types we can define a semantic operation on sets of
terms such which is closed under candidates. Another way to express this is

to say that the Candidates constitute a sound interpretation.

3. Every term which has a type is also in the semantic interpretation of the

type. 1°

Putting these things together we will obtain that every typable term is strongly

normalizing.

15This corresponds to Int_sound in appendix B.9, which is actually a misnomer.



In the definition of Candidates of Reducibilily CR: (Tm->Set)->Set we follow
[GLT89]:'¢

[neutr[M:Tm] = {M’:Tm}not (EQ (lam M’) M)];

[P:Tm->Set]

[CR1 = {M|Tm}(P M)->(SN M)]

[CR2 = {M|Tm}(P M)->{N:Tm}(Step M N)->(P N)]
[CR3 = {M|Tm}(neutr M)->

({N:Tm}(Step M N)->(P N))->(P M)]
[CR = CR1 /\ CR2 /\ CR3];

Discharge P;

We define neutr as the set of terms which are not generated by the constructor for
the arrow type — lam.'” CR1 places an upper bound on candidates: they may only
contain strongly normalizing terms. CR2 says that candidates have to be closed

under reduction and CR3 is essentially SNi restricted to neutral terms.

The essence of this definition lies in the possibility of proving the following

lemmas:

CR_var Candidatles contain all variables
{P:Tm->Set}(CR P)->{i:Nat}P (var i);

We need this not only for the following lemmas, but also for the final corollary
when we want to deduce strong normalization from soundness for non-empty

contexts.

16[p:Tm->Set] ...Discharge P; means that P is A-abstracted from all definitions in

between.

I7If we generalize this to systems with inductive types we have to include their con-

structors as well.



This is a trivial consequence of CR3 because variables are neutral terms in

normal form.
CR_SN There is a candidate set
CR SN

The choice is arbitrary but the simplest seems to be SN. The proof is trivial:
just apply SNd for CR2 and SNi for CR3.

CR_ARR Candidates are closed under the semantic interpretation of arrow types.
{P,R:Tm->Set}(CR P)->(CR R)->(CR (ARR P R))
where
[ARR[P,R:Tm->Set] = [M:Tm]{N:Tm}(P N)->(R (app M N))I;

The proof of CR3 for ARR P R is actually quite hard and requires an induction

using RecSNN which corresponds to the reasoning using v(N) in [GLT89].
CR_PI Candidates are closed under the interpretation of 1l-types

{F:(Tm->Set)->(Tm->Set)}
({P:Tm->Set}(CR P)->(CR (F P)))
-> (CR (PI F));

where

[PI[F: (Tm->Set)->(Tm->Set)] =
[M:Tm]{P:Tm->Set}(CR P)->(F P M)1;

At this point we really need impredicativity for the proof. However, it is
interesting to observe how simple this lemma is technically: we do not apply
any induction — we just have to show that CR is closed under arbitrary

non-empty intersections.



Lam Sound The rule of arrow introduction (Lam) is semantically sound for candi-

date sels.

{P,R:Tm->Set}(CR P)->(CR R)->
{M:Tm} ({N:Tm}(P N)->(R (substO M N)))
->(ARR P R (lam M));

Observe that we could not have proved this lemma for arbitrary subsets of
SN. The proof requires a nested induction using RecSNN which corresponds

to an induction over v(M) + v(N).

5.2.5. Proving strong normalization

We now have all the ingredients for the proof, we just have to put them together.

We proceed by defining an interpretation function. Types are interpreted by
functions from sequences of sets of terms to sets of terms, the length of the sequence

depending on the number of free type variables:!®

Int : {m|Nat}(Ty m)->(VEC (Tm->Set) m)->(Tm->Set)

rec Intlm (t_var i) [v:VEC (Tm->Set) m]V_nth i v

[v:VEC (Tm->Set) m]ARR (Int s v) (Int t v)

| Intlm (arr s t)

| Intlm (pi t) [v:VEC (Tm->Set) m]

PI ([P:Tm->Set]Int t (V_cons P v))

We can show by a simple induction that every interpretation of a type preserves

candidates (CR_Int) by exploiting CR_ARR and CR_PI .

18We have to use another type of vectors (large vectors) VEC:Nat->Type(0)->Type(0)
instead of Vec:Nat->Set->Set. Unfortunately, this sort of polymorphism cannot be
expressed in the current implementation of LEGO — i.e. we have to duplicate the

definitions.



We extend this to an interpretation of judgements, i.e. pairs of types and
contexts (Mod). The idea is that Mod G M T v holds iff by substituting all the
variables in M by terms of the corresponding interpretation of the types in G we

end up with an element of Int T v:'?

Mod : {m,nINat}(Con m n)->Tm->(Ty m)->(VEC (Tm->Set) m)->Set

rec Mod m zero empty MTv=IntTvHM

| Mod m (succ n) (v_cons SG) M T v

{N:Tm}(Int S v N)->(Mod G (substO M (rep_weakO N n)) T v)

We use Mod to state soundness (Int_Sound), i.e. that Der G M T implies

Mod G M T v if all free type variables are interpreted by candidates:

{m,n|Nat}{GICon m n}{M|Tm}{T|Ty m}(Der G M T)->
{v:VEC (Tm->Set) m}({i:Fin m}CR (V_nth i v))

-> (Mod GMT v);

The proof of soundness proceeds by induction over derivations. Essentially we
only have to apply Lam_sound to show that the rule Lam is sound. The soundness of
application App follows directly from the definition of ARR. To verify soundness for
the rules which are particular to System F we do not need additional properties
of CR but we have to verify that t_weak and t_subst are interpreted correctly
with respect to Int. Again these intuitively simple lemmas are quite hard to show

formally.

To conclude strong normalization:

{m,n|Nat}{GlCon m n}{M|Tm}{T|Ty m}(Der G M T)->(SN M)

9rep_weakO is the iterated application of weakO. It is necessary to apply weakening

here because we do not get parallel substitution by a repeated application of substO.



we have to put Int_sound and CR_Int together to show that every term is in the
interpretation of a candidate; and by definition candidates only contain strongly
normalizing terms. There are two technical complications: to show the theorem
for terms with free term variables we exploit CR_var; to show it for a derivation
with free type variables we have to supply a candidate — here we use CR_SN. Note

that the choice is arbitrary but that it is essential that CR is not empty.

5.3. Alternatives and extensions

In the following we will discuss some possible variations on the implemented proofs

which have not been completely formalized.

5.3.1. Extracting a normalization function

The proof not only tells us that every typable term is strongly normalizing but it
is also possible to derive a function which computes the normal form. This seems
to be a case where it is actually more straightforward to give a proof that every

strongly normalizable term has a normal form than to program it directly.

To specify normalization we need a notion of reduction (Red) — which is just

the transitive reflexive closure of step:

mu[Red : Tm->Tm->Set] (
r_refl : {M:Tm}(Red M M),

step : {M1,M2,M3|Tm}(Step M1 M2)->(Red M2 M3)->(Red M1 M3) )

and we define the predicate normal form:

[nf[M:Tm] = {M’:Tm}not (Step M M’)]

Now we want to show norm_lem:

{M:Tm} (SN M)->Ex[M’:Tm] (Red M M’)/\(nf M)



which can be done using RecSNN — it turns out that we need decidability of normal

form as a lemma:
{M:Tm} (nf M)\/(Ex[M’:Tm]Step M M)

Actually, this is even stronger, because it also gives us a choice of a reduct for terms

not in normal form (this is the point where we specify the strategy of reduction).

If we use the strong sum to implement Ex, instead of the weak impredicative

encoding, we can use norm_lem to derive:

norm : {M:Tm} (SN M)->Tm
norm_ok : {M:Tm}{p:SN M}(Red M (norm M p)) /\ (nf (norm M p))

Note that at this point we exploit the propositions as types principle. Here it

is a serious limitation to only have weak eliminations for logical connectives.

5.3.2. Saturated Sets

In many strong normalization proofs the notion of Saturated Sets is used instead
of Candidates of Reducibility — in particular the definition of saturated A-sets
is clearly motivated by them. It is relatively easy to change the proof to use
saturated sets: all we have to do is to replace CR by SAT and prove that it has the

same properties as CR.

To formalize saturated set we first have to define weak head reduction and void

terms, which are both inductively defined:

mu [W_Hd_Step:Tm->Tm->Set] (
wh_beta : {M,N:Tm}W_Hd_Step (app (lam M) N) (substO M N),
wh_app_1 : {M,M’ ,N:Tm}(W_Hd_Step M M’)
->(W_Hd_Step (app M N) (app M’ N)) )

mu[Void:Tm->Set] (
v_var: {i:Nat}Void (var i),

v_app: {M,N|Tm}(Void M)->(SN N)->(Void (app M N)));



Now we can define SAT analogously to CR as:

[P:Tm->Set]

[SAT1 = {M|Tm}(P M)->(SN M)]

[SAT2 = {M|Tm}(Void M)->(P M)]

[SAT3 = {M,M’ |Tm}(P M)->(W_Hd_Step M’ M)

->(SN M?)->(P M")];
[SAT = SAT1 /\ SAT2];

Discharge P;

Luo shows that CR P implies SAT P ([Luo90], page 95) and remarks that the con-
verse does not hold because saturated sets do not have to be closed under reduc-
tion. An example is the set of all strongly normalizing terms whose weak head
normal form is neutral or equal to Ax.I[, which is saturated but not closed under

reduction.

If we want to show CR_ARR and Lam_sound formally we have to use RecSNN in
a manner similar to the original proof. The complexity of the proof seems to be
roughly the same, although we have to define the transitive closure and show an
additional lemma about reduction and substitution lemma 2.3.8(3) to show lemma
3.5.2. On the other hand the advantage of saturated sets is that it seems easier to

generalize them to dependent types (as we have done in the definition of saturated

A-sets).

5.3.3. Reduction for Church terms

We have only done the proofs for the Curry style systems — so one obvious ques-
tion 1s how hard it would be to extend this proof to the Church style presentation,
i.e. to terms with explicit type information. In the case of simply typed A-calculus
this is straightforward because every reduction on a typed term corresponds to one
on its untyped counterpart and vice versa. However, this reasoning does not gen-
eralize to System F because here we have additional (second order) reductions on

typed terms.



This problem is usually solved by arguing that the second order reductions are
terminating anyway. Another way, maybe more amenable to formalization, would

be to extend the notion of untyped terms and reduction:

mu[Tm:Set] (...,
T_Lam : Tm->Tm,

T_App : Tm->Tm)

mu[Step:Tm->Tm->Set] (. ..,

Beta : {M:Tm}(Step (T_App (T_Lam M)) M) )

Note that T_Lam does not actually bind any term-variables but corresponds to
second order abstraction for typed terms; analogously T_App is used as a dummy

type application where the type is omitted.?°

It does not seem hard to extend the proof to this notion of untyped terms.
We have to extend the notion of neutrality, and the soundness of Pi_i, which was
trivial so far, has to be proved as an additional property of CR. The result for
Church terms now follows by observing that for the extended notion of untyped

terms reductions coincide with the typed terms.

20Tt may just be a curiosity, but this version of untyped terms corresponds to (a
special case of) partial terms. In [Pfe92] it is shown that type inference for partial terms

is undecidable, which is still open for the usual notion of untyped terms.



Chapter 6

Conclusions and further work

Let us summarize the main points of this work by two slogans:

Proving properties of syntax by using semantics [ hope that I have demon-
strated this by deriving an extensible strong normalization proof from the
realizability semantics of CC. Here we emphasize the use of semantics as a
tool to analyze a system than as a vehicle of understanding. However, by
doing this we challenge the view that systems can or should be reduced to

their syntactical presentation.

Type Theory is useful for verification We have given some support for this
slogan this by implementing the proof for the strong normalization of System
F in LEGO. It should be noted that the structure of this proof was still
very much influenced by the conventional formulation in predicate logic. In
[CD93] it is shown how type-theoretic systems can be analyzed in a type-

theoretic way.
I will close by mentioning some areas which deserve further attention:

1. In this thesis we followed the traditional approach to show strong normal-
ization and to derive further metatheoretic properties (like uniqueness of
product formation (theorem 2.4.1)) from this. The limits of this method

show up already in the context of n-reduction (2.3.19). An alternative is
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to directly give a procedure which assigns to every term a canonical nor-
mal form and show its correctness. This approach has been investigated in
[C0q90],[BS91] and [CD93]. However, to our knowledge, it has not yet been

extended to CC or to general inductive types.

. The recent work by Dybjer [Dyb91,Dyb92a,Dyb92b] and T. Coquand [Coq92b]
suggest a general formalism to present inductive definitions, structural re-
cursion and proofs by induction. This formalism should include the sort of
mutual definitions which are required for the definitions of universes and
for the presentation of Type Theory in Type Theory. The (categorical) se-
mantics and the metatheory (i.e. decidability) of this formalism needs to be

worked out in some detail.

. The inherent limitations of the intensional presentation of Type Theory often
lead to complications: the axiom of extensionality is not provable and there
is no notion of quotients in intensional Type Theory. A related problem is
the computational use of co-induction when presenting co-inductive types.
We believe that it is possible to overcome these problems and present a
Type Theory which is essentially extensional but still regaining decidability.
Recent progress has been made in this area due to the work of Hofmann

[Hof93a].

. The use of Type Theory as an integrated verification and programming-
language should be investigated and supported by implementations. We
believe that Type Theory should be directly used as a programming language
instead of encoding other languages into it. Only this way the additional

information available at compile time can be used most effectively.



Appendix A

General u-types

We present an extension of the core calculus by a general notion of inductive types,
essentially following [Dyb91]. Note that we leave out several possible generaliza-
tions such as mutual inductive definitions (e.g. see [Dyb92a]), or mutual inductive,
recursive definitions ([Dyb92b]) or T. Coquand’s generalization of elimination rules

by pattern matching [Coq92b].

One essential difference to Dybjer’s presentation is that we present u-types
in a closed theory, i.e. we introduce general rules which can be instantiated to
particular cases. Another difference is that although one can consider our forma-
tion and introduction rules as monomorphic we introduce polymorphic elimination
constants to allow for large eliminations without having to introduce another uni-

verse.

Note that we present the following rules using Church syntax. However, the
explicit versions can be easily recovered by using the type-reconstruction algorithm

(see section 2.4).

A.1. Telescopes

In order to present the general rules we need some notation regarding sequences
of Sets.
Ik A Set
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is a shorthand for:
I' B Ap: Set
FEI(A()) F Al : Set

Substitution and weakening can be easily extended to telescopes:

Atn = {A70H)y

icl A

ANP = AN}

We will also use Eﬁ(/_l‘) = EL(Ag).El(Ay) .. .EI(AV-H_I). Te.
IEl(A) = I EL(Ao).El(A;) ... EI(A 4,_,)

and

I'FN:EI(A)

means

r F N1 : El(Al)
r F N2 . El(AQ[Nl])

ror N|ff|—1 : El(A|;f|_1[No,N1,...,N|]\7|_1 = NJ])

IT, A and application can be easily generalized to telescopes as follows:

NEI(A)e = TIEI(A).IIEI(Ay).. . HEI(Az_,).0
NEI(A).M = XEI(Ao).AEI(Ay)... AEN(A z_,).M
MN = MNoNi...Nyg_,

A.2. Syntax

We will extend the syntax for terms by additional constants for: set formers (u),
constructors (C) and recursors (R). Every constant has a specification as its
argument, which has a fairly complicated structure, specifying the types of all

constructors. To simplify the presentation we introduce a special syntactic class

Mu(S,T,U).



A.2.1. DEFINITION. We extend definition 2.1.1 by:

Mu == (Tm™, (Tm*, Tm", (Tm", Tm*)*)*)

Tm == uT |Cs|RT

Note that we do not introduce any new types, similar to the monomorphic

presentation of Type Theory.

A.2.2. DEFINITION (Weakening and substitution).

—

(I, {(A;, P, {(Bij, Qi;)}jem:) yien) "
= (I {(Afr, P (B G By ) Y ien)
(1, {(Ai, P, {(Bij, @ij)}jem:) Yien) [N

—

= (TIN]" {(AJNT, PINT AL LBy INTHAL G [N+ 1Bl Y ke

—

Assume T = (I, {(As, P, {(Bij, Qi) }iem:) Yien)-
(uT)™ = u(T*)
(CP)*" = Cren
(Rp)* = Ry
(uT)[N]* = wu(T[N]")
(CP)IN]" = Crppe

o[N]FrHITI+1

(R7)IN]" = Rypnpe

A.3. Rules

The formation rule contains a complete specification of all constructors. n is the
number of constructors and m; is the number of recursive premises of the ith

constructor.



' 1 :Set

I'F A, : Set )

[.EI(A;) b P B[4 . (MU-FORM)
o o 5 5 1EN

FEI(AZ) F BZ']' : Set .
o oa Jemy

T.EI(A;).El(By) b Gy « BI(IHAI+Ba] J
b (1 A{(As P {(Bij, Qi) Yiem:) bien)  TTEI(T) Set

We omit the obvious but elaborated congruence rules. Let

= (fa {(Ai7 B, {(éiﬁ éij)}jemi)}ien)

in the following rules s.t.

- =

I'Fw(T): ﬁEl( Set

~—r

—

If I = € then p(T) is a non-dependent type. In this case we also have that all

—

P, Qi; = € therefore we introduce the following abbrevation:

#N({(Aia{éij}jemi)}ien) = ﬂ(ev{( i3 7{( 6)}j€mi)}i€n)

If 7 # ¢ then p(7T) is a dependent inductive type or an inductively defined
family. If m; > 0 for some ¢ we call u(7T') recursive. If all B;; = € then p(T') is

algebraic.

We complete the definition of p types by giving the introduction, elimination

and computation rule.

1€n

T+ Ch o AL ({TEBy) Fl(u(T) Qij Y iem: ) F((u(T) B)))* (MU-INTRO)

For the following rules we assume

Iz:IL.u(T)itko

as a premise.



For the elimination and the computation rules we have to specify the recursion

hypothesis introduced by the ith constructor: !

I a:El(A)
5 _ b {lLBy.u(T) @iy}
{1i¢ : El(Bya).o[EAQy[a)).(b; O)])}em:

We can verify that ' F §;.

I'F RS : {8 }ien.@ : BI(I).(u(T) Z).0 (MU-ELIM)
F"Dk(gk forkEn
1EN

I'F X :EI(A)
I'E Y« (HE(By) El(u(T) Qi) [X] for j € m

I'ERGD(Cp X V)~ D; XY {A&: By[X].RS D (Y; ) }iem, : o[ P[X].(C7 X V)]
(MU-COMP)

A.4. Examples

In the following only the set formers and the constructors are presented. All typing
judgements refer to the empty context. When indexing the constructors we will

confuse T and p(T).

Y. sets

Y = AX :Set, Y : X — Set.un({(4o =z : X.Yz,{})})
ITX : Set.(X — Set) — Set

!Note that we are omitting the applications of the weakening operation to improve

readability.



pair = AX :Set,Y : X — Set.CS yy

11X : Set.ITY : (X — Set) — Set.Ilz : EI(X).El(Yz) = ¥ XY
Disjoint union

+ o= AX,Y :Setun({(Ao = X, {}), (A1 = Y, {}})
Set — Set — Set

inl = AX,Y :Set.C} xy
IX,Y : Set.El(X) - + XV

int = AX,Y :Set.C} yy

IX,Y : Set.EI(Y) > + X Y

Equality Sets

Id = AX :Setu(l = XX {(Ag=2:X,Ph=22,{})})
I1X : Set.EI(X) — EI(X) — Set

11X : Set.Ilz : EI(X).Id X z

Finite Sets

{+ = m({})
Set

T = px({(4o = e, {})})
Set

tt = C%
EI(T)

Natural Numbers

Nat = uxn({(Ao=¢,{}), (A1 =€, {Biwo=¢€})})
Set



0 = CONat

El(Nat)

suce = Oy

Lists

List

nil

cons =

Vectors

Vec = AX:

X :

vnil = AX:
X :

veons = AX:

11X :

Ordinal notations

El(Nat) — El(Nat)

AX : Set.un({(Ao = €,{}), (A1 = X, {Bio = €})})
Set

AX :Set.C0

ILX : Set.El(List X)

AX @ Set.CL_ &

ILX : Set.EI(X) — El(List X) — El(List X)

(AO:éa{}ap():Ov)a

)
(A; =n: Nat.X,{(Bio =¢,Q10=n)}, P =succn) }
Set.El(Nat) — Set

Set.u(I = Nat, {

Set.Ce. x
Set.El(List X 0)
Set.Coli x

Set.lln : El(Nat).EI(X) — El(Vec X n) — El(Vec X (succn))

Ord = F‘N({(AO =6 {})7 (Al =6 {Blo = 6})7 (AQ =6 {BQO = Nat})})

0/ = C(C))rd
El(Ord)
suce’ = C%)rd

El(Ord) — EI(Ord)

. _ 2
hm = COI‘d

(El(Nat) — EI(Ord)) — El(Ord)



Appendix B

LEGO code

The following contains the LEGO code for the Strong Normalization proof for
simply type A-calculus and System F.

The Lego files can be obtained on e-mail request (alti@dcs.ed.ac.uk) or by
anonymous internet ftp from host ftp.dcs.ed.ac.uk (address 129.215.160.5), di-
rectory pub/alti, file snorm.tar.Z (this is a compressed tar file which contains a

directory including a file README for further information). Here is a sample dialog:

ftp ftp.dcs.ed.ac.uk
Name: anonymous
Password: your email-address
ftp> binary
ftp> cd pub/alti
ftp> get snorm.tar.Z
ftp> bye

After the file is transferred it should be uncompressed and then extracted using
tar. For example: zcat snorm.tar.Z | tar fox -.



B.1. load-simple.1l

(*
*k
*k T. Altenkirch

* %k

*k Strong Normalisation for simply typed \lambda calculus

* %k

** This proof does not introduce any non-logical axioms.

** used to model inductive types.

*)

Init XCC; Logic; [Set=Propl;
Include basic;
Include lambda;
Include snorm;
Include simple;

Include "sn-simple.l";

Assumptions are only



B.2. load-f.1

(*

*k

*k T. Altenkirch

*k

*k Strong Normalisation for System F

* %k

** This proof does not introduce any non-logical axioms.

** used to model inductive types.

*)

Init XCC; Logic; [Set=Prop];
Include basic;

Include lambda;

Include snorm;

Include f;

Include "sn-f.1";

Assumptions are only



B.3. basic.1

(*

** some basic definitions

*k

** these are taken from /home/alti/lego/newLib to keep the proof
** self contained.

*)

(* composition *)

[o[B,C|Typel [£f:B->C][A| Typel [g:A->B] = [a:A]lf (g a)];

(* iff is reflexiv & transitive *)

Goal {A:Prop}iff A A;
intros;andl;intros;Immed; intros;Immed;

Save iff_refl;

Goal {A,B,C:Prop}(iff A B)->(iff B C)->(iff A C);
intros;Refine H;intros;Refine H1;intros;andI;
intros;Refine H4;Refine H2;Immed;intros;Refine H3;Refine H5;Immed;

Save iff_trans;

(*
** Definition of Martin-L"of equality &
**% the proof of some properties

*)

(* [A|Set]lmu[EQ:A->A->Set] (EQ_refl:{a:A}EQ a a) *)

[A]Set]

$[EQ : A->A->Set]

$[EQ_refl : {a:A}EQ a al

$[RecEQ : {C:{a,blA}(EQ a b)->Type}
({a:A}C (EQ_refl a))

-> {a,b|A}{p:EQ a b}C pl;
[[C:{a,b|A}(EQ a b)->Type] [f0:{a:A}C (EQ_refl a)]
[a:A]
RecEQ C fO (EQ_refl a) ==> f0 a];

Discharge A;

[A,B|Set];



[EQ_trans [a,b,c|A][p1:EQ a b][p2:EQ b c] =
(RecEQ ([a,b|A][_:EQ a bJ(EQ b c) -> (EQ a c))
([a:A]l[p:EQ a clp)

pl) p2 : EQ a cl;

[EQ_sym [a,b|A][p:EQ a b] =
RecEQ ([a,b|A]J[_:EQ a bJEQ b a)
([a:A]EQ_refl a)

p : EQ b al;

[EQ_resp [f:A->B][a,b|A][p:EQ a b]
RecEQ ([a,b|A][_:EQ a b]JER (f a) (£ b))
([a:AJEQ_refl (f a))

p : EQ (f a) (f b)];

[EQ_rewrite [a,b|A][p:EQ a b][P:A->Typel] =
RecEQ ([a,b|AI[_:EQ a b](P a)->(P b))
([a:Al[p:P alp)
p: (Pa)-> (P b);

[EQ_rewrite’[a,b|A][p:EQ a b] = EQ_rewrite (EQ_sym p)];

Discharge A;

Configure Qrepl EQ EQ_rewrite EQ_sym;

Goal {AlSet}{c:A}{C:{alA}(EQ a c)->Set}
(C (EQ_refl c))->{alA}p:EQ a c}C p;
intros;
Claim {a,c|A}{q:EQ a c}{C:{alA}(EQ a c)->Set}(C (EQ_refl c))
->Cq;

Refine 7+1; Refine H;
Refine RecEQ [a,c|Al[q:EQ a c]

{C:{alA}(EQ a c)->Set}(C (EQ_refl c))->C q;
intros;Refine Hi;

Save RecEQ1l;

(*

** some basic datatypes

*)

(*** mu[Unit:Set] (void:Unit) #**x)

[Unit : Set]

[void : Unit]



[RecUnit : {P:Unit->Type} (P void)->{x:Unit}P x];

[[P:Unit->Type] [f0O:P void]

RecUnit P fO void ==> f0];

[RecUnitN[P|Typel = RecUnit ([_:Unit]P) : P->Unit->P];

(%% mu[Nat:Set] (zero:Nat,succ:Nat->Nat) #***)

[Nat : Setl]

[zero : Nat][succ : Nat->Nat]

[RecNat : {P:Nat->Type}
(P zero)->({n:Nat}(P n)->(P (succ n)))

-> {n:Nat}P n];

[[P:Hat->Typel [z:P zero] [f:{n:Nat}(P n)->(P (succ n))][n:Nat]
Recllat P z f zero ==> z

|| Reclat P z f (succ n) ==> f n (RecNat P z f n)];

[RecNatN[C|Type]l = RecNat ([_:Nat]C)];

(* add : nat -> Nat -> Nat
rec add zeron = n
| add (succ m) n = succ (add m n)
*)
[add = RecHNatl ([n:Natln)

([m:Nat] [add_m:Hat->Hat] [n:Nat]succ (add_m n))];

Goal {m,n:Nat}EQ (add m (succ n)) (succ (add m n));

Refine RecNat [m:Nat]{n:Nat}EQ (add m (succ n)) (succ (add m n));
intros _;Refine EQ_refl;

intros;Refine EQ_resp succ;Refine H;

Save add_succ_lem;

(* mu[LE:Nat->Nat->Set] (

LEO:{n:Nat}LE zero n,

LE1:{m,n|Nat}(LE m n) -> (LE (succ m) (succ n)))
*)

[LE:Nat->Hat->Set]
[LEO:{n:Nat}LE zero n]
[LE1:{m,n|Nat}(LE m n) -> (LE (succ m) (succ n))]

[RecLE:{C:{m,n|Hat}(LE m n)->Set}



({n:Nat}(C (LEO n)))
-> ({m,n|Nat}{p:LE m n}(C p) -> C (LE1 p))

=> {m,n|Nat}{p:LE m n}C p];

[[C:{m,n|Nat}(LE m n)->Set] [fO:{n:Nat}(C (LEO n))]
[f1:{m,n|Nat}{p:LE m n}(C p)->C (LE1 p)]
[m,n:Wat][p:LE m n]

RecLE C £fO f1 (LEO n) ==> fO n

|| RecLE C £O f1 (LE1 p) ==> f1 p (RecLE C fO f1 p)];

[RecLEN[C:Nat->Nat->Set]

RecLE ([m,n:Nat]J[_:LEm n]JC m n)];

(* mu[Fin:Nat->Set](f_zero:{n:Nat}Fin (succ n),

f_succ:{n:Nat}(Fin n)->(Fin (succ n))) *)

[Fin : Nat -> Set]
[f_zero : {n:Nat}Fin (succ n)]
[f_succ : {n|Wat}(Fin n) -> (Fin (succ n))]
[RecFin : {P:{n|Nat}(Fin n)->Type}
({n:Nat}P (f_zero n)) ->
({n|Hat}{m:Fin n}(P m) -> (P (f_succ m))) ->

{n|¥at}{m:Fin n}P m];

[[P:{n|Nat}(Fin n)->Type] [f0:{n:Nat}P (f_zero n)]
[£f1:{n|Nat}{m:Fin n}(P m) -> (P (f_succ m))]
[k:Nat][m:Fin k]

RecFin P £0 f1 (f_zero k) ==> f0 k

|l RecFin P fO f1 (f_succ m) ==> f1 m (RecFin P fO f1 m)];

[RecFinN [C:Nat->Type] = RecFin ([n|Nat][_:Fin n]C n)
: ({n:Wat}C (succ n))
->({n|Nat}(Fin n)->(C n)->C (succ n))

->{n|Wat}(Fin n)->C n];

[Fin2Nat = RecFinN ([_:Nat]HNat)
([_:Nat]zero)

([nlNat][_:Fin nlsucc)];

[RecFinZero [P:(Fin zero)->Type][i:Fin zero] =
[P’ [k|Nat] = RecNat ([m:Nat](Fin m)->Type)
([i:Fin zero]P i)
([m:Nat][_:(Fin m)->Typel[_:Fin (succ m)]Unit) k]
RecFin P’ ([_:Nat]void) ([n|Nat][i:Fin n][_:P’ iJvoid) i

: P il



[RecFinZeroN[P:Type] = RecFinZero ([_:Fin zero]P)

: (Fin zero)->P];

[RecFinSucc [P:{n|Nat}(Fin (succ n))->Typel
[£0:{n:Nat}P (f_zero n)][fi:{n|Nat}{m:Fin n}P (f_succ m)]
[n|Wat][i:Fin (succ n)] =
[P’ [k|Nat] = RecNat ([m:Nat](Fin m)->Type)
([_:Fin zero]Unit)
([m:Wat][_:(Fin m)->TypelP|m) k]
RecFin P’ fO ([n|Nat][i:Fin n][_:P’ ilf1 i) i

: P il;

[RecFinSuccH[P:Nat->Type]l = RecFinSucc ([n|Nat][_:Fin (succ n)]P n)];

Goal {n|Nat}{P:(Fin (succ n))->Set}
(P (f_zero n))
->({i:Fin n}P (f_succ i))
->{m:Fin (succ n)}P m;
intros;
Claim {n|Nat}{m:Fin (succ n)}{P:(Fin (succ n))->Set}
(P (f_zero n))->({i:Fin n}P (f_succ i))->(P m);
Refine 7+1;Immed;
Refine RecFinSucc [n|Nat][m:Fin (succ n)]{P:(Fin (succ n))->Set}
(P (f_zero n))->({i:Fin n}P (f_succ i))->(P m);
intros;Refine H2;
intros;Refine H3;

Save RecFini;

[RecFiniN [n:Nat][P|Set] = RecFinl ([_:Fin (succ n)]P)

P->((Fin n)->P)->(Fin (succ n))->P];

(* [A:Set]mu[Vec:Nat->Set](v_nil:Vec zero,

v_cons:A->{n|Hat}(Vec n)->(Vec succ n)) *)

[Vec : Set->Nat -> Set]
[v_nil : {A:Set}Vec A zero]

[v_cons : {AlSet}A -> {n|Nat}(Vec A n) -> (Vec A (succ n))]

[RecVec : {A|Set}{P:{n|Nat}(Vec A n)->Type}
(P (v_nil 4)) ->
({a:A}{n|Nat}{1:Vec A n}(P 1) -> (P (v_cons a 1))) ->

{n|Vat}{1l:Vec A n}P 1];

[[A:Set][P:{n|Nat}(Vec A n)->Set]

[n:P (v_nil A)J[f:{a:A}{n|Nat}{1l:Vec A n}(P 1) -> (P (v_cons a 1))]



[a:A] [k:Nat] [v:Vec & k]
RecVec P n f (v_nil A) ==>n

|| RecVec P n f (v_cons a v) ==> f a v (RecVec P n f v)];

[A,B|Set];

[RecVecN [P:Nat->Type]l = RecVec ([n|Nat][_:Vec & n]P n)
(P zero)->(A->{n|Nat}(Vec A n)->(P n)->P (succ n))->{n|Nat}(Vec A n)->P n];
[RecVecNN [P|Type] = RecVecH ([n:Nat]P)

: P=>(A->{n|Nat}(Vec A n)->P->P)->{n|Nat}(Vec A n)->P];

[RecVecSucc [P:{n|Nat}(Vec A (succ n))->Type]
[£f1:{a:A}{n|Nat}{v:Vec A n}P (v_cons a v)]
[n|Nat][v:Vec A (succ n)] =
[P’ = RecHat ([i:Nat](Vec A i)->Type)
([_:Vec A zerolUnit)
([i:Wat][_:(Vec A i)->TypelP|i)]
RecVec P’ void ([a:Al[jlNat]l[v:Vec A j1[_:P’ j vIfi a v) v : P vl;

[RecVecSuccl [P:Nat->Type] = RecVecSucc ([n|Nat][_:Vec A (succ n)]P n)];

Goal {n|Nat}{P:(Vec A (succ n))->Set}
({a:A}{1:Vec A n}P (v_cons a 1))

->{m:Vec A (succ n)}P m;
intros;
Claim {n|Nat}{1l:Vec A (succ n)}{P:(Vec A (succ n))->Set}

({a:A}{1:Vec A n}P (v_cons a 1)) -> (P 1);
Refine 7+1;intros;Refine H;
Refine RecVecSucc [n|Nat][1:Vec A (succ n)]

{P:(Vec A (succ n))->Set}({a:A}{11:Vec A n}P (v_cons a 11))->P 1;
intros;Refine Hi;

Save RecVecl;

[v_hd = RecVecSuccll ([_:Nat]A) ([a:A]l[n|Nat][_:Vec A nla)
: {n|Nat}(Vec A (succ n)) -> A];

[v_tl = RecVecSuccH (Vec A) ([_:A]l[n|Nat][v:Vec A nlv)
: {n|Nat}(Vec A (succ n)) -> (Vec A n)];

DischargeKeep 4;

(* v_nth : {n|Nat}(Fin n)->(Vec A n)->A

rec v_nth| (succ n) (f_zero n) v_hd|Aln
| v_nth| (succ n) (f_succ i) = o (v_tl|A|n) (v_nth i)

*)



[v_nth = RecFinN ([n:Nat](Vec A n)->A4) (v_hd|A)

([n|Wat][_:Fin n][f:(Vec A n)->AJo £ (v_t1l|A[n))];

[v_map [f:A->B] =
RecVec ([i|FNat][_:Vec A iJVec B i)

(v_nil B) ([a:A][ilNat][_:Vec A il[v:Vec B ilv_cons (f a) v)];

[v_append =
[P[n:Fat]={m|Nat}(Vec A m)->(Vec A (add n m))]
RecVecl P ([m|Nat][v:Vec A m]v)
([a:Al[n|Nat][_:Vec A n][f:P n]
[m|Nat][v:Vec A m]v_cons a (f v))

: {n|Wat}(Vec A n)->{m|Nat}(Vec A m)->(Vec A (add n m))];

(*

v_insert : {m,n|Hat}(Vec A m)->A->(Vec A n)->(Vec A (succ (add m n)))

v_insert v_nil a v2 = v_cons a v2

v_insert b::vl a v2 = v_cons b (v_insert vl a v2)

*)

[v_insert [m,n|Nat][vi:Vec A m][a:A][v2:Vec A n] =
RecVecl ([m:Nat]Vec A (succ (add m n)))
(v_cons a v2)
([b:A]l[m|Nat][vi:Vec A m][v_insert_vi:Vec A (succ (add m n))]
v_cons b v_insert_vl)

vi];

Discharge A;

(* We repeat all definitions we did for Vec for large Vectors (VEC) ! *)

(* [A:Type(0)Imul[VEC:Nat->Type(0)](v_nil:VEC zero,

v_cons:A->{n|Hat}(VEC n)->(VEC succ n)) *)

[VEC : Type(0) ->Nat -> Type(0)]
[V_nil : {A:Type(O)}VEC A zero]

[V_cons : {A|Type(0)}A -> {n|Nat}(VEC A n) -> (VEC A (succ n))]

[RecVEC : {A|Type(0)}{P:{n|Nat}(VEC A n)->Type}
(P (V_nil B)) ->
({a:A}{n|Nat}{1:VEC A n}(P 1) -> (P (V_cons a 1))) ->
{n|Nat}{1:VEC A n}P 1];



[[A:Set][P:{n|Nat}(VEC A n)->Set]
[n:P (V_nil A)][f:{a:A}{n|Nat}{1:VEC A n}(P 1) -> (P (V_cons a 1))]
[a:A][k:Nat][v:VEC A k]
RecVEC P n f (V_nil 4) ==>n

|| RecVEC P n f (V_cons a v) ==> f a v (RecVECP n f v)];

[A,B|Type(0)];

[RecVECN [P:Nat->Type] = RecVEC ([n|Nat][_:VEC A n]P n)
: (P zero)->(A->{n|Nat}(VEC A n)->(P n)->P (succ n))->{n|Nat}(VEC A n)->P n];
[RecVECNN [P|Type] = RecVECH ([n:Nat]P)

: P->(A->{n|Hat}(VEC A n)->P->P)->{n|Nat}(VEC A n)->P];

[RecVECSucc [P:{n|Nat}(VEC A (succ n))->Typel
[£f1:{a:A}{n|Nat}{v:VEC A n}P (V_cons a v)]
[n|Nat][v:VEC A (succ n)] =
[P’ = RecHat ([i:Nat](VEC A i)->Type)
([_:VEC A zero]Unit)
([i:Nat][_:(VEC A i)->TypelP|i)]
RecVEC P’ void ([a:Al[j|Nat][v:VEC A j1[_:P’ j vIfli av) v : P v];

[RecVECSuccH [P:Nat->Type] = RecVECSucc ([n|Nat][_:VEC A (succ n)]P n)];

Goal {n|Nat}{P:(VEC A (succ n))->Set}
({a:A}{1:VEC A n}P (V_cons a 1))

=>{m:VEC A (succ n)}P m;
intros;
Claim {n|Nat}{1:VEC A (succ n)}{P:(VEC A& (succ n))->Set}

({a:A}{1:VEC A n}P (V_cons a 1)) -> (P 1);
Refine 7+1;intros;Refine H;
Refine RecVECSucc [n|Nat][1:VEC A (succ n)]

{P:(VEC A (succ n))->Set}({a:A}{11:VEC A n}P (V_cons a 11))->P 1;
intros;Refine Hi;

Save RecVEC1;

[V_hd

RecVECSucclN ([_:Nat]A) ([a:Al[n|Nat][_:VEC A n]a)
: {n|Nat}(VEC A (succ n)) -> A];
[V_t1l = RecVECSucclN (VEC A) ([_:A][n|Nat][v:VEC A n]v)

: {n|Nat}(VEC A (succ n)) -> (VEC A n)];

DischargeKeep 4;

[V_nth = RecFinN ([n:Nat](VEC A n)->A4) (V_hd|A)

([n|¥at][_:Fin n][£:(VEC A n)->AJo £ (V_t1|A[n))];



[V_map [f:A->B] =
RecVEC ([i|Nat][_:VEC A iJVEC B i)

(V_nil B) ([a:A][ilNat][_:VEC A i][v:VEC B ilV_cons (f a) v)];

[V_append =
[P[n:Fat]={m|Nat}(VEC A m)->(VEC A (add n m))]
RecVECH P ([m|Nat][v:VEC A m]v)
([a:Al[n|Nat][_:VEC A n][f:P n]
[m|Hat] [v:VEC A m]V_cons a (f v))

: {n|Nat}(VEC A n)->{m|Nat}(VEC A m)->(VEC A (add n m))];

[V_insert [m,n|Nat][vi:VEC A m][a:A][v2:VEC A n] =
RecVECH ([m:Nat]VEC A (succ (add m n)))
(V_cons a v2)
([b:A][m|Nat][v1i:VEC A m][V_insert_v1:VEC A (succ (add m n))]
V_cons b V_insert_vl)

vi];

Discharge A;



B.4. lambda.l

(*
*k
** untyped \lambda terms

* %k

*)

(*
**% Definition of terms

*)

(* mu[Tm:Set](var : Nat -> Tm,
app : Tm -> Tm -> Tm,
lam : Tm -> Tm)

*)

$[Tm : Set]
$[var : Hat -> Tm]
$[app : Tm -> Tm -> Tm]

$[lam : Tm -> Tm]

$[RecTm : {P:Tm->Type}
({n:Hat}P (var n))
=> ({M|Tm}(P M)->{N|Tm}(P W)->P (app M H))
=> ({M|Tm}(P M)->P (lam M))

-> {M:Tm}P M];

[[P:Tm->Type] [var_:{n:Wat}P (var n)]
[app_:{M|Tm}(P M)->{N|Tm}(P H)->P (app M N)]
[1am_:{M|Tm}(P M)->P (lam M)]
[n:Nat][M,N:Tm]
RecTm P var_ app_ lam_ (var n) ==> var_ n
Il RecTm P var_ app_ lam_ (app M N) ==> app_ (RecTm P var_ app_ lam_ M)
(RecTm P var_ app_ lam_ )

|| RecTm P var_ app_ lam_ (lam M) ==> lam_ (RecTm P var_ app_ lam_ M)];

[RecTml [P|Type] = RecTm ([_:Tm]P)

(Hat->P)->(Tm->P->Tm->P->P)->(Tm->P->P) ->Tm->P] ;

(*
**% Simple lemmas about terms

*)



Goal {i:Nat}{M,M’:Tm}not (EQ (app M M’) (var i));
Intros i M M’ H;
Refine EQ_rewrite H
(RecTml ([_:Nat]absurd) ([_:Tm][_:Set][_:Tm][_:Set]Unit)
([_:Tm][_:Set]Unit));
Refine void;

Save neq_var_app;

Goal {i:Nat}{M:Tm}not (EQ (lam M) (var i));
Intros i M H;
Refine EQ_rewrite H
(RecTmll ([_:Nat]absurd) ([_:Tm][_:Set][_:Tm][_:Set]Unit)
([_:Tm][_:Set]Unit));
Refine void;

Save neq_var_lam;

Goal {N,M1,M2:Tm}not (EQ (lam N) (app M1 M2));
Intros N M1 M2 H;
Refine EQ_rewrite H
(RecTml ([_:Nat]Unit) ([_:Tm][_:Set][_:Tm][_:Set]absurd)
([_:Tm][_:Set]Unit));
Refine void;

Save neq_lam_app;

Goal {M1,M2,N1,N2:Tm}(EQ (app M1 M2) (app N1 H2))
->((EQ M1 N1)/\(EQ M2 N2));
intros;
Refine EQ_rewrite H
(RecTmN ([_:Nat]Unit)

([N1’:Tm][_:Set][H2’:Tm][_:Set](EQ M1 H1’)/\(EQ M2 N2’))

([_:Tm][_:Set]Unit));
andI;Refine EQ_refl;Refine EQ_refl;

Save inj_app;

Goal {M1,M2:Tm}(EQ (lam M1) (lam M2)) -> (EQ M1 M2);
intros;
Refine EQ_rewrite H
(RecTml ([_:Nat]Unit) ([_:Tm][_:Set][_:Tm][_:Set]Unit)
([M27 :Tm] [_:Set]EQ M1 M2°));
Refine EQ_refl;

Save inj_lam;

(*
** geakening & substitution

*)



(* weak_var : Nat -> Nat -> Hat

rec weak_var zero i = (succ i)
| weak_var (succ 1) zero = zero

| weak_var (succ 1) (succ i) = succ (weak_var 1 i)

*)

[weak_var =
RecNatl succ
([_:Nat] [weak_1:Nat->HNat]

ReclNatl zero ([i:Nat][_:Nat]succ (weak_1 i)))];
(* weak : Nat->Tm->Tm
rec weak 1 (var i) = var (weak_var 1 i)
| weak 1 (app M N) = app (weak 1 M) (weak 1 N)
| weak 1 (lam M) = lam (weak (succ 1) M)

*)

[weak[1:Nat] [M: Tm]

RecTmN ([i:Nat][1l:Nat]var (weak_var 1 i))
([_:Tm] [weak_M:Nat->Tm]
[_:Tm] [weak_N:Nat->Tm]
[1:Natlapp (weak_M 1) (weak_N 1))
([_:Tm] [weak_M:Nat->Tm]
[1:Nat]lam (weak_M (succ 1)))

M 1]

[weakO = weak zero : Tm -> Tm];

[rep_weakO[M:Tm] = RecNatN M ([_:Nat][M:Tm]weakO M)];

Goal {n:Nat}EQ (rep_weakO (var zero) n) (var n);

Refine Reclat [n:Nat]EQ (rep_weakO (var zero) n) (var n);
Refine EQ_refl;

intros;Equiv EQ ? (weakO (var n));Refine EQ_resp weakO;Refine H;

Save rep_weakO_lem;

(¥ subst_var : Nat->Nat->Tm->Tm

rec subst_var zero zero N = N

| subst_var zero (succ i) N = var i

| subst_var (succ 1) zero N = var zero



| subst_var (succ 1) (succ i) N = weakO (subst_var 1 i N)

*)

[subst_var =
RecNatl (RecNatNH ([N:Tm]N) ([i:Nat][_:Tm->Tm][_:Tm]var i))
([1:Fat][subst_var_1l : Nat->Tm->Tm]
RecNatlN ([_:Tm]var zero)

([i:Nat][_:Tm->Tm] [N:Tm]weak0 (subst_var_1 i H)))];

(* subst : Nat->Tm->Tm->Tm

rec subst 1 (var i) N = subst_var 1 i N

| subst 1 (app M M’) N = app (subst 1 M) (subst 1 N)

| subst 1 (lam M) N = lam (subst (succ 1) M N)

*)

[subst[1:Nat][M,N:Tm]

RecTmN ([i:Nat][1l:Nat]lsubst_var 1 i N)
([_:Tm] [subst_M:Nat->Tm][_:Tm] [subst_N:Nat->Tm]
[1:Nat]app (subst_M 1) (subst_N 1))
([_:Tm] [subst_M:Nat->Tm]
[1:Hat]lam (subst_M (succ 1)))

M 1];

[subst0 = subst zero];

(*
** substitution & weakening laws

*)

Goal {1:Nat}{M,N:Tm}EQ (subst 1 (weak 1 M) N) M;

intros;

Refine RecTm [M:Tm]{1l:Nat}EQ (subst 1 (weak 1 M) N) M;

(* var *)

intros;

Refine RecNat [1:Nat]{i:Nat}EQ (subst 1 (weak 1 (var i)) N) (var i);
intros;Refine EQ_refl;

intros 12 IH i;

Refine RecNat [i:Nat]EQ (subst (succ 12) (weak (succ 12) (var i)) N) (var i);
Refine EQ_refl;

intros il _;

Equiv EQ (weakO (subst 12 (weak 12 (var i1)) N)) (weakO (var i1));

Refine EQ_resp weakO;Refine IH;



(* app *)

intros;Refine EQ_rewrite’ (H 11) ([X:Tm]EQ (app X ?) ?);
Refine EQ_rewrite’ (H1 11) ([X:Tm]EQ (app 7 X) ?);

Refine EQ_refl;

(* lam *)

intros;Refine EQ_rewrite’ (H (succ 11)) ([X:Tm]EQ (lam X) ?);
Refine EQ_refl;

Save subst_weak_lem;

Goal {1’,1:Nat}{M:Tm}(LE 1’ 1)->
(EQ (weak (succ 1) (weak 1’ M))
(weak 1’ (weak 1 M)));
intros;
Refine RecTm [M:Tm]{1’,1:Nat}(LE 1’ 1)->
EQ (weak (succ 1) (weak 1’ M)) (weak 1’ (weak 1 M));
(kk*x yvar *¥k)
intros i 11’ 11 _;Refine EQ_resp var;
Refine RecLEN [11’,11:Nat]{i:Nat}
EQ (weak_var (succ 11) (weak_var 11’ i))
(weak_var 11’ (weak_var 11 i));
(#* LEO **)
intros;Refine EQ_refl;
(% LE1 *%)
intros 12’ 12 _ IH;
Refine RecNat [i:Nat]
EQ (weak_var (succ (succ 12)) (weak_var (succ 12’) i))
(weak_var (succ 12’) (weak_var (succ 12) i));
(* i=0 *) Refine EQ_refl;
(* succ i *)
intros i’ _;Refine EQ_resp succ;Refine IH;
(** **) Immed;
(*%* app ***)
intros;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app X ?));Next +1;Refine H1;Immed;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app ? X)) ;Next +1;Refine H2;Immed;
Refine EQ_refl;
(kk*x lam *%%)
intros;
Refine EQ_rewrite ? ([X:Tm]EQ ? (lam X)) ;Next +1;Refine H1;Refine LE1;Immed;
Refine EQ_refl;
(k% *k*) Immed;

Save weak_weak_lem;

Goal {1’,1:Nat}{M,N:Tm}(LE 1’ 1)->

(EQ (subst (succ 1) (weak 1’ M) N)



(weak 1’ (subst 1 M N)));
intros;
Refine RecTm [M:Tm]{1’,1:Nat}(LE 1’ 1)->
(EQ (subst (succ 1) (weak 1’ M) N)
(weak 1’ (subst 1 M I)));
(kk* yvar *¥k)
intros i 11’ 11 _;
Refine RecLEN [1’,1:Nat]{i:Nat}
EQ (subst (succ 1) (weak 1’ (var i)) N) (weak 1’ (subst 1 (var i) I));
(#* LEO **)
intros;Refine EQ_refl;
(k% LE_1 **)
intros 12’ 12 _ IH;
Refine RecNat [i:Nat]
EQ (subst (succ (succ 12)) (weak (succ 12’) (var i)) W)
(weak (succ 12’) (subst (succ 12) (var i) H));
(¥ i = 0 *) Refine EQ_refl;
(* succ i *)
intros i’ _;
Refine EQ_trans;Next +2;Refine E_sym;Refine weak_weak_lem;Refine LEO;
Refine EQ_resp weakO;Refine IH;
(* *) Immed;
(*%* app ***)
intros;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app X ?));Next +1;Refine H1;Immed;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app ? X)) ;Next +1;Refine H2;Immed;
Refine EQ_refl;
(kk*x lam *%%)
intros;
Refine EQ_rewrite ? ([X:Tm]JEQ ? (lam X)) ;Next +1;Refine H1;Refine LE1;Immed;
Refine EQ_refl;
(*k* *k*) Immed;

Save subst_weak_lem’;

Goal {1:Nat}{M,N1,N2:Tm}
EQ (subst 1 (subst (succ 1) M N1) N2)
(subst 1 (subst 1 M (weakO N2)) N1);

intros;
Refine RecTm [M:Tm]{l:Nat}

EQ (subst 1 (subst (succ 1) M N1) N2) (subst 1 (subst 1 M (weakO N2)) H1);
(kk* var *¥k)
intros;
Refine RecNat [1l:Nat]{i:Nat}

EQ (subst 1 (subst (succ 1) (var i) N1) H2)

(subst 1 (subst 1 (var i) (weakO H2)) N1);



(kk 1 = 0 *x)
Refine RecNat [i:Nat]

EQ (subst zero (subst (succ zero) (var i) N1) N2)

(subst zero (subst zero (var i) (weakO N2)) N1);

(i=0 %)
Refine EQ_trans;Next +2;Refine EQ_sym;Refine subst_weak_lem;Refine EQ_refl;
(* succ i *)
intros;Refine EQ_trans;Next +1;Refine subst_weak_lem;Refine EQ_refl;
(** succ 1 **)
intros 12 IH;
Refine RecNat [i:Nat]

EQ (subst (succ 12) (subst (succ (succ 12)) (var i) N1) H2)

(subst (succ 12) (subst (succ 12) (var i) (weakO N2)) H1);

(i=0 %)
Refine EQ_refl;
(* succ i *)
intros i _;
Refine EQ_trans;Next +1;Refine subst_weak_lem’;Refine LEO;
Refine EQ_trans;Next +2;Refine EQ_sym;Refine subst_weak_lem’;Refine LEO;
Refine EQ_resp weakO;Refine IH;
(* app *)
intros;Refine EQ_rewrite (H 11) ([X:Tm]EQ ? (app X ?));
Refine EQ_rewrite (H1 11) ([X:Tm]EQ ? (app ? X));Refine EQ_refl;
(* lam *)
intros;Refine EQ_rewrite (H (succ 11)) ([X:Tm]EQ ? (lam X));
Refine EQ_refl;

Save subst_subst_lem;

Goal {m,l:Nat}{M1,M2,N:Tm}
EQ (subst m (subst (succ (add m 1)) M1 N) (subst 1 M2 H))
(subst (add m 1) (subst m M1 M2) N);
intros m’ 1’ M1’ M2’ N’;
Refine RecTm [M1:Tm]{m,1:Nat}{M2,N:Tm}
EQ (subst m (subst (succ (add m 1)) M1 N) (subst 1 M2 W))
(subst (add m 1) (subst m M1 M2) N);
(kk* yvar *¥k)
intros;
Refine RecNat [i:Nat]{m:Nat}
EQ (subst m (subst (succ (add m 1)) (var i) H) (subst 1 M2 H))
(subst (add m 1) (subst m (var i) M2) N);
(k% i=0 *x*)
Refine RecNat [m:Nat]
EQ (subst m (var zero) (subst 1 M2 N))
(subst (add m 1) (subst m (var zero) M2) N);

(* m=0 *) Refine EQ_refl;



(* succ m *) intros; Refine EQ_refl;
(** succ i **)
intros i IH;
Refine RecNat [m:Nat]
EQ (subst m (subst (succ (add m 1)) (var (succ i)) H) (subst 1 M2 N))

(subst (add m 1) (subst m (var (succ i)) M2) W);
(* m=0 *) intros; Refine subst_weak_lem;
(* succ m *)
intros il _;
Refine EQ_trans;Next +1;Refine subst_weak_lem’;Refine LEO;
Refine EQ_trans;Next +2;Refine E_sym;Refine subst_weak_lem’;Refine LEO;
Refine EQ_resp weakO;Refine IH;
(*%* app ***)
intros;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app X ?));Next +1;Refine H;
Refine EQ_rewrite ? ([X:Tm]EQ ? (app ? X)) ;Next +1;Refine Hi;
Refine EQ_refl;
(kk*x lam *%%)
intros;
Refine EQ_rewrite 7 ([X:Tm]EQ ? (lam X)) ;Next +1;Refine H;
Refine EQ_refl;

Save subst_subst_lem’;

(*
** one-step reduction

*)

(* mu[Step:Tm->Tm->Set] (
beta : {M,N:Tm}Step (app (lam M) H) (substO M N),
app_l : {M,M’ ,N:Tm}(Step M M’)->(Step (app M N) (app M’ W)),
app_r : {M,M’ ,N:Tm}(Step M M’)->(Step (app N M) (app N M’)),
xi : {M,N:Tm}(Step M M’)->(Step (lam M) (lam M’)) )

*)

$[Step:Tm->Tm->Set]
$[beta : {M,N:Tm}Step (app (lam M) H) (substO M W]
$[app_1 : {M,M’ ,N:Tm}(Step M M’)->(Step (app M N) (app M’ H))]
$[app_r : {M,M’ ,N:Tm}(Step M M’)->(Step (app N M) (app N M’))]
$[xi : {M,M’:Tm}(Step M M?)->(Step (lam M) (lam M’))]
$[RecStep:{P:{M,N|Tm}(Step M H)->Type}
({M,N:Tm}P (beta M N))
=> ({M,M’ ,N:Tm}{p:Step M M’}(P p)->(P (app_.1 M M’ N p)))
=> ({M,M’ ,N:Tm}{p:Step M M>}(P p)->P (app_r M M’ N p))
=> ({M,M’:Tm}{p:Step M M’}(P p)->P (xi M M’ p))

-> {M,N|Tm}{p:Step M N}P pl;



[[P:{M,N|Tm}(Step M H)->Typel
[beta_ : {M,N:Tm}P (beta M H)]
[app_1_ : {M,M> ,N:Tm}{p:Step M M’} (P p)->P (app_1 M M’ N p)]
[app_r_ : {M,M’> ,N:Tm}{p:Step M M’}(P p)->P (app_r M M’ N p)]
[xi_ : {M,M’:Tm}{p:Step M M’}(P p)->P (xi M W’ p)]
[M,M> ,N:Tm] [p:Step M M’]
RecStep P beta_ app_l_ app_r_ xi_ (beta M N) ==> beta_ M N

|| RecStep P beta_ app_l_ app_r_ xi_ (app_1 M M’ N p)

==> app_1_M M’ N p (RecStep P beta_ app_1l_ app_r_ xi_ p)
|| RecStep P beta_ app_l_ app_r_ xi_ (app_r M M’ N p)

==> app_r_ M M’ T p (RecStep P beta_ app_1l_ app_r_ xi_ p)
|| RecStep P beta_ app_l_ app_r_ xi_ (xi M M’ p)

==> xi_ M M’ p (RecStep P beta_ app_1l_ app_r_ xi_ p)];

[RecStepl[P: Tm->Tm->Type]l = RecStep ([M,N|Tm][_:Step M NIP M )
({M,N:Tm}P (app (lam M) W) (substO M W))
=>({M,M’ ,H:Tm}(Step M M’)->(P M M’)->P (app M N) (app M’ W))
=>({M,M’> ,N:Tm}(Step M M>)->(P M M’)->P (app § M) (app N M’))
=>({M,M’ :Tm}(Step M M’)->(P M M’)->P (lam M) (lam M’))

=>{M,N|Tm}(Step M H)->P M N];

(*
** Lemmas about Step

*)

Goal {M,lam_M’:Tm}(Step (lam M) lam_M’)
—>Ex[M’:Tm](Step M M) /\ (EQ lam_M’ (lam M’));
intros;
Claim {lam_M,lam_M’:Tm}(EQ (lam M) lam_M)->(Step (lam M) lam_M’)
->Ex ([M’:Tm]land (Step M M’) (EQ lam_M’ (lam M’)));
Refine 7+1;Next +1;Refine EQ_refl;Immed;
intros;
Refine RecSteplN [lam_M,lam_M’:Tm] (EQ (lam M) lam_M)
->Ex ([M’:Tm]land (Step M M’) (EQ lam_M’ (lam M’)));
intros;Refine neq_lam_app;Next +3;Refine H3;
intros;Refine neq_lam_app;Next +3;Refine H5;
intros;Refine neq_lam_app;Next +3;Refine H5;
intros;Refine ExIntro;Next +1;andI;
Refine EQ_rewrite’ 7 ([X:Tm]Step X 7);Next +1;Refine inj_lam;Refine H5;
Refine H3;Refine EQ_refl;
Hext +1;Refine H2;Refine EQ_refl;

Save step_lam;

Goal {1:Nat}{M,M’ ,N:Tm}(Step M M’)->(Step (subst 1 M N) (subst 1 M’ W));



intros;

Refine RecStepN [M,M’:Tm]{1l:Nat}Step (subst 1 M N) (subst 1 M’ H);
(* beta *)

intros;

Refine EQ_rewrite ? [X:Tm]Step 7 X;Next +1;Refine subst_subst_lem’;
Refine beta;

(* app_1 *)

intros;Refine app_1l;Refine H2;

(* app_r *)

intros;Refine app_r;Refine H2;

(* xi *)

intros;Refine xi;Refine H2;

(* End of cases *)

Immed;

Save step_subst;

[nf[M:Tm] = {M’:Tm}not (Step M M’)];

Goal {i:Nat}(nf (var i));

Intros i M H;

Claim {M,M’|Tm}(Step M M’)-> not (EQ M (var i));
Refine 7+1;Next +3;Refine EQ_refl;Immed;

Refine RecSteplN [M,M’:Tm]lnot (EQ M (var i));
intros;Refine neq_var_app;

intros;Refine neq_var_app;

intros;Refine neq_var_app;

intros;Refine neq_var_lam;

Save nf_var;

(* examples *)

(%

[TO = var zero] [T1 = lam TO];

[T2 = 1am (app (var zero) (var (succ zero)))];
weakO TO; Hormal VReg;

weakO T1; Hormal VReg;

weakO T2; Hormal VReg;

subst0 T2 T1; Normal VReg;

subst0 T2 TO; Normal VReg;

*)



B.5. snorm.1

(*
**% Definition of SNORM

*)

(*
mu[SH:Tm->Set] (

SHi : {M:Tm}({N:Tm}(Step M W)->(SH H))->(SH H))
*)

$[SH:Tm->Set]
$[SHi : {M:Tm} ({N:Tm}(Step M W)->(SH N))->(SN M)]
$[RecSH : {P:{M|Tm} (SN M)->Type}
({M: Tm}{F: {W:Tm}(Step M W)->(SH W)}
({N:Tm}{R:Step M W}P (F N R))
-> (P (SNi M F)))

=> {M|Tm}{p:SW M}P pl;

[RHS_SH[P:{M|Tm} (SN M)->Typel
[SHi_ : {M:Tm}{F:{N:Tm}(Step M W)->(SH M)}
({F:Tm}{R:Step M H}P (F N R))
-> (P (SHi M F))]
[M:Tm] [F:{N:Tm}(Step M W)->(S¥ W)] =

SWi_ M F ([N:Tm][R:Step M N]RecSH P SHi_ (F N R))];

[[P:{M|Tm} (SN M)->Typel
[SHi_ : {M:Tm}{F:{N:Tm}(Step M H)->(SH M)}
({:Tm}{R:Step M N}P (F N R))
-> (P (SHi M F))]
[M:Tm] [F:{N:Tm}(Step M W)->(SN )]
RecSH P SHi_ (SNi M F) ==>
(* SNi_ M F ([N:Tm][R:Step M N]RecSN P SHi_ (F N R)) *)

RHS_SH P SHNi_ M F];

[RecSHN [P:Tm->Type]l = RecSN ([M|Tm][_:SN M]IP M)
: ({M:Tm} ({H:Tm}(Step M H)->SH W)->({N:Tm}(Step M W)->P N)->P M)

=>{M|Tm} (SH M)->P M];

(* lemmas about SN *)

Goal {M|Tm}(SN M)->{N:Tm}(Step M H)->(SH N);
intros M sn_M;
Refine RecSNN ([M:Tm]{N:Tm}(Step M H)->(SN N));

intros;Refine H;Refine H2;



Refine sn_M;

Save SHd;

Goal {M,N|Tm}(SN (app M N)) -> (SN M);

Intros;

Claim {MN|Tm} (SN ME)->{M,N|Tm}(EQ ME (app M N)) -> (SH M);
Refine 7+1;Next +1;Refine H;Next +1;Refine EQ_refl;
Refine RecSNN [MN|Tm]{M,N|Tm}(EQ MN (app M H))->SH M;
intros;Refine SNi;intros;Refine H2;

Hext +1;Refine EQ_rewrite’ H3 ([M:Tm]Step M 7+1);

Refine app_1;Next +1;Refine H4;Next +1;Refine EQ_refl;

Save SNapp;

Goal {M|Tm}{n:Nat}(SN (substO M (var n)))->(SN M);

intros;

Refine RecSHN [M’:Tm]{M:Tm}(EQ M’ (substO M (var n)))->(SH M);
intros;Refine SNi;intros;Refine H2;Next +2;Refine EQ_refl;
Refine EQ_rewrite’ H3 ([X:Tm]Step X ?);Refine step_subst;
Refine H4;

(%)

Hext +1;Refine H;Refine EQ_refl;

Save Slvar;

(*

** Definition of Candidates

*)

[neutr[M:Tm] = {M’:Tm}not (EQ (lam M’) M)];

[P:Tm -> Set]

[CR1 = {M|Tm}(P M)->(SH M)]
[CR2 = {M|Tm}(P M)->{H:Tm}(Step M I)->(P H)]
[CR3 = {M|Tm}(neutr M)->

({H:Tm}(Step M M) ->(P M)->(P M)]
[CR = CR1 /\ CR2 /\ CR3];

Discharge P;

(*

** Candidates contain all variables

*)

Goal {P:Tm->Set}(CR P)->{i:Nat}P (var i);

Intros;



Refine snd (snd H);

(* neutral *)

Refine neq_var_lam;

(* is in nf *)

Intros;Refine nf_var;Next +2;Refine Hi;

Save CR_nonEmpty;

(*

** SN is a candidate
*)

Goal CR SH;

andI;

Intros;Immed;

andI;

Intros;Refine SNd;Immed;
Intros;Refine SNi;Refine H1;

Save CR_SH;

(*
*#* ARR preserves candidates

*)

[ARR[P,R:Tm->Set] = [M:Tm]{N:Tm}(P H)->(R (app M N))];

Goal {P,R:Tm->Set}(CR P)->(CR R)->(CR (ARR P R));

intros P R CR_P CR_R;andI;

(* CR1 *)

Intros M H;Refine SNapp;Refine var zero;

Refine fst CR_R;Refine H;Refine CR_nonEmpty;Refine CR_P;
andI;

(* CR2 *)

Intros M H1 N H2 N1 H3;

Refine fst (snd CR_R);Next +2;Refine app_l;Next +1;Refine H2;
Refine H1;Refine H3;

(* CR3 *)

Intros M nM Hyp N P_N;

Refine snd(snd CR_R);

Intros _;Refine neq_lam_app;

Claim (P N)->{L:Tm}(Step (app M H) L)->(R L);

Refine 7+1;Refine P_N;

Refine RecSNN [N:Tm] (P N)->{L:Tm}(Step (app M H) L)->R L;
intros N’ _ IH P_N’ L Hi;

Claim {MN’:Tm}(EQ MN’ (app M N’))->(R L);

Refine 7+1;Next +1;Refine EQ_refl;Intros MN’ EQ_MN’;



Refine RecStepN [MN’,L:Tm](EQ MN’ (app M N’))->R L;
(* impossible *)

intros;Refine inj_app;Next +4;Refine H2;intros;Refine nM;
Hext +1;Refine H3;

(* M was reduced *)

intros;Refine inj_app;Next +4;Refine H4;intros;
Refine Hyp;

Refine EQ_rewrite H5 ([M:Tm]Step M M’);Refine H2;
Refine EQ_rewrite’ H6 P;Refine P_N’;

(* I was reduced *)

intros;Refine inj_app;Next +4;Refine H4;intros;
Refine snd (snd CR_R);Intros _;Refine neq_lam_app;
intros;Refine IH;Refine M’;Refine EQ_rewrite H6 ([N’:Tm]Step N’ M’);
Refine H2;Refine fst(snd CR_P) ;Refine N’;Refine P_N’;

Refine EQ_rewrite H6 ([N’:Tm]Step N’ M’);Refine H2;

Refine EQ_rewrite H5 ([M:Tm]Step (app M M’) N2);Refine H7;

(* impossible *)

intros;Refine neq_lam_app;Next +3;Refine H4;

(* end of cases *)

Next +1;Refine Hl;Refine EQ_refl;

(+ ST W *)

Refine fst (CR_P); Refine P_N;

Save CR_ARR;

(*
** Soundness of Lam

*)

Goal {P,R:Tm->Set}(CR P)->(CR R)->{M:Tm}
({W:Tm}(P W)->(R (substO M N)))
->(ARR P R (lam M));
Intros P R CR_LP CR_LRM HL P_L;
Refine RecSNN [M:Tm]{L:Tm}(P L)->
({N:Tm}(P H)->R (substO M N))->R (app (lam M) L);
intros M1 _ IH1 L1 P_L1 Hyp;
Refine RecSNN [L:Tm](P L)->(R (app (lam M1) L));
intros L2 _ IH2 P_L2;
(* Apply CR3 for R *)
Refine snd(snd CR_R);Intros _;Refine neq_lam_app;intros MM _;
(* Induction over Step *)
Refine RecStepN [lam_M1_L2,MM:Tm](EQ lam_M1_L2 (app (lam M1) L2))->(R MM);
(#* beta **)
intros M1’ L2’ _;Refine inj_app;Next +4;Refine H4;intros;
Refine EQ_rewrite’ ? ([X:Tm]R (substO X L2°));Next +1;

Refine inj_lam;Refine H5;Refine EQ_rewrite’ H6 ([X:Tm]R (substO M1 X));



Refine Hyp;Refine P_L2;
(** app_1 **)

intros lam_M1 lam_M1’ L3 ___;Refine inj_app;Next +4;Refine H6;intros;
Refine step_lam;Next +2;Refine EQ_rewrite H7 ([X:Tm]Step X ?+2);Refine H4;
intros M1’ _;Refine H9;intros;

Refine EQ_rewrite’ H11 ([X:Tm]R (app X L3));

Refine IH1;Refine H10;Refine EQ_rewrite’ H8 P;Refine P_L2;

intros;Refine fst (snd CR_R);Next +2;Refine step_subst;Next +1;Refine H10;
Refine Hyp;Refine H12;

(** app_r **)

intros L3 L3’ lam_M2

;Refine inj_app;Next +4;Refine H6;intros;
Refine EQ_rewrite’ H7 ([X:Tm]R (app X L37));

Refine IH2;

Next +1;Refine fst (snd CR_P);Next +1;Refine P_L2;Refine 7+1;
Refine EQ_rewrite H8 ([X:Tm]Step X L3’);Refine H4;

(** xi - impossible **)

intros;Refine neq_lam_app;Next +3;Refine H6;

(*x END of CASES *x*)

Hext +1; Refine H3; Refine EQ_refl;

Refine fst CR_P;Immed;

(* SN_M *) Refine SHvar zero;Refine fst CR_R;Refine H;Refine CR_nonEmpty;
Immed;

Save Lam_sound;

[PI[F:(Tm->Set)->(Tm->Set)] =

[M:Tm]{P:Tm->Set}(CR P)->(F P M)];

Goal {F:(Tm->Set)->(Tm->Set)}
({P:Tm->Set}(CR P)->(CR (F P)))
-> (CR (PI F));
intros;andl;
(* CR1 *) Intros;Refine (fst (H ? ?));Refine SN;Next +1;Refine Hi;
Refine 7+1;Refine CR_SH;
andI;
(* CR2 *) Intros;Refine (fst (snd (H P H3)));Next +1;Refine H1;Immed;
(* CR3 *) Intros;Refine (snd (snd (H P H3)));Refine H1;intros;Refine H2;
Immed;

Save CR_PI;



B.6. simple.l

(*
** simply typed \lambda calculus
*)

(*
** Types
*)

(* mu[Ty:Set](ty0 : Ty, arr : Ty -> Ty -> Ty) *)

[Ty : Set]
[tyo : Tyl
[arr : Ty -> Ty -> Tyl;
[RecTy : {P:Ty->Type}(P ty0) ->
({s:Ty}(P s)->{t:Ty}(P t) -> (P (arr s t)))
-> ({s:Ty}P s)]1;

[[P:Ty->Typel [f0:P tyO]l [f1:{s:Ty}(P s)->{t:Ty}(P t) -> (P (arr s t))]
[s,t:Ty]

RecTy P £0 f1 ty0 ==> O
|| RecTy P fO f1 (arr s t) ==> f1 s (RecTy P fO f1 s)

t (RecTy P fO f1 t)];

[RecTyN[P|Typel = RecTy ([_:TylP)

: P->(Ty->P->Ty->P->P)->Ty->P];

(*
** Contexts

*)

[Con = Vec Tyl

[empty = v_nil Ty : Con zero];

(*
** Derivations

*)

(* mu[Der:{n|Nat}(Con n)->Tm->Ty->Set](
Var : {n|Nat}{G:Con n}{i:Fin n}
Der G (var (Fin2Nat i)) (v_nth i G)
App : {n|Wat}{G|Con n}{s,t|Ty}{M,N|Tm}
(Der G M (arr s t))

-> (Der G W s)



-> (Der G (app M H) t)

Lam : {n|Nat}{G|Con n}{s,t|Ty}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))

*)

$[Der : {n|Wat}(Con n)->Tm->Ty->Set]
$[Var : {n|Nat}{G:Con n}{i:Fin n}
Der G (var (Fin2§at i)) (v_nth i G)]
$[App : {nlNat}{G|Con n}{s,t|Ty}{M,N|Tm}
(Der G M (arr s t))
-> (Der G N s)
-> (Der G (app M N) t)]
$[Lam : {n|Nat}{G|Con n}{s,t|Ty}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))]
$[RecDer : {P:{n|Nat}{G|Con n}{M|Tm}{s|Ty}(Der G M s)->Type}
({n|Nat}{G:Con n}{i:Fin n}P (Var G i))
-> ({n|Wat}{G|Con n}{s,t|Ty}{M,N|Tm}
{di:Der G M (arr s t)}(P d1)
-> {d2:Der G N s}(P d2)
-> P (App di d2))
-> ({n|Wat}{G|Con n}{s,t|Ty}{M|Tm}
{d:Der (v_cons s G) M t}(P d)
-> P (Lam d))

-> {n|Nat}{G|Con n}{M|Tm}{s|Ty}{d:Der G M s}P d];

[[P:{n|Nat}{G[Con n}{M|Tm}{s|Ty}(Der G M s)->Typel
[Var_ : {n|Nat}{G:Con n}{i:Fin n}P (Var G i)]
[App_ : {n|Wat}{G|Con n}{s,t|Ty}{M,N|Tm}

{d1:Der G M (arr s t)}(P d1)
-> {d2:Der G W s}(P d2)
-> P (App d1 d2)]
[Lam_ : {n|Nat}{GICon n}{s,t|Ty}{M|Tm}
{d:Der (v_cons s G) M t}(P d)
-> P (Lam d)]
[n:Nat][G:Con n][M,N|Tm][s,t:Ty][i:Fin n]J[d1:Der G M (arr s t)]
[d2:Der G B s][d:Der (v_cons s G) M t]
RecDer P Var_ App_ Lam_ (Var G i) ==> (Var_ G i)
|| RecDer P Var_ App_ Lam_ (App di d2) ==>
App_ d1 (RecDer P Var_ App_ Lam_ d1)
d2 (RecDer P Var_ App_ Lam_ d2)
|| RecDer P Var_ App_ Lam_ (Lam d) ==>

Lam_ d (RecDer P Var_ App_ Lam_ d)];



[RecDerH[P:{n|Nat}(Con n)->Tm->Ty->Type] =
RecDer [n|Nat][GlCon n][M|Tm][s|Ty]l[_:Der G M s]P G M s

: ({n|Nat}{G:Con n}{i:Fin n}P G (var (Fin2Wat i)) (v_nth i G))

->({n|Nat}{G|Con n}{s,t|Ty}{M,N|Tm}(Der G M (arr s t))->(P G M (arr s t))
->(Der G 0 s)->(P G N s)->P G (app M N) t)

->({n|Nat}{G|Con n}{s,t|Ty}{M|Tm}(Der (v_cons s G) M t)->(P (v_cons s G) M t)
->P G (lam M) (arr s t))

->{n|Nat}{G|Con n}{M|Tm}{s|Ty}(Der G M s)->P G M s

1;



B.7. sn-simple.l

(*
*k
** Strong normalization for simply typed lambda calculus

* %k

*)

(*
*#* Interpretation of types

*)
(* Int : Ty->(Tm->Set)

rec Int ty0 = SN
| Int (arr s t) = ARR (Int s) (Int t)

*)

[Int = RecTyN SN

([_:Tyl[Int_s:Tm->Set][_:Ty]l[Int_t:Tm->Set]JARR Int_s Int_t)];

Goal {t:Ty}CR (Int t);

Refine RecTy [t:Ty]CR (Int t);
Refine CR_SH;

intros;Refine CR_ARR; Immed;

Save CR_Int;

(*
** Interpretation of judgements

*)
(* Mod : {n|Nat}(Con n)->Tm->Ty->Set

rec Mod zero empty M T = (Int T) M
| Mod (succ n) (v_cons S G) M T =

{H:Tm}(Int S W)->(Mod G (substO M (rep_weakO N n) T)
*)

[Mod[n|Nat][G:Con n][M:Tm][T:Ty] =
RecVeclll
([M:Tm] (Int T) M)
([$:Ty][n|Nat][G:Con n][Mod_G:Tm->Prop]
[M:Tm] {N:Tm}(Int S N)->(Mod_G (substO M (rep_weakO N n))))

G MI1;



(*
** Soundness

*)

Goal {n|Nat}{G|Con n}{M|Tm}{T|Ty}(Der G M T)->(Mod G M T);
intros;
Refine RecDerN [n|Nat][G:Con n][M|Tm][T|TylMod G M T;
(kkx Var *¥*)
intros;
Refine RecFin [n|Nat][i:Fin n]{G:Con n}Mod G (var (Fin2Nat i)) (v_nth i G);
(* var zero *)
Refine RecVecSucc [n:Nat][G:Con (succ n)]Mod G (var zero) (v_hd G);
Intros S n2 G2 N S_N;
Refine RecVec [n2|Nat][G2 : Vec Ty n2]Mod G2 (rep_weakO N n2) S;
Intros; Refine S_N;
Intros;Refine EQ_rewrite’ ? ([M:Tm]Mod 1 M S);
Hext +1;Refine subst_weak_lem zero; Refine H1;
(* var (succ i) *)
intros;
Refine RecVecl [G2 : Con (succ n2)]
Mod G2 (var (Fin2Nat (f_succ m))) (v_nth (f_succ m) G2);
Intros;Refine Hi;
(*%* App ***)
intros;
Refine RecVec [n|Nat][G1:Con n]
{M1,H:Tm}(Mod G1 M1 (arr s t))->(Mod G1 N s)->Mod G1 (app M1 W) t;
(* G = empty *)
intros;Refine H5;Refine H6;
(¥ G = S::G? *)
Intros S m G’ _______ ;Refine H5;Refine H6;Refine H8;Refine H7;Refine HS;
Immed;
(kk*x Lam *%%)
intros;
Refine RecVec [ni|Nat][G1l:Con ni]
{M1:Tm} (Mod (v_cons s G1) M1 t)->(Mod G1 (lam M1) (arr s t));
(* G = empty *)
intros;Refine Lam_sound;Refine CR_Int;Refine CR_Int;Refine H3;
(¥ G = S::G? *)
Intros;Refine H3;Intros;
Equiv
Mod 1 (substO (subst (succ zero) Mil (rep_weakO N n2)) (rep_weakO N1 n2)) t;
Refine EQ_rewrite’ 7 ([M:Tm]Mod 1 M t);Next +1;
Refine subst_subst_lem zero; Refine H4; Immed;

(* END of CASES *)



Immed ; Immed;

Save Int_sound;

(*
** Strong Normalisation

*)

Goal {n|Nat}{G|Con n}{M|Tm}{T|Ty}(Der G M T)->(SN M);

intros;

Claim (Mod G M T)->(SH M) ;Refine 7+1;Refine Int_sound;Immed;
Refine RecVec [n|Nat][G:Con n]{M:Tm}(Mod G M T)->(SN M);

(* G = empty *)

intros;Claim CR (Int T);Refine fst 7+1;Refine H1;Refine CR_Int;
(¥ G = S::G? *)

intros S m G’ ___;
Refine SHvar m; Refine EQ_rewrite ? [X:Tm]SH (substO M1 X);
Next +1;Refine rep_weakO_lem;

Refine H1l;Refine H2;Refine CR_nonEmpty;Refine CR_Int;

Save snorm;



B.8. f.1

(*
** System F

*)

(* mu[Ty:Nat->Set](t_var : {n|Nat}(Fin n) -> (Ty n),
arr : {n|Wat}(Ty n) -> (Ty n) -> (Ty n),
pi : {n|¥at}(Ty (succ n)) -> (Ty n) )
*)

$[Ty : Nat -> Set]
$[t_var : {n|Nat}(Fin n) -> (Ty n)]
$[arr : {n|Nat}(Ty n) -> (Ty n) -> (Ty n)]

$[pi : {n|Wat}(Ty (succ n)) -> (Ty n)];

$[RecTy : {P:{n|Nat}(Ty n)->Type}
({n|Wat}{p:Fin n} P (t_var p))
-> ({n|Nat}{M:Ty n}(P M) -> {H:Ty n}(P B) -> (P (arr H I)))
=> ({n|¥at}{M:Ty (succ n)}(P M) -> (P (pi M)))

-> {n|Nat}{M:Ty n}P M];

[[P:{n|Nat}(Ty n)->Type]

[f0:{n|Nat}{p:Fin n} P (t_var p)]

[f1:{n|Nat}{M:Ty n}(P M) -> {H:Ty n}(P H) -> (P (arr M H))]

[£2:{n|Nat}{M: Ty (succ n)}(P M) -> (P (pi M))]

[n:¥at][p:Fin n][M,N:Ty n][0:Ty (succ n)]

RecTy P fO f1 f2 (t_var p) ==> f0 p

|| RecTy P £fO f1 £2 (arr M ) ==> f1 M (RecTy P fO f1 £2 M)
H (RecTy P £O f1 £2 W)

|| RecTy P £fO £1 £2 (pi 0) ==> £2 0 (RecTy P f0 f1 £2 0)];

[RecTyN [P:Nat->Typel = RecTy ([n|Nat]l[_:Ty nlP n)
: ({n|Nat}(Fin n)->P n)

->({n|Fat}(Ty n)->(P n)->(Ty n)->(P n)->P n)
->({{n|Nat}(Ty (succ n))->(P (succ n))->P n)

->{n|Nat}(Ty n)->P n];

(*
** Special recursors for Ty

*)

Goal A{n:Nat}{P:{l:Nat}(Ty (add 1 n))->Set}
({1:Nat}{p:Fin (add 1 n)} P 1 (t_var p))

-> ({1:Fat}{M:Ty (add 1 m)}(P 1 M)



-> {N:Ty (add 1 n)}(P 1 W)
-> (P 1 (arr M D))
-> ({1:Nat}{M:Ty (succ (add 1 n))}(P (succ 1) M)
=> (P 1 (pi M)))
-> {1:Nat}{M:Ty (add 1 n)}P 1 M;
intros;
Claim {1’ |Nat}{M’:Ty 1°}{1:Nat}{q:EQ 1’ (add 1 n)}
P 1 (EQ_rewrite q Ty M’);
Refine 7+1 M 1 (EQ_refl 7);
Refine RecTy [1’|Nat][M’:Ty 1°J{1:Nat}{q:EQ 1’ (add 1 n)}
P 1 (EQ_rewrite q Ty M’);
(* t_var *)
intros;
Refine RecEQ1 (add 11 n)
[n1:Nat][q:EQ n1 (add 11 n)]
{p:Fin n1}P 11 (EQ_rewrite q Ty (t_var p));
Refine H;
(* arr *)
intros;
Refine RecEQ1 (add 11 n)
[n1:¥at][q:EQ n1 (add 11 n)]
{M1:Ty n1}(P 11 (EQ_rewrite q Ty M1))
-> {N:Ty n1}(P 11 (EQ_rewrite q Ty N))
-> (P 11 (EQ_rewrite q Ty (arr M1 N)));
Refine Hi;
Refine H3;Refine H4;
(* pi *)
intros;
Refine RecEQ1 (add 11 n)
[n1:¥at][q:EQ n1 (add 11 n)]
{M1 : Ty (succ n1)}(P (succ 11) (EQ_rewrite (EQ_resp succ q) Ty M1))
-> P 11 (EQ_rewrite q Ty (pi M1));
Refine H2;
Refine H3 (succ 11) (EQ_resp succ q);

Save RecTyl;

[RecTyiN [n:Nat][P:Nat->Set] = RecTyl n ([1:Nat][_:Ty (add 1 n)IP 1)
({1:Wat}(Fin (add 1 n))->P 1)

->({1:Fat}(Ty (add 1 n))->(P 1)->(Ty (add 1 n))->(P 1)->P 1)

->({1:Hat}(Ty (succ (add 1 n)))->(P (succ 1))->P 1)

->{1:Nat}(Ty (add 1 n))->P 1];

Goal A{n:Nat}{P:{1:Nat}(Ty (succ (add 1 n)))->Set}
({1:Nat}{p:Fin (succ (add 1 n))} P 1 (t_var p))

-> ({1:Nat}{M:Ty (add (succ 1) n)}(P 1 M)



-> {N:Ty (add (succ 1) n)}(P 1 I
-> (P 1 (arr M D))
-> ({1:¥at}{M:Ty (succ (succ (add 1 n)))}(P (succ 1) M)
=> (P 1 (pi M)))
-> {1:Nat}{M:Ty (succ (add 1 n))}P 1 M;
intros;
Claim {1’ |Nat}{M’:Ty 1°}{1:Nat}{q:EQ 1’ (succ (add 1 n))}
P 1 (EQ_rewrite q Ty M’);
Refine 7+1 M 1 (EQ_refl 7);
Refine RecTy [1’|Nat][M’:Ty 1°]1{1:Nat}{q:EQ 1’ (succ (add 1 n))}
P 1 (EQ_rewrite q Ty M’);
(* t_var *)
intros;
Refine RecEQ1 (succ (add 11 n))
[n1:Nat][q:EQ n1 (succ (add 11 n))]
{p:Fin n1}P 11 (EQ_rewrite q Ty (t_var p));
Refine H;
(* arr *)
intros;
Refine RecEQ1 (succ (add 11 n))
[n1:Nat][q:EQ n1 (succ (add 11 n))]
{M1:Ty n1}(P 11 (EQ_rewrite q Ty M1))
-> {N:Ty n1}(P 11 (EQ_rewrite q Ty N))
-> (P 11 (EQ_rewrite q Ty (arr M1 N)));
Refine Hi;
Refine H3;Refine H4;
(* pi *)
intros;
Refine RecEQ1 (succ (add 11 n))
[n1:Nat] [q:EQ n1 (succ (add 11 n))]
{M1 : Ty (succ n1)}(P (succ 11) (EQ_rewrite (EQ_resp succ q) Ty M1))
-> P 11 (EQ_rewrite q Ty (pi M1));
Refine H2;
Refine H3 (succ 11) (EQ_resp succ q);

Save RecTy2;

[RecTy2N [n:Nat][P:Nat->Set] = RecTy2 n ([1:Wat][_:Ty (succ (add 1 n))IP 1)
({1:Wat}(Fin (succ (add 1 n)))->P 1)

->({1:Wat}(Ty (add (succ 1) n))->(P 1)

->(Ty (add (succ 1) n))->(P 1)->P 1)

->({1:Hat}(Ty (succ (succ (add 1 n))))->(P (succ 1))->P 1)

->{1:Nat}(Ty (succ (add 1 n)))->P 1];

(*

** geakening & substitution for Types



*)

[n|mat];

(* t_weak_var : {1:FHat}(Fin (add 1 n))->(Fin (succ (add 1 n)))

rec t_weak_var zero i = (f_succ i)

| t_weak_var (succ 1) (f_zero (add 1 n)) = f_zero (succ (add 1 n))

| t_weak_var (succ 1) (f_succ i) = f_succ (t_weak_var 1 i)

*)

[t_weak_var
[P[1:Fat] = (Fin (add 1 n))->(Fin (succ (add 1 n)))]
Recllat P (f_succ|n)

([1:Nat][t_weak_var_1:P 1]
RecFinill (add 1 n)
(f_zero (succ (add 1 n)))
([i:Fin (add 1 n)]f_succ (t_weak_var_1 i)))

: {1:Nat}(Fin (add 1 n))->(Fin (succ (add 1 n)))];

(* t_weak : {1|FNat}(Tm (add 1 n))->(Ty (succ (add 1 n)))

rec t_weak 1 (t_var i) = t_var (t_weak_var 1 i)
| t_weak 1 (arr M N) = arr (t_weak 1 M) (t_weak 1 N)
| t_weak 1 (abs M) = pi (t_weak (succ 1) M)

*)

[t_weak =
[P[1:Hat] = Ty (succ (add 1 n))]
RecTyill n P
([1:Nat][i:Fin (add 1 n)]t_var (t_weak_var 1 i))
([1:Nat][_:Ty (add 1 n)][t_weak_M:P 1]
[_:Ty (add 1 n)][t_weak_N:P 1]arr t_weak_M t_weak_N)
([1:Nat][_:Ty (add (succ 1) n)][t_weak_M:P (succ 1)]pi t_weak_H)

{1|1Hat}(Ty (add 1 n))->Ty (succ (add 1 n))];

[t_weakO = t_weak]|zero

(Ty n) -> (Ty (succ n))];

DischargeKeep n;

(* t_subst_var : {1l:Nat}(Fin (add (succ 1) n))->(Ty n)->(Ty (add 1 n))

rec t_subst_var zero (f_zero (succ n)) =1



| t_subst_var zero (f_succ i) = (t_var i)
| t_subst_var (succ 1) (f_zero (add (succ 1) n)) =
t_var (f_zero (add 1 n))
| t_subst_var (succ 1) (f_succ i) = t_weakO (t_subst_var 1 i)

*)

[t_subst_var[1l:Nat][i:Fin (add (succ 1) n)][N:Ty n] =
[P[1:Wat] = (Fin (add (succ 1) n))->(Ty (add 1 n))]
Recllat P
(RecFinilN n ¥ (t_var|n))
([1:Nat][t_subst_var_1:P 1]
RecFinilN (add (succ 1) n)
(t_var (f_zero (add 1 n)))
([i:Fin (add (succ 1) n)]t_weak0O (t_subst_var_1 i)))

11i];

(x t_subst : {1:Nat}(Ty (add (succ 1) n))->(Ty n)->(Ty (add 1 n))

rec t_subst 1 (var i) = t_subst_t_var 1l i
| t_subst 1 (arr M1 M2) = arr (t_subst 1 M1) (t_subst 1 M2)
| t_subst 1 (abs M) = abs (t_subst (succ 1) M)

*)

[t_subst[1|Nat][M:Ty (add (succ 1) n)I[N:Ty n] =
[P[1:Wat] = Ty (add 1 n)]
RecTy2ll n P
([1:Nat][i:Fin (succ (add 1 n))]t_subst_var 1 i H)
([1:Wat][_:Ty (succ (add 1 n))][t_subst_M1:P 1]
[_:Ty (succ (add 1 n))][t_subst_M2:P 1]arr t_subst_M1 t_subst_H2)
([1:Fat][_:Ty (succ (add (succ 1) n))][t_subst_M:P (succ 1)]pi t_subst_M)
1M

: Ty (add 1 n)];

[t_substO = t_subst|zero : (Ty (succ n)) -> (Ty n) -> (Ty n)];

Discharge n;

(*

** Derivations

*)

[Con[m:Nat] = Vec (Ty m)];

(* mu[Der:{m,n|Nat}(Con m n)->Tm->(Ty m)->Set](

Var : {m,n|Nat}{G:Con m n}{i:Fin n}



Der G (var (Fin2§at i)) (v_nth i G)

App : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M,N|Tm}
(Der G M (arr s t))
-> (Der G N s)
-> (Der G (app M H) t)

Lam : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))

Pi_e: {m,n|Nat}{G|Con m n}{s:Ty (succ m)}{t:Ty m}{M|Tm}
(Der G M (pi s))
-> (Der G M (t_substO s t))

Pi_i: {m,n|Nat}{G|[Con m n}{s:Ty (succ m)}{M|Tm}
(Der (v_map t_weakO G) M s)
-> (Der G M (pi s)) )

*)

$[Der:{m,n|Hat}(Con m n)->Tm->(Ty m)->Set]
$[Var: {m,n|Nat}{G:Con m n}{i:Fin n}
Der G (var (Fin2§at i)) (v_nth i G)]
$[App : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M,N|Tm}
(Der G M (arr s t))
-> (Der G N s)
-> (Der G (app M H) t)]
$[Lam : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))]
$[Pi_e: {m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
(Der G M (pi s))
-> {t:Ty m}(Der G M (t_subst0 s t))]
$[Pi_i: {m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
(Der (v_map (t_weakO|m) G) M s)

-> (Der G M (pi s))];

$[RecDer : {P:{m,n|Wat}{G|Con m n}{M|Tm}{s|Ty m}(Der G M s)->Type}

({m,n|Nat}{G:Con m n}{i:Fin n}P (Var G i))

-> ({m,n|Nat}{G|Con m n}{s,t|Ty m}{M,N|Tm}
{di:Der G M (arr s t)}(P d1)
-> {d2:Der G N s}(P d2)
-> P (App di d2))

-> ({m,n|Nat}{GICon m n}{s,t|Ty m}{M|Tm}
{d:Der (v_cons s G) M t}(P d)
-> P (Lam d))

-> ({m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
{d:Der G M (pi s)}(P d)

=> {t:Ty m}P (Pi_e d t))



-> ({m,n|Hat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
{d:Der (v_map (t_weakO|m) G) M s}(P d)
->P (Pi_i d))

-> {m,n|Nat}{G|Con m n}{M|Tm}{s|Ty m}{d:Der G M s}P d];

[RecDerN [P:{m,n|Nat}(Con m n)->Tm->(Ty m)->Typel =
RecDer [m,n|Nat][G:Con m n][M:Tm][s:Ty m]J[_:Der G M s]JP G M s
({m,n|Nat}{G:Con m n}{i:Fin n}P G (var (Fin2WNat i)) (v_nth i G))

->({m,n|Nat}{G|Con m n}{s,t|Ty m}{M,H|Tm}(Der G M (arr s t))

->(P G M (arr s t))->(Der G N s)->(P G § s)->P G (app M W) t)
->({m,n|Nat}{G|Con m n}{s,t|Ty m}{M|Tm}(Der (v_cons s G) M t)

->(P (v_cons s G) M t)->P G (lam M) (arr s t))->
({m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}(Der G M (pi s))

->(P G M (pi s))->{t:Ty m}P G M (t_subst0 s t))
=>({m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}(Der (v_map (t_weakOlm) G) M s)

->(P (v_map (t_weakO|m) G) M s)->P G M (pi s))

->{m,n|Nat}{G|Con m n}{M|Tm}{s|Ty m}(Der G M s)->P G M s];

[[P:{m,n|Nat}{G|Con m n}{M|Tm}{s|Ty m}(Der G M s)->Typel
[Var_:{m,n|Nat}{G:Con m n}{i:Fin n}P (Var G i)]
[App_:{m,n|Nat}{GICon m n}{s,t|Ty m}{M,N|Tm}

{d1:Der G M (arr s t)}(P d1)
-> {d2:Der G W s}(P d2)
-> P (App d1 d2)]
[Lam_:{m,n|Nat}{GICon m n}{s,t|Ty m}{M|Tm}
{d:Der (v_cons s G) M t}(P d)
-> P (Lam d)]
[Pi_e_:{m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
{d:Der G M (pi s)}(P d)
=> {t:Ty m}P (Pi_e d t)]
[Pi_i_:{m,n|Nat}{G|Con m n}{s|Ty (succ m)}{M|Tm}
{d:Der (v_map (t_weakO|m) G) M s}(P d)
-> P (Pi_i d)]
[m,n|Nat][G:Con m n][i:Fin n][s,t:Ty m][s’:Ty (succ m)][M,N|Tm]
[di:Der G M (arr s t)][d2:Der G N s][d3:Der (v_cons s G) M t]
[d4:Der G M (pi s’)][d5:Der (v_map (t_weakO|m) G) M s’]
RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ (Var G i) ==> Var_ G i
|| RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ (App dil d2) ==
App_ d1 (RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ d1)
d2 (RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ d2)
|| RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ (Lam d3) ==
Lam_ d3 (RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ d3)
|| RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ (Pi_e d4 t) ==
Pi_e_ d4 (RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ d4) t

|| RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ (Pi_i d5) ==



Pi_i_ d5 (RecDer P Var_ App_ Lam_ Pi_e_ Pi_i_ d5)



B.9. sn-f.1

(*
*k

** Strong normalization for System F

*k
*)
(*
*#* Interpretation of types
*)

(* Int : {m|Nat}(Ty m)->(VEC (Tm->Set) m)->(Tm->Set)

rec Int m (t_var i) = [v:VEC (Tm->Set) m]V_nth i v

| Int m (arr s t) [v:VEC (Tm->Set) m]ARR (Int s v) (Int t v)

| Int m (pi t)

*)

[v:VEC (Tm->Set) m]PI [P:Tm->Set]lInt t (V_cons P v)

[Int = RecTyN ([m:Nat](VEC (Tm->Set) m)->(Tm->Set))
([m|Nat] [i:Fin m]
[v:VEC (Tm->Set) m]V_nth i v)
([m|Wat] [s:Ty m] [Int_s: (VEC (Tm->Set) m)->(Tm->Set)]
[t:Ty m][Int_t:(VEC (Tm->Set) m)->(Tm->Set)]
[v:VEC (Tm->Set) m]JARR (Int_s v) (Int_t v))
([m|¥at][t:Ty (succ m)][Int_t:(VEC (Tm->Set) (succ m))->(Tm->Set)]

[v:VEC (Tm->Set) m]PI [P:Tm->Set]Int_t (V_cons P v))];

Goal {m|Nat}{t:Ty m}{v:VEC (Tm->Set) m}
({i:Fin m}CR (V_nth i v))
=> (CR (Int t v));
Refine RecTy ([m|Nat][t:Ty m]{v:VEC (Tm->Set) m}
({i:Fin m}CR (V_nth i v))
=> (CR (Int t v)));
(* t_var *) intros;Refine H;
(* arr s t *) intros;Refine CR_ARR;Refine H;Refine H2;
Refine H1;Refine H2;
(* t_pi t *) intros;Refine CR_PI;intros;Refine H;
Refine RecFinl [i:Fin (succ n)]JCR (V_nth i (V_cons P v));
Refine H2;Refine H1;

Save CR_Int;

(*
** Correctness of weakening and substitution

*)



Goal {m,l:Nat}{t:Ty (add 1 m)}{v1:VEC (Tm->Set) 1}{v2:VEC (Tm->Set) m}
{M:Tm}{P:Tm->Set}
iff (Int t (V_append v1 v2) M)
(Int (t_weak t) (V_insert vl P v2) M);
intros m;
Refine RecTyl m [1:Nat][t:Ty (add 1 m)]
{v1:VEC (Tm->Set) 1}{v2:VEC (Tm->Set) m}{M:Tm}{P:Tm->Set}
iff (Int t (V_append v1 v2) M)
(Int (t_weak t) (V_insert vl P v2) M);
(kk* t_var *¥*)
intros;
Refine RecVEC [1|Nat][v1:VEC (Tm->Set) 1]
{p:Fin (add 1 m)}
iff (Int (t_var p) (V_append vi v2) M) (Int (t_weak (t_var p))
(V_insert vi P v2) M);
(%% v1 = V_nil **)
intros;Refine iff_refl;
(** V_cons R vl **)
intros R 1 v IH;
Refine RecFinl [p:Fin (add (succ 11) m)]
iff (Int (t_var p) (V_append (V_cons R v) v2) M)
(Int (t_weak (t_var p)) (V_insert (V_cons R v) P v2) M);
(* p=f_zero *) Refine iff_refl;
(¥ f_succ pl *) intros pl;Refine IH;
(kk* arr *¥*)
intros 1 s IH_s t IH_t vl v2 M1 P;andI;
(k% fst *%)
Intros;Refine fst (IH_t 7 ? 7 7);Refine H;Refine snd (IH_s 7 ? 7 7);Next +1;
Refine Hi;
(#* snd **)
Intros;Refine snd (IH_t 7 ? 7 ?7);Next +1;Refine H;Refine fst (IH_s 7 7 7 7);
Refine Hi;
(*k* pi *%*)
intros 1 s IH_s ____;andl;
(k% fst *%)
intros;Equiv Int (pi (t_weaklm|(succ 1) s)) (V_insert vi P v2) M;
Intros;Equiv Int (t_weak|m|(succ 1) s) (V_insert (V_cons P1 v1) P v2) M;
Refine fst (IH_s ? 7 7 7);Refine H;Refine H1;
(#* snd **)
Intros;Equiv Int s (V_cons P1 (V_append vi v2)) M;
Refine snd (IH_s (V_cons P1 v1) ? 7 7);Hext +1;Refine H;Refine H1;

Save t_weak_lem;

Goal {m|Nat}{t:Ty m}{v:VEC (Tm->Set) m}{M:Tm}



(Int t v M)->
{P:Tm->Set}Int (t_weakO t) (V_cons P v) M;
intros;Refine fst (t_weak_lem ? ? ? (V_nil (Tm->Set)) ? ? 7);Immed;

Save t_weak_ok;

Goal {m,1:Nat}{s:Ty (succ (add 1 m))}{t:Ty m}
{v1:VEC (Tm->Set) 1}{v2:VEC (Tm->Set) m}{M:Tm}
iff (Int s (V_insert vi (Int t v2) v2) M)
(Int (t_subst s t) (V_append vl v2) M);
intros m;
Refine RecTy2 m [1:Nat][s:Ty (succ (add 1 m))]
{t:Ty m}{v1:VEC (Tm->Set) 1}{v2:VEC (Tm->Set) m}{M:Tm}
iff (Int s (V_insert vi (Int t v2) v2) M)
(Int (t_subst s t) (V_append vi v2) M);
(kk* t_var *¥k)
intros;
Refine RecVEC [1|Nat][v1:VEC (Tm->Set) 1]
{p:Fin (succ (add 1 m))}
iff (Int (t_var p) (V_imsert vi (Int t v2) v2) M)
(Int (t_subst (t_var p) t) (V_append vi v2) M);
(*x v1 = V_nil *x)
Refine RecFinl [p:Fin (succ (add zero m))]
iff (Int (t_var p) (V_cons (Int t v2) v2) M)
(Int (t_subst (t_var p) t) v2 M);
(* p =f_zero *) Refine iff_refl;
(¥ f_succ p *) intros; Refine iff_refl;
(** V_cons R v **)
intros R 1 v IH;
Refine RecFinl [p:Fin (succ (add (succ 11) m))]
iff (Int (t_var p) (V_insert (V_cons R v) (Int t v2) v2) M)
(Int (t_subst (t_var p) t) (V_append (V_cons R v) v2) M);
(* p=f_zero *) Refine iff_refl;
(* f_succ pl *) intros pi;
Refine iff_trans;Next +2;Refine t_weak_lem ? ? ? (V_nil (Tm->Set)) ? 7 7?;
Refine IH;
(kk* arr *¥*)
intros 1 s IH_s t IH_t vl v2 M1 P;andl;
(k% fst *%)
Intros;Refine fst (IH_t ? ? 7 ?7);Refine H;Refine snd (IH_s ? ? 7 ?);Refine Hi;
(#* snd **)
Intros;Refine snd (IH_t 7 ? 7 ?7);Refine H;Refine fst (IH_s 7 ? 7 7);
Refine Hi;
(k% pi *%x)
intros 1 s IH_s ____;andl;

(**k fst **)



Intros;Equiv Int (t_subst|m|(succ 1) s t) (V_cons P (V_append vl v2)) M;
Refine fst (IH_s ? (V_cons P v1) 7 7);;

Refine H;Refine Hi;

(#* snd **)

Intros;Refine snd (IH_s 7 (V_cons P v1) ? 7);Refine H;Refine H1;

Save t_subst_lem;

Goal {m|Nat}{s:Ty (succ m)}{t:Ty m}{v:VEC (Tm->Set) m}{M:Tm}
(Int s (V_cons (Int t v) v) M)
-> (Int (t_substO s t) v M);
intros;Refine fst (t_subst_lem 7 7 ? 7 (V_nil Tm->Set) 7 7);Immed;

Save t_subst_ok;
(%
** Interpretation of judgements

*)

(* Mod : {m,n|Nat}(Con m n)->Tm->(Ty m)->(VEC (Tm->Set) m)->Set

rec Mod m zero empty MTv Int T v M

| Mod m (succ n) (v_cons S G) M T v

{H:Tm}(Int S v I)->(Mod G (substO M (rep_weakO Il n)) T v)

*)

[Mod[m,n|Nat][G:Con m n][M:Tm] [T:Ty m][v:VEC (Tm->Set) m] =
RecVecHN
([M:Tm]Int T v M)
([S:Ty m][n|Nat][G:Con m n][Mod_G:Tm->Set]
[M:Tm]{N:Tr}(Int S v N)
->(Mod_G (substO M (rep_weakO N n))))

G M];

*)
(*
** Soundness

*)

Goal {m,n|Nat}{G|Con m n}{M|Tm}{T|Ty m}(Der G M T)->
{v:VEC (Tm->Set) m}({i:Fin m}CR (V_nth i v))
=> (Mod G M T v);
intros;
Refine RecDerHN [m,n|Nat][G:Con m n][M|Tm][T|Ty m]
{v:VEC (Tm->Set) m}({i:Fin m}CR (V_nth i v)) -> (Mod G M T v);

(k%% Var ***)



intros;
Refine RecFin [n|Nat][i:Fin n]{G1:Con ml n}

Mod G1 (var (Fin2Nat i)) (v_nth i G1) vi;
(* var zero *)
Refine RecVecSucc [n:Nat][Gl:Con m1 (succ n)]

Mod G1 (var zero) (v_hd G1) vi;
Intros S n2 G2 N S_N;
Refine RecVec [n2|Nat][G2:Con m1 n2]Mod G2 (rep_weakO N n2) S vi;
Refine S_N;
Intros;Refine EQ_rewrite’ ? ([M:Tm]Mod 1 M S v1);
Next +1;Refine subst_weak_lem zero;Refine H3;
(* var (succ i) *)
intros;
Refine RecVecl [G2 : Con mi (succ n2)]

Mod G2 (var (Fin2Nat (f_succ m2))) (v_nth (f_succ m2) G2) vi;
Intros;Refine H3;
(*%* App *¥*)
intros;
Refine RecVec [n|Nat][G1:Con mi n]

{M1,0:Tm}(Mod G1 M1 (arr s t) v1)->(Mod G1 H s v1)

->Mod G1 (app M1 N) t vi;

(* G = empty *)
intros;Refine H7;Refine HS;
(¥ G = S::G” *)
Intros;Refine H7;Refine H8;Refine H10;Refine H9;Refine H10;Refine H3;Refine H6;
Refine H5;Refine H6;
(kkx Lam *%%)
intros;
Refine RecVec [n1|Nat][G1:Con m1 ni]

{M1:Tm} (Mod (v_cons s G1) M1 t v1)->(Mod G1 (lam M1) (arr s t) vi);
(* G = empty *)
intros;Refine Lam_sound;Refine CR_Int;Refine H4;Refine CR_Int;Refine H4;
Refine H5;
(¥ G = S::G” *)
Intros;Refine H5;Intros;Refine EQ_rewrite’ 7 ([M:TmlMod 1 M t v1);Next +1;
Refine subst_subst_lem zero; Refine H6; Immed;Refine H3;Refine H4;
(kk*x Pi_e ***)
intros;
Refine RecVec [n1|Nat][G1l:Con m1 ni]

{M1:Tm} (Mod G1 M1 (pi s) v1) -> (Mod G1 M1 (t_substO s t) vi);
(* G = empty *)
intros;Refine t_subst_ok;Refine H5;Refine CR_Int;Refine H4;
(¥ G = S::G? *)
Intros;Refine H5;Refine H6;Refine H7;

(* *) Refine H3;Refine H4;



(kkx Pi_i %*%)
intros;
Refine RecVec [n1|Nat][G1l:Con m1 ni]
{M1:Tm}
({P:Tm->Set}(CR P) ->(Mod (v_map (t_weakO|ml) G1) M1 s (V_cons P v1)))
-> (Mod G1 M1 (pi s) v1);
(* G = empty *)
intros;Refine H5;
(¥ G = S::G? *)
Intros;Refine H5;intros;Refine H6;Refine H8;Refine t_weak_ok;Refine H7;
(* *) intros;Refine H3;
Refine RecFini[i:Fin (succ m1)]JCR (V_nth i (V_cons P v1));
Refine H5;
Refine H4;
(*x* END of CASES ***)
Immed;

Save Int_Sound;

(*
** Strong Normalisation

*)

[SN_m = RecHat ([m:Nat]VEC (Tm->Set) m)
(V_nil (Tm->Set))

([m:Wat] [v:VEC (Tm->Set) m]V_cons SH v)];

Goal {m:Nat}{i:Fin m}CR (V_nth i (SN_m m));

Refine ReclNat [m:Nat]{i:Fin m}CR (V_nth i (SN_m m));
Refine RecFinZero [i:Fin zero]CR (V_nth i (SN_m zero));
intros __;Refine RecFinl [i:Fin (succ n)JCR (V_nth i (SN_m (succ n)));

Refine CR_SN;Refine H;

Save CR_SN_m;

Goal {m,n|Nat}{G|Con m n}{M|Tm}{T[Ty m}(Der G M T)->(SN M);

intros;

Claim (Mod G M T (SH_m m))->(SH M);Refine ?+1;Refine Int_Sound;

Refine H;Refine CR_SHN_m;

Refine RecVec [n|Nat][G:Con m n]{M:Tm}(Mod G M T (SN_m m))->SH M;

(* G = empty *)

intros;Claim CR (Int T (SH_m m));Refine fst 7+1;Refine H1;Refine CR_Int;
Refine CR_SHN_m;

(¥ G =8::G” *)

intros S nl G’ ___;

Refine SHvar nl; Refine EQ_rewrite ? [X:Tm]SH (substO M1 X);

Next +1;Refine rep_weakO_lem;



Refine H1;Refine H2;Refine CR_nonEmpty;Refine CR_Int;Refine CR_SN_m;

Save snorm;
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