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Abstract

We introduce ITX, a core language for dependently typed program-
ming. Our intention is that ITX should play the role extensions of
System F are playing for conventional functional languages with
polymorphism, like Haskell. The core language incorporates mu-
tual dependent recursive definitions, Type : Type, I1- and X-types,
finite sets of labels and explicit constraints. We show that standard
constructions in dependently typed programming can be easily en-
coded in our language. We address some important issues: having
an equality checker which unfolds recursion only when needed,
avoiding looping when typechecking sensible programs; the sim-
plification of type checking for eliminators like case by using equa-
tional constraints, allowing the flexible use of case expressions
within dependently typed programming and the representation of
dependent datatypes using explicit constraints.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory

General Terms Dependent types, core language

Keywords Type theory, Type systems

1. Introduction

Functional programmers are beginning to discover the power of
dependent types (Aspinall and Hofmann 2005) — this is witnessed
by a recent surge of languages and systems. Some of them like
Agda (Norell 2007) and Epigram (McBride and McKinna 2004b)
are off-springs of implementations of Type Theory, others like
Q (Sheard 2006) and Ynot (Nanevski et al. 2006) are based on
functional programming, and a 3rd class of systems like ATS (Cui
et al. 2005) and Delphin (Poswolsky and Schiirmann 2007) are
inspired by the Logical Framework. Clearly there is the need for
consolidation in this area to enable people to share programs, ideas
and tools. The present paper attempts to contribute to this goal, by
proposing a very minimal core language, which, we hope, could
play a role for dependently typed programming as System F and
FS (F-sub) have played for ordinary functional programming.

We dub our language IIX so that its name already comprises
two of it’s most important type constructors II-types (dependent
function types) and X-types (dependent product types). Unlike most
systems based on Type Theory but like Augustsson’s early proposal
Cayenne (Augustsson 1998), our language has mutual, general
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recursion and hence is, without further restrictions, unsuitable as
a logical system. It is, after all, intended to be primarily a core
language for programming, not for reasoning. Apart from X- and
I1-types our language has only a few more, namely:

Type : Type This is the simplest choice, the most general form of
impredicative polymorphism possible. It is avoided in systems
used for reasoning because it destroys logical consistency. We
don’t care because we have lost consistency already by allowing
recursion.

Finite types A finite type is given by a collection of labels, e.g.
{true, false} to define the type of Booleans. Our labels are
a special class and can be reused, opening the scope for a
hereditary definition of subtyping.

Lifting We are using boxes to control the unfolding of recursion.
On the level of types this is reflected by a lifting operator on
types (—), which enables us to distinguish lazy and eager
datatypes. This is essential since both have different behaviours
for symbolic evaluation.

Constrained types We allow types to contain first order equational
constraints which are automatically handled by a constraint
solver complete for the first order part of our language. This
way we can encode most inductive families and dependent
pattern matching straightforwardly.

We haven’t included equality types, because most uses of equal-
ity types can be captured using constrained types - we will discuss
possible extensions in the conclusions. Our proposal doesn’t con-
tain any features related to implicit syntax and elaboration, which
are essential to make dependent types accessible to the program-
mer. However, this aspect is clearly a part of the translation of a
high level language into our core language and hence we will leave
it out.

Related work

We have already mentioned Augustsson’s Cayenne, so what are
the differences? First of all, since not intended as a core language,
Cayenne has already a number of high level features such as record
types, datatypes, pattern matching and implicit syntax. Unlike ITX’s
Type : Type Cayenne implements a hierarchy of universes to sup-
port phase distinction. | However, the main innovations of ITZ over
Cayenne are in the following areas:

Controlled unfolding of recursion Like for Cayenne, I1X’s type
checking problem is undecidable — a fate shared by any lan-
guage with full blown dependency and recursion. In practice,
this doesn’t matter as long as the type checker only diverges
due to the presence of non-terminating terms within types, be-
cause those programs should be rejected anyway. However, a
Cayenne compiler may loop on sensible programs, and used a

! Augustsson himself expressed doubts whether this was a good idea.
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heuristic approach to decide which recursive definitions to un-
fold. We replace this by a much more principled approach based
on boxed areas in types and contexts.

Local case expressions Cayenne only allows case-expressions
over variables, while other current systems introduce other re-
strictions, e.g. Epigram only supports top-level pattern match-
ing, while Coq’s Calculus of Inductive Constructions [CIC] (The
Coq Development Team 2008) requires an explicit using-clause
in many situations. These restrictions are a reflection of the dif-
ficulty to implement dependently typed eliminators: in each
branch you have to be able to exploit the fact that the scruti-
nee of the case equals the pattern. We offer a novel solution to
this problem by automatically exploiting equational constraints
generated by the eliminators for finite types and X-types.

Moreover Cayenne has equality types which can be used for ex-
plicit equality reasoning, while I1X uses constraints which while
less general, considerably reduces the amount of noise generated
by equational reasoning.

Implementation

A prototypical typechecker and evaluator for ITX has been imple-
mented in Haskell and is available from our web pages. The ex-
amples in this paper have been typechecked with this checker. We
discuss some aspects of the implementation in section 4.

A web interface to the implementation can be reached through:
http://www.cs.nott.ac.uk/ npo.

2. Using I1X

Since our language is a core language it is not primarily intended to
be used by humans. However, at least for small examples it is quite
possible to program directly in I1X and doing so is a good way to
introduce its features and to show how high level features would be
mapped into core language constructs.

2.1 Overview

We start with a quick overview of the language — the syntax is
given in figure 1 — we abuse notation by identifying metavariables
and syntactic classes. We assume as given an infinite supply of
labels L and variables x. We distinguish them by using roman font
for labels (e.g. true) and italic for variables (e.g. x). We define the
syntax of programs P and terms #,u and types ¢, 7. While there
is no formal difference between terms and types on the level of
syntax we use different metavariables to suggest the intended use.
Programs P are sequences of declarations (x : ¢) and, possibly
recursive, definitions x = ¢. Every name has to be declared before it
is used, and every declared name has to be eventually defined.

Our syntax for II-types (x : 0) — 7 is the same as used in Agda
and Cayenne, we also adopt the usual conventions that Axy — ¢ :=
Ax - Ay —rand that (x ¥:0) > 1:=(x:0)—> (J:0)— 1.
Non dependent function types arise when x does not appear in the
codomain type, in which case we write ¢ — 7 for (x: 6) — 7.

We write X-types as x : 0; T, brackets are not compulsory. The
combinator ; is right associative, i.e. we read x : 0;y : T;p as
x:0;(y:7;p). Elements of X-types are written as tuples (¢, u), and
corresponding to the right associativity of ; we adopt the convention
that (¢,u,v) := (¢, (u,v)). Tuples can be deconstructed using split
which corresponds to a special case of pattern matching using let in
languages like Haskell. We shall use split-patterns for n-ary tuples,
which is easily derivable from the binary case. As for I1-types we
omit the binder if the variable isn’t used, i.e. 0; 7 is a type of non-
dependent pairs.

Finite types, i.e. set of labels are written using set-theoretic no-
tation, e.g. Bool = {true, false } after declaring Bool : Type, and we
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P n€ empty program
x:t.P declaration
x=t.P definition

t,u,0,T X variables
Type type of all types
(x:0)—71 II-types
Ax —t A-abstraction
tu application
X:0;7T Y-types
(t,u) pairs
split (x,y) = rinu Y-elimination
{Li,Ly,...,Ly} finite types
L label

casetof{L; — 1 | Ly — 15 |

s | Ly =t} case expressions

| # impossible
(t=u)=o constrained type
x:olt=u explicit constraint
letPin¢ letrec
o lifting
7] box
It box opener

Figure 1: Syntax

have that true : Bool and false : Bool. We analyze elements of fi-
nite sets using case, e.g. given b: Bool we write if b then ¢ else u
as case b{true — t | false — u}, but note that our typing rule
is stronger than the conventional one because we add constraints
when analyzing #,u. Since our constraints may become inconsis-
tent, i.e. we may be able to derive true = false, we have a special
constant # for impossible, which has any type in an inconsistent
context.

We can also use explicit constraints, we write ( = p) = 0 to
denote elements of ¢ under the assumption that = p. Here p is
a left-linear pattern built from (unconstrained) variables, tupling
and labels. Dually we write x: o | 7 = p for elements of ¢ such
that the constraint # = p is satisfied . Clearly, in the presence of
equality types = could be encoded using — and | using ;. However,
the advantage of using = and | is that the constraints are used
silently without any noise in the term. The restriction in the form of
constraints is required to maintain (partial) decidability, it is subject
of further investigations to what degree they can be liberalized.

Programs can be local to a term (or type) using let. We control
the unfolding of recursive definitions using boxes [¢]. Definitions
from outside a box are not expanded inside. We write ¢, for the
type of boxes containing elements of . Boxes can be opened using
! which unfreezes the recursive definitions inside a box. We also
use a variant of case written case which boxes all its branches — the
precise definition will be given later.

Our implementation uses an ASCClfication of the syntax pre-
sented here, the details are available from the webpage.

2.2 Algebraic datatypes

The reader may have already noticed that we do not introduce any
constructs for algebraic datatypes. Indeed, this is not necessary,
because they can be encoded. We start with labeled sums, e.g. types
like Haskell’s Either can be represented as follows:

Either : Type — Type — Type
Either = AA B — [: {left,right };
case / of
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{left —A
| right — B}

The idea is that we represent elements of Either A B as a X type
whose first component is a label, i.e. an element of {left,right}
and the 2nd component is, depending on the first either A or B.
Combining this technique with recursion we can define recursive
types like the natural numbers, using the defined Unit-type:

Unit: Type

Unit = {unit}

Nat : Type
Nat = 1:{zero,succ };
case [ of

{ zero — Unit
| succ — Nar}

E.g. the number 3 is written as (succ,succ,succ,zero, unit) :
Nat. Using recursion again we can define addition recursively,
simulating pattern matching by combining split and case:

add : Nat — Nat — Nat
add = Amn — split (I,m') =m
in case / of
{zero —n
| succ — (succ,add m’ n)}

In the succ-branch of the case, we have to exploit the constraint
that / = succ to be able to deduce that m' : Nat.

We notice that both Nat and add are recursive definitions, we
don’t make any difference between recursion for programs and
types. However, the type checker has to symbolically evaluate
recursive definitions. How do we stop it to unfold Nat indefinitely?
Indeed, the same question arises in the case of add, which as we
will see soon, can also appear in types. The answer turns out to be
the same in both instances: we do not unfold recursion which goes
across case. We will refine this restriction later using a notion of
boxes, and case will turn out to be just an instance of this general
approach.

Parametric types like lists and polymorphic functions like ap-
pend are easily implemented by abstracting over Type:

List: Type — Type

List = AA — [:{nil,cons };

case [ of
{nil — Unit
| cons — (A;List A) }

append : (A:Type) — List A — List A — List A
append = AA as bs —
split (1, aas) = as
in case / of
{nil —bs
| cons — split (a,as”) = aas
in (cons, a,append A as’ bs) }

Similarly to the the add function, in the cons-branch of the case,
we have to exploit the constraint / = cons in order to check that aas
is in a X type. Indeed, the type of aas is a case expression on / and
knowing ! = cons allows to reduce it to (A; List A).

In our core language instantiation of a polymorphic function
like append is always explicit, e.g. we have to write append Nat ms ns
to apply append to lists of natural numbers. It is the task of the
elaborator, which translates high-level language expressions into
the core language to infer implicit arguments like the type A for
append. Unlike in conventional languages this inference is not lim-
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ited to the type of types but also applies to other types such as the
indices of vectors introduced in section 2.3.

n-ary addition

So far we have only emulated features already present in conven-
tional languages like Haskell. To give a flavour of the power of de-
pendency consider the following problem: we want to implement
n-ary addition nadd, which is terminated by 0, e.g. nadd 1 0 and
nadd 1 2 3 0 are both expressions of type Nat. We start by introduc-
ing the type of nadd which we call NAdd:

NAdd : Type
NAdd = (n:Nat) — split (nl,_) =n
in case nl of
{ zero — Nat
| succ — NAdd }

NAdd is a Il-type: its domain is always Nat but its codomain
depends on the input: if it was O it is Nar but otherwise it is
recursively defined to be NAdd. We define nadd using a local
recursive definition, defining an auxiliary function nadd’ which
keeps track of the sum using an accumulator:

nadd : NAdd
nadd = let nadd’ : Nat — NAdd
nadd = Amn — split (nl,_) =n
in case nl of
{zero —m
| succ — nadd' (add mn)}

in nadd’ (zero, unit)

While nadd is an artificial example, it shows that dependent
types can be used to represent flexible data formats. This can be
used to define a combinators for a flexible data format description
language, see (Oury and Swierstra 2008).

2.3 Dependent datatypes

Vectors, i.e. lists with a fixed length are a well known example
of dependently typed programming (McBride 2004). There are
two ways to define vectors and other dependent datatypes (also
called families): by recursion over the index or by using dependent
(focused) constructors. Cayenne and previous version of Agda used
the first approach while languages like Epigram, Coq’s CIC and
recent versions of Agda support the latter approach which is more
flexible and better in separating constraints on data from the actual
data. In IIX we can represent both approaches. We can define
vectors by recursion over length:
Veci : Type — Nat — Type
Vec; = AAn — split (I,n') =n
in case / of
{ zero — Unit
| succ — (A;Vecy An')}

We can now implement a variant of append which makes it
explicit what happens with the length of lists when appending:
vappend, : (A: Type) — (m,n:Nat) — Veci Am — Veci An
— Vec) A (add mn)
vappend; = AA mn as bs —
split (Im,m') = m
in case /m of
{ zero — bs
| succ — split (a,as’) = as
in (a,vappend; A as' bs)}
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We can also give a total implementation of vzail:
vtail) : (A: Type) — (n:Nat) — Vec| A (suce,n) — Vec; An

vtaily = AA n as — split (a,as') = asin as

The alternative is to use constraints to express directly the idea
that the family Vec is generated by the dependent constructors, here
presented in high level Epigram-like syntax

a:Asas:VecAn
cons a as: Vec A (succ n)

nil : Vec A zero

We can encode this in ITX by applying Henry Ford’s principle that
you can have the car in any colour as long as it is black and write:
Vec, : Type — Nat — Type
Vecy = AAn — I:{nil,cons };
case [ of
{nil — Unit | n = (zero, unit)
| cons — m: Nat;A; Vecy Am
| n = (suce,m)}
vappend no longer has to analyze the indices first:

vappend, : (A: Type) — (m,n:Nat) — Vecp Am — Vecy An
— Vecy A (add mn)
vappend, = AA mn as bs —
split (/,as’) = as
in case / of
{nil — case as’ of { Unit — bs}
| cons — split (m,a,cs) = as’
in (cons, (succ,add m n),
a,vappend, A mn cs bs) }

In the nil-branch, the case analysis on as’ seems unnecessary.
In fact, the constraint / = nil, that has just been added, allows to
simplify the type of as’ from a case expression on [ to Unit | n =
(zero,unit). The constraint n = (zero, unit) is necessary to ensure
that bs is of type Vecy A (add m n). Indeed, this constraint allows to
reduce add m n to n. The case expression in the nil branch is used
to help the type checker to realise that the type of as’ has changed.
Hence, it can use the newly inferred constraint.

To implement vzail we use the special constant # which has
any type in a context with inconsistent constraints, i.e. where two
different labels are equated:

vtaily : (A: Type) — (n:Nat) — Vecy A (succ,n) — Vecy An
vtaily = AA nas — split (1,as’) = as
in case / of
{nil — caseas’ of { Unit — #}
| cons — split (m,a,bs) = as’
inbs}

The later variant suggests that a clever compiler doesn’t have
to store the indices at run-time, see (Brady 2005) where this is
investigated in a total setting. Another reason for preferring the
approach using constraints is that not every dependent datatype has
a straightforward representation using recursion over the indices
like vectors. A good example is the type of simply typed A-terms
Lam, which are indexed over simple types Ty and contexts Con,
which are just lists of types:

Ty: Type

Ty =1:{base,arr };

case [ of {base — Unit
|arr — (7y;79) }

Con: Type
Con = List Ty
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Our goal is to represent typed A-terms using de Bruijn indices
using the following constructors written in a high level syntax ala
Epigram:

G:Con A:Ty
zero: Lam (cons A G) A

t:Lam GA
succ ¢: Lam (cons B G) A

t:Lam (cons A G) B
lam ¢: Lam G (arr A B)
In ITX we can encode this type using constraints:
Lam: Con — Ty — Type
Lam=AGA —
1:{zero,succ,lam,app };
case [ of
{zero — G':Con| G = (cons,A,G’)
| succ — G': Con; B type ;Lam G’ A
| G = (cons,B,G’)
|lam — B,C:Ty;Lam (cons,B,G)) C
| A= (arr,B,C)
| app — B:Ty;Lam G (arr,B,A);Lam G B})

t:Lam G (arr AB);u:Lam G A
apptu:Lam GB

Given Lam we can implement well-typed substitution following
(Altenkirch and Reus 1999): Here a substitution is a function from
variables to terms, where variables are a subtype of terms:

Var: Con — Ty — Type

Var=AGA —

I:{zero,succ,lam, app };
case [ of
{zero — G':Con | G = (cons,A,G’)
| succ — G’ : Con;B: type ;Lam G’ A
| G = (cons,B,G')}
Subst : Con — Con — Type
Subst=AGD — (A:Ty) > VarDA — Lam G A

Substitution can now be implemented by recursion over terms:

subst: (G D: Con) — Subst GD — (A:Ty)
—TermDA — Term G A

using some auxiliary functions.

2.4 Local case expressions

Type checking case expressions in a dependently typed language
is much harder than in a conventional one. The reason is that
branches cannot be checked uniformly, the fact that we are in a
given branch may have to be taken into account. In Cayenne this
lead to the restriction that case expressions are only allowed over
variables. Indeed, all programs we have presented so far fall into
this category. However, there are many programs which do use
case over a non-trivial expression. An interesting example is the
following implementation of the filter-function which returns a list
of elements together with evidence that the filter predicate returned
true:

filter: (A:Type) — (P:A — Bool) — List A
— List (a:A | P a = true)
filter = AA P as —
split (I,as’) = as’

in case [ of
{nil — (nil,unit)
| cons —

split (a,bs) = as’
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in case P a of
{false — filter A P bs
| true — (cons, a,
filter AP bs)}}

In ITY the program above type-checks, because the type checker
is able to exploit the equational constraint that P a = true to verify
that a:(a:A | P a = true) in the right hand side of that case
expression.

Epigram and Agda offer local pattern matching using a with-
rule. However, this feature involves a translation to a definition
of a local function and is quite complex to implement. Indeed, in
Epigram 1 the with rule was never implemented and Agda only
acquired it recently (Norell 2007). We hope that our approach
opens up a new and principled way to deal with this issue.

2.5 Lazy datatypes and boxes

In section 2.2 we have linked the control of unfolding recursion to
the use of case. However, it is clear that this approach won’t work
for lazy types like streams. E.g. the definition of of a stream starting
from a given number doesn’t use any case-analysis at all. Indeed, as
already indicated case is only syntactic sugar for a common pattern
of controlling recursion, which is also applicable to lazy types.

In ITY we have to differentiate between lazy and eager datatypes.
This distinction is similar to the distinction between coinductive
and inductive types, which is present in total languages like Coq’s
CIC. Here we are not motivated by totality but that lazy and eager
datatypes behave differently w.r.t. symbolic evaluation. In case of
an eager list we can evaluate under constructors but we should stop
evaluating inside case-expressions. For lazy lists we should stop
evaluating under a constructor, but there is no point stopping inside
case-expressions.

We introduce lazy datatypes by guarding recursive occurrences
with a special type constructor ¢ | , elements of 6| are constructed
by boxes [t] : 6| where 1 : 6. Boxes stop the unfolding of recursive
definitions from outside the box.

Using (—), we can define lazy lists:

LList: Type — Type

LList = AA — [:{nil,cons };

case [ of
{nil — Unit
| cons — (A;(LListA) ) })

The from function which recursively constructs an infinite list
of increasing numbers can be defined using a box, which prevents
the infinite unfolding of this program:

from: Nat — LList Nat

from = An — (cons,n, [from (succ,n)])

However, sometimes we have to open a box to perform a com-
putation with the term inside. For this purpose we introduce a box
opener ! : 0, givent : 6| . Computationally, ![¢] reduces to 7. Using
! we can define the map operation for lazy lists:

Imap: (A B:Type) — (A — B) — LList A — LList B

Imap =AABf as —

split (L,as’) = as
in case [ of
{nil — (nil, unit)
| cons — split (a,bs) = as
in (cons,f a, [Imap f (1bs)] }

Using ! we control the unfolding of the infinite list which only
gets unfolded on demand.
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Finally, we can define case in terms of the primitive case and
the box primitives, i.e.

caserof {L| —uy | Ly —up |-+ | Ly — up
is defined as
leasetof (L — [u1] | Lo — [u2] | -+ | Lu — [un]

case has the same derived typing rule as case but behaves differ-
ently computationally: recursive calls inside branches are not un-
folded, but once the case expression can be reduced, the box will
disappear.

For example, if we evaluate add (succ,zero,unit) (zero,unit),
the first case expression reduces to its succ-branch. This results
in ![(succ,add (zero,unit) (zero,unit))]. ! opens the box, and the
recursive call to add can be unfolded.

2.6 Induction-recursion

Dybjer and Setzer have developed the concept of induction-
recursion (Dybjer and Setzer 1999) which justifies and formalizes
constructions in Type Theory which mutually define a type by in-
duction and a function by structural recursion. A standard example
is the definition of a universe defining inductively a type of codes
U : Type mutually with a function El: U — Type. E.g. in a partial
theory we may want to reflect a universe which reflects its own
code. We give a high level specification:

a:U;b:Ela— U
u:U piab:U

Elu =U
El(piab)= (x:Ela) — El (b x)

It is relatively straightforward to encode this definition in ITX
since inductive datatypes and recursive functions are realized using
the same mechanism. Hence, the definition of the universe sketched
above, boils down to a straightforward inductive-recursive defini-
tion in ITX:

U:Type

El:U — Type

U= (I:{type ,pi};

case [of
{type — Unit
|pi — (a:U;Ela—U)})
El=2a—split (l,d')=a
in case [ of
{type = U
|pi  — split (dom,cod) = d’
in (x: El dom) — El (cod x)

We are exploiting IT¥’s general approach to mutual recursion,
we need to declare El before defining U. Unlike in non-dependent
programming the order of the mutual definitions matters: we have
to define U before El because El only typechecks when U is already
defined. On the other hand the definition of U doesn’t rely on the
definition of El, otherwise we would be in an infinite regress.

We are not claiming that we capture induction-recursion in the
sense of (Dybjer and Setzer 1999) since we make no attempt to give
criteria when these definitions are admissible in a total theory.

3. Defining ITX

We formally introduce ITX’s typing and equality judgments, which
are defined inductively by the derivation rules given below.
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: empty context

| T,x:o0 type assumptions
| T,x=r definition

| T,t=u constraint

| [T box

Figure 2: Syntax of contexts

Contexts (see figure 2) are sequences of type assumptions, def-
initions and constraints; parts of a context may be boxed which we
use to express that recursive definitions inside this part are not vis-
ible outside. We don’t specify the lookup of assumptions in detail,
but use the suggestive notationx: c €I, t=ucl,andx=r €’
where the lookup of definitions does not look inside boxes. We
write DefI' = {x | x =1 € I'} for the set of variables defined in a
program p and Decll = {x | x: o € I'} for the set of variables
declared in p. We write FreeI for the set of variables which are de-
fined but not declared and which do not appear in any constraints.

We use the following judgments:

T
I" is a well-formed context,

I't:0
t is a term with type ¢ in context I'. We maintain the invariant
that this entails - I"and '+ o : Type.

I'Ft=u
t and u are convertible terms. We will only introduce f-rules
hence equality is actually independent of the typing. However,
equality depends on equational assumptions in the context. To
save space and avoid boredom we omit the rules stating that =
is a congruence.

' pPat
p is a pattern in I'. This notion is dependent on the context be-
cause we require that all pattern variables are free, i.e. undefined
and unconstrained.

While our syntax makes no difference between terms and types,
we use the letters ¢, u for objects which occur at term level and o, 7
for syntactic objects occurring at type level. We write ¢[x < u] for
the capture-avoiding substitution of u for x in #, all syntax should
be interpreted up to ¢t-equivalence.

3.1 System U

We start with the core type theory containing only Il-types and
Type : Type, see figure 3. This is the initial pure type system and
is basically equivalent to Girard’s system U. Cardelli has investi-
gated programming in this system using impredicative encodings
(Cardelli 1986). It is also possible to derive a looping combinator
approximating recursion by encoding Girard’s paradox. However,
these constructions have only theoretical interest and are not rele-
vant for programming, since they lead to inefficient code and are
cumbersome to use. However, Type : Type is useful to represent
higher order polymorphic definitions and reflective metaprogram-
ming.

3.2 Recursive definitions and boxes

In figure 4 we present the rules for local definitions and boxes.
We only allow the definition of a variable if it has been declared
but not yet defined. We require that all variables declared in a let-
expression are also defined. We use the notation I'.p for appending
a program to the context — this is possible because programs are a
particular collection of context extensions.
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' 7: Type
0O Flx:t

FT x:tel It:oc TI'kt:Type T'Fo=r<
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Figure 3: System U

The unfolding of recursive definitions is controlled by boxes:
when we enter a box we box the current context thus freezing all
recursive definitions from outside the box. Boxes can be opened
using !, this is needed in order to unfold recursive definition during
a computation. The type constructor (—), introduces the type of
boxed expressions, and can be used explicitly to introduce lazy
types.

Other implementations of dependent types such as Coq, Epi-
gram or Agda have to address the issue of unfolding recursion as
well. In Coq recursion is only unfolded when it is in an evaluation
context. This is only possible because in Coq pattern matching is
primitive and there is an explicit distinction between inductive and
coinductive types. Agda also has primitive pattern matching and
only implements a call-by-value discipline. Epigram on the other
hand translates recursive definitions into a core calculus with a re-
cursion combinator which only unfolds recursive definitions in an
evaluation context.

The approach we use seems to be closer to the practice in func-
tional programming in reducing recursion to recursive definitions.
However, in a dependently typed language we have the additional
problem that symbolic evaluation has to terminate. Instead of fixing
the evaluation contexts in advance, we provide a flexible solution
by using boxes.

Also our approach is very general in allowing us to model dif-
ferent kinds of recursion, e.g. recursive types and recursive values
using the same construct. As we have already shown this naturally
captures inductive-recursive definitions of universes (section 2.6).

3.3 X-types and finite types

Instead of adding primitives to represent datatypes, we encode them
using X-types and finite types. X-types are also useful to represent
dependent records and finite sets can be used to encode fields in
a record. We present the rules for X-types in figure 6 and for
finite types in figure 7. While in both cases the formation and
introduction rules are straightforward, the remaining rules require
some discussion.

The eliminators for a theory with dependent types are much
more complex then elimination for simple types. As an exam-
ple let’s consider the type of booleans, in our syntax Bool =
{false, true }. The simply typed eliminator is case, or if-then-else
in this instance:

I'tt:Bool I'kug,ui:o
't caserof {false — ug | true — u; } : ©
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Figure 5: Constraints

Figure 4: Letrec and boxes

This rule is not sufficient for a system with dependent types
because we need to exploit the fact that we are either in the if-
branch or in the else branch. Traditionally, e.g. in Coq, this is fixed
by providing elimination with a motive:

' ugp: ofalse
I'tu; : otrue

'+ caset of {false — uyg | true — u; }usingo : o't

I't7:Bool I' o :Bool — Type

This is inconvenient for writing programs because each time we
use the eliminator we have to provide the motive ¢ explicitly.
Epigram addresses this problem by generating the motive from
high level tactics to generate pattern matching. However, this can be
quite complex generating considerable overhead in the generated
code. Also it is not trivial to generalize this approach to local case
expressions as we have already discussed.

Our approach is to modify the simply typed rule by adding
constraints to the context, hence avoiding the need of motives in the
core language and simplifying the translation of pattern matching
and in particular local case expressions. Instantiated to the case of
Bool we obtain the following typing rule:

It =falsetuy: o
It=truetu;:0o
'+ caser of {false — ug | true — u; } :

'kt :Bool

Our case expression can be used in the same flexible way as the
simply typed case-expression and we do not need to provide a mo-
tive. The price we have to pay is that we have to decide definitional
equality with constraints. This is not as hard as it sounds because
we never have to instantiate any variables, our definitional equality
is not closed under substitution. We would loose this property if
we would allow constraints between A-abstractions, hence this is
ruled out by our definition. We will discuss in section 4 how our
constraints can be implemented.

In figure 5 we present the rules for allowing constraints in the
context. We restrict the left hand sides of constraints to be first-
order left-linear patterns. We exploit the constraint mechanism in
the elimination rules for X-types (split) and finite types (case). We
also add rules reflecting the fact that constructors are injective. In
the case of finite types this leads to the possibility of equationally
inconsistent contexts. In such a context the special constant # has

any type.
3.4 Explicit constraints

In the previous section we have been using constraints to simplify
the typing of elimination constants. However, the same mechanism
can be put to a more general use: we can add explicit constraints
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Figure 7: Finite types

of the form r = p where p is a pattern, i.e. made up from variables,
labels and pairs. We have two ways to introduce constraints: we
write (f = p) = o to express that ¢ is typable assuming that the
constraint # = p holds, and x : 0 | # = p to indicate that we require
the constraint # = p to hold to construct an element of the type. The
rules are given in figure 8.

4. Implementing ITX

The aim of this work is to provide a system powerful enough to
be used as a target for most high level languages with dependent
types, while remaining small enough to be easy to study and to im-
plement. We have written a simple proof—of—concept implementa-
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Figure 8: Explicit constraints

tion of I1X. For this implementation, we used the Haskell language
(Peyton Jones 2003) and the ghc compiler.

The goal of this prototype implementation is not to be efficient
or user-friendly, but to demonstrate how to implement I'1Y in princi-
ple. This implementation has been used to typecheck and evaluate
the examples presented in this paper.

In this section, we present the key points of this implementation,
while trying not to overwhelm the reader with technical details. We
concentrate on three points: the general structure of the implemen-
tation, the idea we use to support box controlled general conver-
sion, and the way we handle constraints during equality checking.

4.1 Structure of the prototype

This implementation is based on a locally nameless bidirectional
type checker. Giving the details of such a type checker is beyond the
scope of this work, see (Coquand 1996; Loh et al. 2008; Chapman
et al. 2006). We simply recall here the main ideas underlying such
an implementation.

This typechecker separates syntactical terms from semantical
values, corresponding to evaluated terms. The user types in ferms.
Once they have been type checked, those terms can be evaluated
into the Value type. This type only contains representations of nor-
mal forms. It is used internally to represent types and for equality
checking. After evaluation, the values are quoted back to a term in
normal form, which can be printed.

All the functions manipulating terms are locally nameless
(McBride and McKinna 2004a). Variables in the context are named
but variables inside the term are designated using De Bruijn in-
dices. When a function working on a term goes under a binder, it
creates a new reference, i.e. a fresh name in the context, together
with the type of the newly bound variable. Then, it substitutes this
new reference to the variable with index 0 in the term, accordingly
adjusting the other indices. This way of working with open terms
induces two major benefits: using De Bruijn variables in closed
terms eases the implementation of substitution, and naming local
variables inside a term allows to avoid the complexity of index
arithmetic.

We separate the terms in two distinct syntactical categories:

e An inferable term is a term whose type can be inferred. It
includes all type constructors, variables and application.

® A checkable term is a term which has to be checked against a
given type. It contains all the remaining constructs.

This separation is a slight restriction with respect to ITX. Indeed, in
some situations, the type of a split, a let or a case expression could
be inferred. Anyway, this restriction is not problematic in practice:
the presence of the type declarations in the let bindings gives
enough information to the type checker. Indeed, we could have
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given a more precise account of the typechecker by differentiating
between inferable and checkable in the typing rules (Pierce and
Turner 1998). However, we refrain from doing this here for the
sake of readability and brevity.

When an inferable t is checked against a given type 7, we have
to check that 7 is a valid type for . To do so, we infer the type 7’ of
t. Then we check that 7 and 7’ are two variations of the same type,
using an equality check.

This equality check compares structurally two Values. It uses a
higher-order representation of the binding constructs: function, ¥~
types, I1-types, split and let. This use of this higher-order repre-
sentation simplifies the treatment of closures: instead of explicitly
working with a tuple of the value and its environment, the imple-
mentation relies on Haskell closures to represent ITX-closures. In-
deed, the only function threading an environment is the evaluation
function that turns a term into a value. The representation of Values
also relies on Haskell laziness.

This approach leads to a straightforward and short implementa-
tion of a basic type checker and moreover — as we shall see — it is
quite straightforward to extend with ITX specific features.

4.2 Typechecking with constraints

The first specific feature of I1X is the possibility to extend the equal-
ity check with constraints. In this subsection, we sketch how these
constraints are used during the conversion in the prototype im-
plementation. This implementation of the constraint system is not
aimed at efficiency. The goal is to provide a simple implementation
— the code of the part of the implementation handling constraints
is less than 200 lines long — easy to understand and eventually to
prove correct. Even if we have not formally verified this algorithm
yet, we believe it is complete with respect to the typing rules — tak-
ing the distinction between inferable and checkable into account. In
this section, we explain this algorithm and argue why it is complete.

In order to study the details of our implementation of con-
straints, we need to describe more precisely the representation of
Values. Each constructor of the Value type corresponds to a possi-
ble head constructors of a normal form. These different head con-
structor are split into two categories:

e Canonical values are values whose head constructors cannot
be modified by a further instantiation of a reference to the
context. The nature of the term is already known. Their head
constructors consist of Type, L,I1, ..., and enumeration types
as well as labels, pairs, boxes and functions.

® Neutrals corresponds to terms sfuck on a reference of the con-
text. Their head constructors consist of free variables, applica-
tion of a neutral value to a term, split on a neutral value, open-
ing of a neutral value and case expression whose scrutinee is a
neutral value.

A constraint is a relation linking two values that are to be
equal. The prototype implementation translates each constraint into
a rewrite rule.

In order to explain our implementation of constraints enhanced
equality checking, we have to stress two important points about the
constraints we have to handle.

1. A constraints is rewriting rule of order 0. Despite the fact
that constraints may contain variables, these variables can not
be instantiated when the constraint is used. For example, x
does not act as a variable in the rule constraint x — (u,v).
x is a reference to the exact x of the context, not a variable
that could be instantiated during rewriting. No substitution can
occur while applying a rewrite rule. Hence, when we look at the
system of constraints as a rewriting system, this system is made
of terms without variables.
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2. We only need to extend the conversion with constraints linking
a neutral value to a value.

The first point helps us to maintain two invariants:

e The rewrite system is in head normal form. No rule can be
applied to head of the left or right hand side of any other rule.

¢ No rule linking two equal terms is never added to the system.
This equality is checked before extending the system. Anyway,
such a rule would not extend the equality test.

These two invariants, together with the fact that the rewrite system
has no variables, makes the system confluent and weakly normaliz-
ing in absence of recursion. The only cases of non-termination are
non-terminating recursive definitions not protected by a box. With-
out recursion, the system is weakly normalizing. We can not hope
for more than that, while allowing general recursion.

The second point needs a more precise explanation. Let us study
more closely the possible shape of the constraints to show we can
always reduce it to a constraint n = v, where n is a neutral value.

Every constraint that can be added to the system is of shape
v = p, where p is a pattern. If p is a variable, then we choose n = p.
Else, we know that p is either a pair or a label.

Hence, only two cases remain:

e A constraint linking a value v to a label L;. Either v is a neutral
value — and we choose p = v — or it is a canonical value. Such
value in an enumeration type is always a label L. If L is equal
to L, then v = L does not bring any new information and the
constraint can be discharged. If L and L’ are different, then
the system of constraints is inconsistent and the only relevant
information is this inconsistence.

A constraint linking a value v to a pair of patterns (pl,p2).
Either v is a neutral value — and we choose p =v —, or v is
a canonical value. The only canonical values in a X type are
pairs. Hence v reads (v1,v2). Then v = (x,y) is equivalent to
the set of constraints {vl = p1;v2 = p2}. We apply the same
transformation recursively on both constraints.

The fact that we can always simplify a constraint linking two
canonical values is a key property of our implementation. This fact
is due to the shape of the constraints generated by our language.
With constraints on canonical values in an enumeration or a X type,
it is always possible to express, by smaller constraints, all the pos-
sible consequences of the original constraint. If we include con-
straints between higher-order constructs — like a constraint linking
two functions —, we lose this property: it is impossible to produce a
finite set of constraints encoding exactly all the consequences of the
equality of two A—terms. Indeed, the consequences of Ax.t = Ax.u
with both terms elements of (x: 6) — 7 are t[x < V| = u[x — v],
forallv:
sigma.

‘We can now present the implementation of constraints enhanced
equality checking. A system of constraints is threaded during type
checking and equality testing. This system consists in Maybe a
set of constraints. Nothing represents an inconsistent system of
constraints, due to a constraint between two different labels. With
such a system, the equality test always succeeds and we can check
that # is in any type. Just csts represents the system generated by
the set csts of constraints. This set is a list of 0-order rewrite rules
from a neutral value to a value.

When we structurally compare two values, we first head-
normalize the values with respect to the set of constraints. If a
value is neutral, we try to apply each rewrite rule of the system.
We then obtain two values, that are in head normal form with re-
spect to the system of constraints. The head constructors of these
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values are then compared and the equality is recursively called on
the sub-components of these values.

This algorithm is far from being optimal. Anyway, the imple-
mentation is short and very easy to understand. Moreover, in prac-
tice, the number of constraint stays relatively low, as it is propor-
tional to the number of nested case and split expressions. However,
for a full scale implementation, this algorithm could be improved
by adding hash consing or congruence closure (Nieuwenhuis and
Oliveras 2005) to the type checker.

4.3 Box controlled recursion

We now turn our attention to the ideas underlying the implementa-
tion of I1¥’s second specific feature: boxes and general recursion.
As already mentioned, the prototype reads terms from the user.
Once, typechecked these terms are evaluated to Values, which are
used to represent types and for equality testing. One of the benefits
of the approach is a simplification: together with the use of higher-
order representations, this approach allows to get rid of the thread-
ing of an environment during type checking and equality testing.
Indeed, evaluation is separated from type checking and equality
testing. This enhances the readability and the modularity of the im-
plementation.

In this subsection, we show how to maintain this property, while
extending the type checker with general recursion controlled by
boxes.

Let blocks and general recursion

The main advantage of our implementation choice for general re-
cursion is its locality. Indeed, the only modification with respect
to a type checker without such a feature appears exclusively dur-
ing evaluation. Usually, the evaluation function takes a term, and
an environment linking the De Bruijn index of each variable of the
term to a value. This environment is extended during the evaluation
of an application or a split construct: it is used to link the bound
variable to its value.

In our setting, general recursion adds a new kind of binders with
a specific difficulty: in a block of mutually recursive definitions,
the value of a variable referring to such definitions can change
depending of where it is used.

Let us illustrate this point with an example. When you first
introduce a variable x in a let binding block, it has no value. For
example, let us have a look at this block:

x:A

y:Px

In the declaration of y, x is in normal form. x has been declared,
but has not been defined yet. Later on, in the same block, x is going
to be defined and its value will change.

y:Px
xX=ty
z:Px

Now, in the declaration of z, the value of x is ¢ y, which is a
normal form. Hence, the value of x is different from its value two
lines earlier in the same program. But it does not stop here: if we
now give a definition to y, the value of x will change again.

z:Px
y = unit
t:Px
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In the declaration of 7, the value of x is now ¢ unit. And this are
going to get more and more complex, with the definition of ¢ or
even P.

This evolution, in the course of the let binding block, of the
value of the bound variables makes an implementation using De
Bruijn indices quite difficult. Indeed, we cannot represent a defini-
tion as a closure containing the context of the place it was defined
because it would not change in the course of the binding block. So
we have to give to the definition the context of the place it is used.
But the De Bruijn indices in this context does not correspond any-
more to those in the definition. A quite complex arithmetic transla-
tion on indices would have to be performed.

In our implementation of the evaluation function, we extend
the usual environment containing the values of the bound variables
with a dictionary giving the value of definitions.

When the type checker binds a new declaration, a fresh refer-
ence of its type is created and subsequently substituted in the term.
When the type checker meets a definition, the dictionary of defi-
nitions is extended with an entry linking the reference correspond-
ing to the define variable and its definition. Each time a variable is
evaluated, it is looked up in the current dictionary. If there is a cor-
responding definition, this definition is used, else the value of the
variable is the variable itself.

A dictionary is represented as a list of tuples linking a reference
to its definition. At first, one can think to represent a definition as a
value. This way, each reference would be linked to the value corre-
sponding to it. Anyway, this representation is not really suitable: as
we have seen, the value of a given variable will change depending
on the place it is used.

Our choice is to represent a definition as a function from a
dictionary to a value.

data Dictionary = [(Reference, Dictionary — Value)]

When looking for the definition of a reference, the evaluation
function looks in the dictionary for the definition of the reference
and applies for it to the current definition. This process, while
remaining fairly simple to understand and to implement, allows to
respect the precise semantic of the blocks of mutual definitions.

There is a drawback to this approach: it tends to evaluate the
same definitions too often. Even if it is often not very costly as
the definitions are mainly functions — which should have been
evaluated at each call anyway — this should be improved if we want
the prototype to scale to larger programs.

Implementing boxes

Implementing boxes induces a problem similar to the one we have
just exposed. The value inside a box depends on the use we made
of the box. Indeed, when you test the equality of two boxes you
prevent any unfolding of definitions under the box. Whereas when
you open a box with the ! construct, unfoldings of definitions have
to be enabled.

To solve this problem, we store both values in the VBox con-
struct. Hence the type of the VBox constructor is:

data Value =
| VBox:

{eq_box: Value;
open_box : Value }

To evaluate a box, we must creates the two values:

e The one in eq_box freezes every definition.
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e The one in open_box unfolds every definition.

In order to produce this effect, the evaluation in open_box is made
with the current dictionary of definitions, while the one in eq_box is
made with an empty dictionary. Hence, the evaluation a definition
in the eq_box value will return the variable corresponding to the
definition.

When testing equality of two boxed values, the equality test uses
the eq — box value. To open a box with a !, the evaluation uses the
value in open_box.

It is interesting to remark that this process constructs a possibly
infinite value and relies heavily on laziness for termination. Indeed,
the values along a path of open_box can correspond to an infinite
value. We make use of a generate and prune paradigm (King
and Launchbury 1995) in order to increase modularity. A possibly
infinite value is generated. Then, the equality test carefully avoids
to follow an infinite path of open_box by using eq_box to compare
two boxed values.

5. Conclusions

With ITX we propose a core language for dependently typed pro-
gramming which provides a middle ground for the design and im-
plementation of dependently typed programming languages. We
have shown that a small core language can encode most constructs
which are relevant in dependently typed programming. Our core
language can provide an important point of reference both for the
front end and the back end. It has the advantage that it is small
enough for a metatheoretical analysis, i.e. we would like to estab-
lish important properties such as type soundness (i.e. absence of
run-time errors) and the correctness of the type checking algorithms
formally.

On the front end we need an elaborator which allows the pro-
grammer to leave inferable parts of the program implicit. The scope
of inferable information in a dependently typed setting is huge
it ranges from the usual polymorphic type inference via inferring
other indexing expressions to inferring proof objects. On the back
end we have to investigate the potential for efficient compilation.
One of the most important issues is the ability to omit terms which
are only used to ensure the validity of the data, see the discussion
on dependent datatypes defined using constraints in section 2.3. To
achieve this we have to be able to recognize whether a term is safely
total and whether it has to be executed at run-time. Clearly, we have
to rely on additional information from the programmer to be able
to do a good job here.

We are using boxes to provide a flexible interface to symbolic
evaluation. This is an essential ingredient of a type checker for a de-
pendently typed programming language because such a checker has
to perform symbolic evaluation. Just by looking at the occurrences
of the lifting operator (—) | we can distinguish inductive and coin-
ductive types. This information can be used by a totality checker to
automatically recognize whether recursive definitions are structural
or guarded. This sort of information is not only relevant if we want
to use dependent types for specifications but also to be able to rec-
ognize that certain values do not have to be computed at runtime.

With explicit constraints we have proposed an approach which
simplifies the compilation of dependently typed pattern matching
and covers many uses of equality types, we avoid to clutter up pro-
grams with proof terms witnessing equations. We believe that this is
a useful feature on the level of the core language because it greatly
simplifies the implementation of high level features. However, we
haven’t covered all the uses of equality types. It is clear that there is
no hope to use higher order constraints, such as equalities between
A-abstractions implicitly, because they correspond to universally
quantified equations. Hence we are looking for a way to be able to
instantiate higher order constraints explicitly with the hope to arrive
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at a smooth interpretation of higher order and first order equations.
We hope to be able to draw on our experience with the design of
Observational Type Theory here (Altenkirch et al. 2007)

There are other constructs which have an impact on the core
language: Our use of labels suggests a simple subtyping discipline
starting from finite types, which can be lifted to other types. There
are other potentials for subtyping, e.g. 0 < o, which enables us
to exploit that eager lists are a subtype of lazy lists. Another excit-
ing idea is a straightforward implementation of reflection, which is
simplified by the fact that our core language is quite small. It is easy
to define a datatype type reflecting all top-level type constructs,
such that eval: type — Type can be implemented. Reflection corre-
sponds to an operation quote : Type — type inverting eval.
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