Programming + Verification = Progification

(Draft)

Thorsten Altenkirch

September 94

Abstract

We discuss the réle Type Theory should play in the formal develop-
ment of correct programs. We view verification as a programming problem
in a sophisticated programming language and evaluate this approach by
presenting a number of examples developed in the ALF system. Thereby
we exploit the recent advantages in the presentation of Type Theory in
particular by using pattern matching as proposed in [Coq92].

1 Introduction

The steps in the development of a software system can be classified in ex-
ploration and consolidation. Exploratory steps are the implementation of
a prototype or the experimental addition of new features to an existing sys-
tem. Examples of consolidation are debugging, testing, extending and updating
documentation, etc.

One important objective of a good software development methodology is to
support consolidation without making exploration too hard. We have to reject
an anarchic approach to software development (hacking) because it ignores the
need for consolidation. On the other hand we also have to reject a discipline
which is too rigid because it ignores the need for exploration.

A specification is a part of the documentation. As such it will usually be the
case that it is not the main content of the first exploratory steps of a project.
Any initial specification, like a statement of requirements, will often be rather
vague. Finding out the precise requirements is already part of the development
process. Thus we reject the idea of starting with a formal specification.

However, we believe that formal specifications and computer aided verifi-
cation can play an essential part in the later consolidation steps of software
development. Formal verification makes it possible to deliver code with a de-
gree of confidence in its correctness that is essentially higher than with any other
approach. If this different quality of consolidation is an essential feature of the

system it may well be worth the price in development costs one has to pay for
it.

We already know that the costs of formally verifying a program is much
higher than the cost of developing it. Therefore it is much more important to
reduce the cost of verification than the cost of programming. A programming
language like C may be a good language to program in but it is rather doubtful
that it is a good language for program verification. Even, if we have to com-
pletely rewrite a prototype to make it verifiable, this may still be a minor factor
in the cost of the complete verification.

Here we propose to use Type Theory as a language for the formal develop-
ment of correct programs. We view Type Theory as a programming language
in which it is possible to express specifications by the type of a program. Thus
we do not view Type Theory as a language to reason about programs but as a
programming language itself. We have coined the word “Progification”, since
developing and verifying programs is reduced to writing programs in a pure
functional language with dependent types, subject to some restrictions to en-
sure that the programs/proofs are total.

This is essentially the original approach of using Type Theory for program
verification as proposed by Martin L6f and many others, e.g. see [NPS90,
BCMS89]. However, it has been proposed to reintroduce a difference between
proofs and programs and between data types and propositions in Type Theory
- either for pragmatic [PM89] or for philosophical reasons [Luo94]. We shall
attempt to show by means of example that a pure approach is not only feasible
but also preferable. Here we exploit the progress in the presentation of Type
Theory which has been made, especially by using the pattern matching notation
as proposed by T. Coquand [Coq92].

In the rest of the paper we shall present and discuss some examples of progi-
fication using the ALF system [MN94, AGNvS94] to illustrate our approach.

2 An introductory example

Consider the following definition of the function le - less than on natural numbers
- as a simple functional program. We first define the basic types Bool and Nat
inductively:

Bool 0 Set
true O Bool
fase O Bodl

Nat O Set
0 O Nat
s O (Nat) Nat

This corresponds to datatype declarations in ML. The function le can be
defined as a non canonical constant using pattern matching and recursion as in

ML:

le O (Nat; Nat) Bool
10,]) = true
le(s(i), 0) = false
le(s(i), s(i)) = le(i,])

One can say that the definition of this function is so simple that it does
not require a specification. However, it is not obvious how to reason about le,
e.g. how to prove transitivity. The most naive approach - induction on natural
numbers - will end up in a combinatory explosion of cases. Our experience
is that it is easier to reason about inductively defined relations than about
boolean valued functions. It is also more general because we are not restricted
to decidable relations, indeed we may not be interested in the decidability of a
relation even if it is decidable.

Thus, we define a relation Le as follows:

Le O (Nat; Nat) Set
le0 O (i O Nat) Le(0, i)
leS O (i,j O Nat; Le(i,)) Le(s(i). s(1))

Le is an inductively defined family of sets, indexed by pairs of natural num-
bers. Thus the basic idea is the same as for the previously defined Bool and Nat,
the only difference is that we use dependent types. Indeed, it is straightforward
to extend the set-theoretic explanation of an inductive type as the least fix point
of a monotone operator to families of sets. The same holds for the categorical
view of inductive types as initial T-algebras, dependent inductive types can be
viewed as initial T-algebras in a slice category.

The proof of transitivity of Le is a non-canonical constant defined by pattern
matching ':

transLe O (i,j, k O Nat; Lei, j); Le(, K)) Le(, k)
transLe(_, j, k, 160(), h) = ie(K)
transLe(, —, —, leS(i1, j1, ho), 1eS(, j, h)) =

1eS(i, j, transLe&(iy, j1, |, e, h))

We continue our analogy - there is no fundamental difference between the
program le and the program transLe but that the second uses dependent types.
However, to accept transLe as a valid proof we have to apply stricter rules then
the ones which are checked by a compiler for a functional language like ML. In
particular we have to be sure that the function defined is total.

This can be established by the following facts: The left hand sides of the
pattern defining transLe constitute a complete covering, e.g. every closed canon-
ical instance of the domain is the substitution instance of a left hand side 2 .

IThe wild cards _ are introduced by ALF to avoid non-left-linear patterns. Thus the
Church-Rosser property is preserved.
2Actually we also require that the cases are non-overlapping, e.g. that there is a unique

On the other hand it has to be established that the function is terminating, i.e.
that there is a well founded ordering on the domain which is reduced during
recursion.

Both conditions are in general not decidable, but we shall restrict ourselves
to a decidable subset, which we believe is sufficient for practical purposes. As
far as the completeness is concerned we satisfy ourselves with patterns whose
completeness can be shown using a slight generalisation of first order unifica-
tion. As far as termination is concerned we reduce the problem to structural
recursion, i.e. to recursion which reduces the structure of the inductively de-
fined arguments 3.In the current implementation of ALF the completeness of the
pattern is guaranteed by the interactive generation of the pattern by the user
4, The test of the termination condition is currently not implemented which we
consider as a serious shortcoming since this opens a loophole for errors in the
verification process.

A short remark about notation is appropriate here: Dependently typed pro-
grams contain a lot of redundant information which tends to make the code
unreadable. Therefore we will hide arguments which can be inferred from the
context in the presentation, e.g. the last two definitions can be presented as
follows:

Le O (Nat; Nat) Set
le0 O Le(0,i)
leS 0 (Lefi,) Le(s(i), s())
transLe O (Le(i,]); Le(, k) Le(i, k)
transLe(le0, hy) = le0
transLe(leS(hy), 1eS(h)) = leS(transLe(hy, h))

E.g. the first argument to le0, the first two to leS and the first three to
transLe are hidden. However, their types can be easily inferred from the usage.
Note that argument hiding has the same goal as type inference in a language
like ML but it has the advantage that it also works for a language for which
type inference is not computable as it is the case for almost every language with
dependent types.

So far we did not relate the boolean valued function le and the relation
Le, e.g. prove that le decides Le. We will actually prove a slightly different
statement, namely that le(i,j) returns true iff ¢ < j and false iff j < 1.

matching left-hand side. This, again, is necessary for the Church-Rosser property.

3For a more detailed description see [Coq92].

41t is a shortcoming of the current version that there is no trace of this in the proof term,
i.e. it cannot be checked afterwards that the pattern is complete.

leLeml O (i,j O Nat; Id(le(i, j), true)) Lei, j)
leLem1(0,], h) = le0
leLem1(s(i), s(j), h) = leS(leLem(i,], h))
leLeml’ O (i,j O Nat; Le(i, })) 1d(le(i, j), true)
leLeml’(_, j, 1e0) = id(I(0, })
leLem?’ (. _, leS(hy)) = leLem?’(iy, j1, hy)
leLem2 O (i,j O Nat; Id(le(i, j), false)) Lt(, i)
leLem2(s(i), 0, h) = le(Ie0)
leLem2(s(i), (i), h) = le(leLem2(i, j, h))
leLem2 O (i,j O Nat; Lt(j, 1)) Id(le(i, }), false)
leLem2' (-, 0, leS(hy)) = id(le(s(j1), 0))
leLem2 (, s(h), leS(hy)) = leLem2 (jy, h, hy)

Here identity Id is defined inductively and strictly less than Lt by an explicit
definition:

Lt O (Nat; Nat) Set
Lt = [h,j]Le(s(h), })
Id O (a,b0OA) Set
id O (x OA) Id(x, X)

The proof of the leLeml,leLem2 follows closely the recursive structure of
le, we are doing the same analysis several times. This may be comparatively
harmless for a function like 1le but it becomes a more serious factor for bigger
functions. Another observation is that wherever we use le in a program we will
use these lemmas in almost all proofs about this program.

Therefore we propose not to implement le at all but to use a dependently
typed function instead which corresponds to a proof of trichotomy, e.g. we show
that for each i,7 € Nat we have that either ¢ < j or j < i. We could present
this specification using standard connectives but we feel that it improves the
readability of programs if we use more specific definitions, e.g. we define the
family Trich representing the solution to the problem:

Trich O (Nat; Nat) Set
isLe O (i,j O Nat; Le(i, j)) Trich(i, j)
isGt O (i,] O Nat; Lt(j, 1)) Trich(, j)

le O (i,j O Nat) Trich(i, j)
l€(0,j) = isLe&O,], 1e0)
le(s(i), 0) = isGt(s(i), 0, leS(1€0))
le/(s(i), s(j)) = case l€(i,j) O Trich(i, j) of
isLe(—, - hp) O isLe(s(i), s(j), leS(hy))
isGt(—, —, hp) O isGt(s(i), s(j), leS(hy))
end

Note the close similarity of le and le'. Indeed we can view le’ as a dependently

typed version of le by identifying isLe with true and isGt with false. It seems
that le' is a more compact presentation of both le and its essential properties.
Another advantage is that we can use le' as a building block to derive other
dependently typed programs or proofs.

However, apparently le’ is less efficient since it always analyses the recursive
case whereas we were able to use a simple identity in the case of le. Thus if
we want to generate efficient code from such programs we have to do some
optimisations which are not necessary in conventional code. In this case we
have to optimise a program of the form if x then true else false to x which is an
instance of the n-rule for Bool.

We will later see other optimisations which are necessary to recover the
conventional versions of algorithms. For the examples we have considered so far
these optimisations could be all done by a simple static analysis of the program.

3 Progifying sorting

Our next goal is to apply the progification approach to simple sorting algorithms,
e.g. to insertion sort and merge sort. The second case is interesting since the
algorithm is not structurally recursive.

We start by translating the sorting problem to Type Theory. In a simply
typed programming language (like ML) we may expect that the sorting function
has a type like:

val sort = fn : (Pa * ’a -> bool) -> ’a list -> ’a list

Here we want to find a finer type which does only contain sorting programs.
We define lists and two predicates Adjoin and Perm inductively:

List O (A O Set) Set
nil O List(A)
cons O (aOA; | OList(A)) List(A)
Adjoin O (A; List(A); List(A)) Set
ad0 O Adjoin(a, xs, cons(a, xs))
adl O (Adjoin(a, xs, axs);
b O A) Adjoin(a, cons(b, xs), cons(b, axs))
Perm O (List(A); List(A)) Set
perm0 [0 Perm(nil, nil)
perml O (Perm(xs,ys);
Adjoin(a, xs, axs);
Adjoin(a, ys, ays)) Perm(axs, ays)

We say that a list is sorted if every element is related to all it’s successors
w.r.t. some relation R:

LisAll O (P O (A) Set; List(A)) Set
la0 O LigtAll(P, nil)
lal O (P(a); LigAlI(P, 1)) LigAll(P, cons(a, 1))
Sorted O ((A; A) Set; List(A)) Set
sort0 O (A O Set; R O (A; A) Set) Sorted(R, nil)
sortl O (Sorted(R, I); LigAll([h]R(a, h), 1)) Sorted(R, cons(a, I))

This is sufficient to specify what a solution to a sorting problem is: given a
list { we request another list I’ together with proofs that I’ is a permutation of
[and that I’ is sorted:

SortSpec O (A O Set; R O (A; A) Set; List(A)) Set
sortSpec 0 (A O Set;
R O (A A) Set;
[,I" O List(A);
Perm(l, I');
Sorted(R, I')) SortSpec(A, R, I)

We cannot expect to have a solution to every sorting problem, but we require
some additional properties about the relation R. To be able to construct a sorted
version of a list at all it is essential that the relation is total. Another natural
property we require is that the R is transitive.

Tot O (RO (A; A) Set) Set
tot O ((a, @ OA)Plus(R(a, @), R(@, a))) Tot(R)
Trans O (R O (A; A) Set) Set
trans O ((a,&@,a’ OA;R(@ @); R@,a’))R(a a’)) Trans(R)

Note that these are quite trivial inductive definitions. However, we find that
by using these definitions we improve the readability of definitions compared
with the using 3 and other standard connectives.

Our sorting programs will all have the following type:

sort O (r O Tot(R); tr O Trans(R); | O List(A)) SortSpec(A, R, I)

It is straightforward to prove that le is total form the proof of trichotomy in
the previous section. Together with the proof of transitivity this enables us to
derive a sorting function for Nat from the general one.

How does the ALF type of sorting programs compares with the ML type?
Certainly we can project the sorted list out of SortSpec. The proof of totality
corresponds to the boolean function. However, the proof of transitivity turns out
to have no computational use at all. A simple analysis of the sorting programs
we verified shows that the proof of transitivity is only used to construct the
proof that the resulting list is sorted - therefore we can optimise the programs
by omitting that argument.

3.1 Insertion sort

Our prototype is the following ML program:

fun insert 1t a [] = [a]
| insert 1t a (1 as (b::bs)) =
if 1t(a,b) then a::1
else b::(insert 1t a bs);

fun sort 1t [1 = []
| sort 1t (a::xs) =
insert 1t a (sort 1t xs);

Our goal is to refine the program such that we obtain a an ALF program
of the appropriate type. Note that there is no problem with totality, since the
prototype already full fills the requirements we discussed above.

We also have to find a more refined type for

insert : (Pa * ’a -> bool) -> ’a -> ’a list -> ’a list+:
which is given by

InsertSpec O (a O A; | O List(A)) Set
insertSpec O (a O A,
[,I" O List(A);
Adjoin(a, I, 1');
Sorted(R, I')) InsertSpec(a, I)
The progification of insert requires two lemmas whose derivation is straight-
forward:

mapLA O ((@OA; P(a)) Q(a); | O List(A); ListAll(P, 1)) LitAll(Q,)
laAdjoinLem O (LigtAll(P, xs);
P(a);
Adjoin(a, xs, axs)) ListAll(P, axs)
We present here the complete derivations of insert (figure 1) and sort (figure
2) to illustrate two things:

e The proofs are quite compact and readable, this should be compared with
a presentation of a tactic-based proof.

e The close similarity of the proofs and the original algorithm.

The code should be understandable because of its similarity with standard
functional programs as written in ML or Haskell. Note the use of case to de-
construct the recursive calls. This corresponds to the use of let in ML with a
non trivial pattern on the left hand side.

insert 0 (r O Tot(R);
t O Trans(R);
alA
| O List(A);
ss 0 Sorted(R, 1)) InsertSpec(a, 1)
insert(r, t, a, nil, ss) =
insertSpec(a,
nil,
cons(a, nil),
adO(a, nil),
sort1(sortO(R), l20([h]R(a, h))))
insert(tot(h), trans(hy), a, cons(ay, |1), sortl(hz, hg)) =
case h(a, a;) O Plus(R(a, a1), R(ay, a)) of

ini(hy) O
insertSpec(a,
cons(ay, l1),
cons(a, cons(ay, 1)),
ad0(a, cons(ay, Iy)),
sort1(sort1(hy, h),
lal(hs, mapLA([a', hs]hy(a, &y, &', hy, hs), 11, hg))))
inr(hg) O

case insert(tot(h), trans(hy), &, 11, hy) O InsertSpec(a, 1) of
insertSpec(—, —, I, hs, hg) O
insertSpec(a,

cons(ay, l1),
cons(ay, I'),
édl(h;,, al),
sort1(he, IaAdjoinLem(h, hs, hs)))

end

end

Figure 1: insert

sort O (I O List(A)) SortSpec(l)
sort(nil) = sortSpec(nil, nil, perm0O(A), sortO(R))
sort(cons(a, I1)) =
case sort(l1) O SortSpec(l) of
sortSpec(—, I, h,hy) O
case insert(r, t, a, 1", hy) O InsertSpec(a, I") of
insertSpec(—, —, I'1, hp, hg) O
sortSpec(cons(a, I1), I' 1, perml(h, ad0(a, I1), hy), hg)
end
end

Figure 2: sort (insertion sort)

3.2 General recursive sorting algorithms

It is well known that insertion sort and in fact any structural recursive im-
plementation of sorting is inherently inefficient. How can we progify a sorting
algorithm like merge sort, e.g. given by the following prototype:

fun split [1 = ([1,[])
| split (a::xs) =
let val (ys,zs) = split xs
in (a::zs,ys)
end;

fun merge [] ys = ys
| merge xs [] = xs
| merge (1 as (a::xs)) (m as (b::ys)) =
if a<b then a::(merge xs m)
else b::(merge 1 ys);

fun sort [1 = []
| sort [a] = [a]
| sort xs =
let val (ys,zs) = split xs
in merge (sort ys) (sort zs)
end;

There is no problem with split and merge which are structural recursive,
but sort obviously is not. There are two principal ways out of the dilemma:

1. Allow general recursive but terminating definitions in Type Theory.

2. Make the termination ordering on the arguments explicit to obtain a struc-
tural recursive program.

The first way will certainly lead to short and elegant proofs but has the dis-
advantage that the correctness of the proof, which depends on its totality cannot
be checked anymore. Note that this does not only mean that the program may
not terminate but it may even terminate but fail to have some properties which
are proven by lemmas which are not total. If our goal is to obtain certified
correct programs then this approach has to be rejected. The approach to gen-
eralise the termination condition does not seem to be promising either, since
the termination proof may be arbitrarily complicated and cannot be generated
mechanically.

The second way seem to have the disadvantage that it spoils the goal: by
rewriting the program this way we loose any possible gain of efficiency due to
using a more efficient recursion scheme. However, we will see that this is not the

10

case, indeed it is straightforward to optimise the resulting program such that
the gain of efficiency is maintained.

This can be exemplified by using the inductive presentation of general well
founded recursion in Type Theory as proposed by [Nor88, Pau86]. We define
the predicate Acc which defines the accessible subset of a relation ®>. We can
define Acc in ALF inductively:

Acc O ((A; A) Set; A) Set
acc 0 (a0A; (bOA; R(b, @) Acc(R, b)) Acc(R, a)

From these it is possible to derive a typed fix point combinator which given a
function which during recursion only accesses smaller arguments can calculate
the fix point of this function for all element for which the relation is accessible.
This can be shown by a simple structural recursion over Acc

rec O (f O (@OA; (bOA;R(b,@)B)B; a O A; Acc(R, a)) B
rec(f, a, acc(—, hy)) = f(a [b, hjrec(f, b, hy(b, h)))

Note that using an instance of the higher order argument is covered by the
definition of structurally smaller as given in [Coq92].

We argue now that the last argument is only used for the calculation of the
last argument. For this argument to be valid it is important that the pattern is
already linearised, otherwise there would be a possible dependency from the first
argument off acc in the left hand side of the pattern. Furthermore removing the
last arguments collapses no cases. Therefore it has no computational relevance
and can be eliminated. This means that from the typed fix point combinator
we can extract the ML version of a fix point combinator:

fun fix f a =
f a(fn b => fix f b);

fix : (’a -> (Pa -> ’b) -> ’b) -> ’a -> ’b

It is interesting to note that rec gives us indeed a partial algorithm, which
terminates only for applications for which a proof of accessibility exists.

Moreover, even for specific instances of rec it is the case that the optimised
algorithm is no longer strongly normalising. However, it is still weakly normalis-
ing, e.g. excluding reductions under a A-abstraction and inside a pattern. Since
all functional programming languages implement weak reduction strategies, this
does not seem to be a serious shortcoming.

Using this strategy we completely verified merge sort. That is we progified
the recursive functional underlying sort:

5An example is Acc(red1) where redl is the one-step reduction relation. Then Acc(redl) is
the subset of strongly normalising terms. This is precisely the presentation we used in [Alt93]

11

sortRec O (A O Set;
R O (A; A) Set;
r 0 Tot(R);
tr O Trans(R);
| O List(A);
sort 0 (I3 0 List(A); Lt(length(l), length(1))) SortSpec(l1)) SortSpec(l)

Based on this we can derive a function sort-aux which depends on a proof
that Lt is well-founded. Now using a proof that Lt is well founded we can finally
derive the sort function

sortAux O (r O Tot(R); tr O Trans(R); | O List(A); Acc(Lt, length(l))) SortSpec(l)
sortAux(r, tr, I, acc(hy)) = sortRec(A, R, r, tr, I, [I1, h]sortAux(r, tr, 11, hy(length(l1), h)))
sort 0 (A O Set; RO (A; A)Set; r O Tot(R); tr O Trans(R); | O List(A)) SortSpec(l)
sort = [A, R, 1, tr, I]sortAux(r, tr, |, accL t(length(l)))
During a visit by Simon Thompson we also progified quick sort. Using the
libraries of lemmas developed during the verification of insertion sort and merge
sort this turned out to be just a matter of several hours.

4 Progifying an LL(1) parser

The aim is to verify a simple LL(1) parser for the following grammar of simple
expressions
E:i|uE|(EoE)

This example was presented by Chisholm [Chi87] and informally verified using
Type Theory. Some parts have been formally verified in an early implementation
of Type Theory. This example has also been formalised in the NuPRL based
Oyster system ¢ and in the LEGO system 7.

When formalising this example we discovered that an important point has
been overlooked in Chisholm’s informal verification which is only compensated
by assuming a strong lemma in the formalised part. Our solution is to strengthen
the invariant, which not only seems more natural but also opens the way to
generalise the approach to a more general class of grammars.

As before we use an ML program as the prototype, which given a list of
symbols returns a a parse tree (PT) or a negative answer:

lpar | rpar | var | uwop | bop;
v | u of PT | b of PT*PT;

datatype Sy
datatype PT

fun parsel (var::rest) SOME (v,rest)

| parsel (uop::rest)

6By Christian Horn, Fachhochschule Furtwangen, Germany
"By Thomas Schreiber, University of Edinburgh, Great Britain

12

(case parsel rest of
(SOME (e,rest’)) => SOME (u e,rest’)
| _ => NONE)
| parsel (lpar::rest) =
(case parsel rest of
(SOME (el,bop::restl)) =>
(case parsel restl of
(SOME (e2,rpar::rest2))
=> SOME (b(el,e2),rest2)
| _ => NONE)
| _ => NONE)
| parsel _ = NONE;

fun parser w =
case parsel w of
(SOME (e, [1)) => SOME(e)
| _ => NONE;

Following Chisholm we define the structural recursive function unparse which
can be derived from the definition of the grammar above:

unparse O (PT) List(Sy)
unparse(v) = sgl(var)
unparse(u(h;)) = cons(uop, unparse(hy))
unparse(b(hy, hy)) = cons(Ipar, append(unparse(hy), cons(bop, append(unparse(hy), sgl(rpar)))))
The dependent type ParseAll defines a solution to a parsing problem, e.g.
finding an inverse to unparse:

ParseAll 0 (w O List(Sy)) Set
parseAll O (w O List(Sy); p O PT; Id(w, unparse(p))) ParseAll(w)

The parsing algorithm has to decide ParseAll, i.e. either to give a solution
or a proof that no such solution exists - therefore it has the following type:

parser O (w O List(Sy)) Dec(ParseAll(w))

where Dec is defined as

Dec O (Set) Set
yes [(P) Dec(P)
no O ((P)Empty) Dec(P)

Already from the structure of the parsing algorithm it should be obvious that
we cannot derive parser directly but that we have to allow partial solutions, e.g.
the parsing of an initial segment of the list. This is expressed by the inductive
family Parse:

13

Parse O (w O List(Sy)) Set
parse O (w O List(Sy); p O PT; r O List(Sy); Id(w, append(unparse(p), r))) Parse(w)

However, it is not sufficient to use Dec(Parse) as the main invariant of the
algorithm. Consider a successful parse of the string “(i”. We expect “0” as
the next symbol, but how can we show that the string is unparsable otherwise?
Indeed, it is just the fact that the grammar is LL(1) which implies that there
is at most one parse. Instead of assuming this property (as Chisholm does)
we specialise the invariant by introducing a new predicate which requires that
in the positive case not only a solution is given but it is also shown that it is

unique. This leads to the definition of ParseSpec

ParseSpec 0 (w O List(Sy)) Set
noParse O (w O List(Sy); (Parse(w)) Empty) ParseSpec(w)
uniqueParse O (w O List(Sy);
p O Parse(w);
(p’ O Parse(w)) Id(parse_PT(p), parse_PT(p’))) ParseSpec(w)

Following the structure of the ML program we are able to implement parseRec
— this requires a number of laborious lemmas to be proven:

parseRec O (w O List(Sy);
 p O (w OList(Sy); Lt(length(w'), length(w))) ParseSpec(w')) ParseSpec(w)

Applying a variant of the typed fix point combinator as described above and
using the proof that Lt is accessible for every natural number, we derive

parserl O (w O List(Sy)) ParseSpec(w)

From here it is quite straightforward to derive 1 parser by specialising the
result type.

This approach can be generalised to a general backtracking recursive descent
parser for non left recursive grammars. In the general case we extend the in-
variant to a list of parse trees which cover all possible parses of the list. Such
LL(1) arises just as the special case where this list is always either empty or a
singleton.

5 Concluding remarks

We presented a completely formal way to derive correct functional programs
and argued that this approach could be used in a program development system
which can generate code comparable to the code generated by a compiler for a
functional programming language.

One of the main differences of our presentation compared to similar studies
is that we do need to use sophisticated tactics to generate an incomprehensible

14

proof object and then to magically extract a program, but that the construction
of the program together with its correctness proof becomes a task which is not
too different from normal programming. Indeed, we are able to view our proof
objects as annotated programs. The ALF system we are using is essentially
a sophisticated program editor which supports the production of type correct
programs in a dependently typed language.

It should also be noted that we benefitted greatly from recent proposals to
simplify the notation of Type Theory, like the introduction of pattern matching.
We hope that this trend can be continued by copying other ideas from the
functional programming community - a good example are records and subtyping.

We emphasised the importance of prototypes and the gradual verification
— improvement — of programs. At the moment our approach is quite crude:
we started with a functional program and rewrote it in type theory. In an
integrated development system, this step should be smoother. A first proposal
in this direction is the program tactic for the Coq system [Par94].

We completely formalised a number of simple programs, our observation is
that although the effort is reasonable in some cases, it is still unreasonable for
others of a small size. However, it seems that the effectiveness could still be
vastly improved by improving the tools and extending the libraries.

Access to the code

All the formal developments mentioned or presented here are available by ftp.
They can be either loaded into the ALF system which is also available on ftp
or obtained in a postscript version for reading.

The alf code can be obtained via the following URL:

file://ftp.cs.chalmers.se/pub/users/alti/alf-examples

References

[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordstrom, and
Bjorn von Sydow. A user’s guide to ALF. Draft, May 1994.

[Alt93] Thorsten Altenkirch. A formalization of the strong normalization
proof for System F in LEGO. In J.F. Groote M. Bezem, editor,
Typed Lambda Calculi and Applications, LNCS 664, pages 13 — 28,
1993.

[BCMS89] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saa-
man. Do-it-yourself type theory. Formal Aspects of Computing,
1:19-84, 1989.

15

[Chi87]

[Coq92]

[Luo94]

[MN94]

[Nor88]

[NPS90]

[Par94]

[Pau86)

[PM8Y]

P. Chisholm. Derivation of a Parsing Algorithm in Martin-Lof’s
theory of types. Science of Computer Programming, 8:1-42, 1987.

Thierry Coquand. Pattern matching with dependent types. In
Proceeding from the logical framework workshop at Bastad, June
1992.

Z. Luo. Computation and Reasoning: A Type Theory for Computer
Science. International Series of Monographs on Computer Science.
Oxford University Press, 1994.

Lena Magnusson and Bengt Nordstrom. The ALF proof editor and
its proof engine. In Types for Proofs and Programs, LNCS, pages
213-237, Nijmegen, 1994. Springer-Verlag.

Bengt Nordstrom. Terminating General Recursion. BIT, 28(3):605—
619, October 1988.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Program-
ming in Martin-Léf’s Type Theory. An Introduction. Oxford Uni-
versity Press, 1990.

Catherine Parent. Developing certified programs in coq — the pro-
gram tactic. In Henk Barendregt and Tobias Nipkow, editors, Types
for Proofs and Programs, number 806 in LNCS, pages 3 — 18, 1994.

Lawrence C. Paulson. Constructing Recursion Operators in Intu-
itionistic Type Theory. Journal of Symbolic Computation, 2:325—
355, 1986.

Christine Paulin-Mohring. Ezxtraction de Programmes dans le Cal-
cul des Constructions. PhD thesis, Universite Paris VII, 1989.

16

