
1

The Quantum IO Monad
Thorsten Altenkirch and Alexander S. Green

School of Computer Science, The University of Nottingham

Abstract

The Quantum IO monad is a purely functional interface to quantum
programming implemented as a Haskell library. At the same time it
provides a constructive semantics of quantum programming. The QIO
monad separates reversible (i.e. unitary) and irreversible (i.e. prob-
abilistic) computations and provides a reversible let operation (ulet),
allowing us to use ancillas (auxiliary qubits) in a modular fashion. QIO
programs can be simulated either by calculating a probability distribu-
tion or by embedding it into the IO monad using the random number
generator. As an example we present a complete implementation of
Shor’s algorithm.

1.1 Introduction

We present an interface from a pure functional programming language,
Haskell, to quantum programming: the Quantum IO monad, and use
it to implement Shor’s factorisation algorithm. The implementation
of the QIO monad provides a constructive semantics for quantum
programming, i.e. a functional program which can also be understood
as a mathematical model of quantum computing. Actually, the Haskell
QIO library is only a first approximation of such a semantics, we would
like to move to a more expressive language which is also logically sound.
Here we are thinking of a language like Agda (Norell (2007)), which
is based on Martin Löf’s Type Theory. We have already investigated
this approach of functional specifications of effects in a classical context
(Swierstra and Altenkirch (2007, 2008); Swierstra (2008)). At the same

1

2 Thorsten Altenkirch and Alexander S. Green

time the QIO monad provides a high level interface to a hypothetical
quantum computer.

To make the presentation accessible to the non-Haskell programmer,
we shall give a brief introduction to the language in section 1.2. The QIO
monad separates reversible (i.e. unitary) and irreversible (i.e. probabilis-
tic) computations and provides a reversible let operation (ulet), allowing
us to use ancillas (auxiliary qubits) in a modular fashion. QIO programs
can be simulated either by calculating a probability distribution or by
embedding it into the IO monad using the random number generator.
An overview of the Quantum IO Monad (QIO) is given in section 1.3.

Exploiting Haskell’s class system we can present our algorithms in a
high level way, implementing abstractions using functional programming
technology. We describe the implementation of Shor’s algorithm in some
detail (section 1.5) also covering the necessary reversible arithmetic (sec-
tion 1.4). The actual implementation of QIO is covered in section 1.6,
where we focus in detail on the design of the QIO quantum simulator
functions sim and run.

Quantum programming is able to exploit the strange nature of quan-
tum physics to achieve classically impossible, or rather infeasible, tasks.
Most famously Shor’s algorithm shows that on a quantum computer we
can factor a number in polynomial time, hence we could break many
encryption schemes. While physicists are working on building working
quantum circuits with more than a handful of qubits, we computer sci-
entists grapple with the challenges quantum computing creates for soft-
ware: in designing algorithms, like Shor’s which exploit quantumness;
but also in designing languages which support abstractions relevant for
quantum computing. See Gay (2006) and Rüdiger (2007) for recent
language surveys.

Here we investigate a different approach: instead of implementing a
new language from scratch we provide a monadic interface to do quan-
tum programming in Haskell - the quantum IO monad (QIO). This has
a number of advantages:

• we can exploit existing means of abstraction present in Haskell to
structure our quantum programs, indeed we will give an example of
this by implementing the class Qdata which relates classical data-types
with their quantum counterparts;

• We can explore which semantic primitives are most useful to structure
quantum programs, without committing to a particular view too early;

The Quantum IO Monad 3

• we can exploit the existing support for Haskell, in the form of tools
and libraries to develop our quantum programs.

We believe that a purely functional approach is ideally suited for this
venture, since it already makes effects explicit (in Haskell via the IO
monad) and is close to a mathematical semantics of quantum program-
ming (see our introductory comments on constructive semantics).

While QIO realises the infrastructure we need to control a quantum
computer from Haskell, we don’t have to wait until the physicists de-
velop a practical quantum computer, we can use the same interface to
run a quantum simulator. Our approach is inspired by the first author’s
work with Wouter Swierstra on functional specifications of IO (Swier-
stra and Altenkirch (2007)). Indeed, we provide some choice here: we
can embed QIO into the IO monad using pseudo-random numbers to
simulate quantum randomness, we can statically calculate the proba-
bility distribution of possible results given a quantum program and we
can simulate the classical subset of our quantum operations directly.
The latter is useful for testing components efficiently since the quantum
simulation generates a considerable overhead.

All the code described in this chapter, i.e. the implementation of QIO
and the quantum algorithms implemented in it are available from the
second author’s web-page (Green (2008)).

There are a number of papers on modelling quantum programming
in Haskell, (Mu and Bird (2001); Sabry (2003); Karczmarczuk (2003);
Vizzotto et al. (2006)). They describe different abstractions one can use
to simulate quantum computation in a functional setting - however, our
approach is different in that we provide a high level interface in the spirit
of the IO monad which provides an interface to a hypothetical quantum
computer. Our previous work on QML (Altenkirch and Grattage (2005))
proposed a first order functional quantum programming language, the
present work is more modest but gives us a stepping stone to experi-
ment with various alternative structures useful for structuring quantum
programming and also to implement future versions of languages like
QML.

Acknowledgements

We have profited from Ralf Hinze’s and Andres Löh’s implementation of
lhs2TeX to typeset the Haskell code in this paper. The research reported
in this paper has benefited from EPSRC’s QNET framework and from

4 Thorsten Altenkirch and Alexander S. Green

the QICS framework 7 STREP. We would also like to thank the editors
(Simon Gay and Ian Mackie) for their efforts to publish this book and
the anonymous referees for their helpful feedback. We have had useful
discussions with members of the Functional Programming Laboratory
in Nottingham in particular we would like to thank Wouter Swierstra
for his advice on Haskell programming techniques.

1.2 Functional Programming and the Real World

Haskell is a pure functional programming language, treating computa-
tions as the evaluation of pure mathematical functions. A function is
said to be pure if it always returns the same result when given the same
arguments, and in producing that result has not caused any side-effects
to occur within the system. Haskell employs lazy evaluation which al-
lows expressions to only be evaluated when needed. This allows infinite
data structures to be defined in Haskell, whereby a finite part of the
data structure can be used as and when required. For example, you
could define an infinite list of all the prime numbers, and then define a
function that requires the first 10 elements of this list. The definition of
a pure function as given above may seem to inhibit the creation of any
sort of useful real world programs, as if a program cannot depend on
any state, and cannot change any state, ie. have any input or output,
then it can be argued it is the same as a program that does nothing.
However, we can make use of the categorical notion of a monad which
is a kind of abstract data-type that can be used to model side-effects
within a purely functional setting. In section 1.2.3 we’ll introduce the
notion of a monad within Haskell, and show how they can be used to
define stateful computations. We’ll also look at how Haskell deals with
I/O using the IO monad. In the following section (section 1.2.1) we’ll see
how functions are defined in Haskell, starting with some simple bitwise
operations and then a look at how higher order functions and recursion
are a mainstay of Haskell programs.

Another useful aspect of programming in Haskell is its use of type-
classes which allow polymorphic functions to be defined for any type
which satisfies the class requirements. Other functions can then be de-
fined that have the pre-requisite that the input type is a member of
one of the type-classes (as apposed to just a specific type). A common
example of a type-class in Haskell is the equality class (Eq). A type

The Quantum IO Monad 5

can become a member of the Eq class if it can define a function ≡†
that defines equality for that type. The programmer could then define
a polymorphic function whose only restriction on the input type is that
it is a member of Eq . We will see in section 1.2.2 an example of how
type-classes can be used to define monoids within Haskell. You’ll also
notice that monads are defined by a type-class within Haskell.

1.2.1 Haskell by example

The Haskell language definition (Jones (2003)), Haskell compilers and
interpreters, the description of the standard libraries and much more
can be found on the Haskell homepage: www.haskell.org. There are
a number of introductory textbooks available, e.g. (Hutton (2007)).
We restrict ourselves here to a small number of introductory examples,
relevant to our development.†

We have chosen the example of defining a full-adder function in Haskell
as in section 1.4 we go on to design reversible arithmetic functions,
starting off with a reversible adder function. You’ll see that the basic
idea is the same, defining a function that adds single bits, and keeps
a track of overflow. Addition is then achieved by calling this function
recursively.

In Haskell it is useful to first define the type of the function. For
example, if we wanted to define a bitwise full-adder function we could
first define the function that adds together the two-bits to be added and
the input carry bit, and returns the pair consisting of the output bit and
the output carry bit. Using the Bool type (of Booleans) to represent bits,
this would give us a function which takes three input bits and returns a
pair of output bits.

addBit :: Bool → Bool → Bool → (Bool ,Bool)

Currying allows us to chain the input bits in this way. Note that it is
not always necessary for the programmer to define the type of a function
as Haskell employs type-inference at compile time to infer the type of
a function, however it is deemed good programming practise to do so.
Now we have the type for our function, we can define the function itself.

addBit c a b = ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c), (a 6≡ b) 6≡ c)

† We use lhs2tex to typeset Haskell code, hence == becomes ≡.
† It is useful to note that the current code (Green (2008)) makes use of some of the

extensions only available with the Glasgow Haskell Compiler.

6 Thorsten Altenkirch and Alexander S. Green

Given the three input bits (a,b the bits to be summed, and c the input
carry bit) we can define the output as the pair of the two functions that
define the two output bits respectively. The left hand side of the pair
computes the output carry bit (which occurs when at least 2 of the 3
input bits are true), and the right hand side computes the sum of the
three input bits (where addition modulo 2 is the same as the logical 6≡
(or xor)).

Addition can now be extended to lists of Booleans, recursively. This
is achieved by feeding the carry-bit through the function.

add ′ :: Bool → [Bool]→ [Bool]→ [Bool]
add ′ c [] [] = []
add ′ c (a : as) (b : bs) = a ′ : (add ′ c′ as bs)

where (c′, a ′) = addBit c a b

When evaluated, Haskell will use pattern matching to apply the correct
function definition to the current arguments, ie. starting from the first
line and going down until the current arguments match the patterns
given in the definition. In the function add ′ above the first line will only
pattern match when both the list arguments are empty ([] in Haskell),
and the second line will only pattern match when both the list arguments
have at least one element (The cons operator in Haskell : is used to
construct lists, so a : as is the list with head element a and (possibly
empty) tail as).

The first line of the definition gives us the base case, where the sum of
two empty lists of Booleans is also the empty list. This base case doesn’t
take into account the final carry bit, showing us that our adder as defined
here doesn’t deal with overflow. The second line of the definition is the
recursive call and uses our addBit function from above to add the current
bits, and then recursively calls add ′ with the new carry bit and the tails
of the input lists. The where keyword is used to give variable names to
the result of calling addBit .

The full adder is finished off by always starting the call to the addition
function above with a False input carry-bit. The use of currying to define
our functions means that this is a valid function as required.

add :: [Bool]→ [Bool]→ [Bool]
add = add ′ False

As they stand, these functions aren’t defined for all inputs, as there is
no definition of the function when only one of the input lists is empty.
Our intention is that they are only used for lists of the same length but

The Quantum IO Monad 7

it is not straightforward to express this constraint using Haskell’s type
system (we’d be better off with Agda). Indeed, we will be using the
functions only over a fixed wordsize which is useful when defining zero:

wordSize :: Int
wordSize = 8

zero :: [Bool]
zero = take wordSize (repeat False)

data Word = Word [Bool]

Here Word is a datatype with one constructor which is also called Word ,
a common Haskell convention.

The zero function above shows how we can make use of infinite data
structures, as the function repeat creates an infinite list of its argument
(in this case False), but calling zero is possible due to lazy evaluation
and creates the data structure:
[False,False,False,False,False,False,False,False]

1.2.2 Monoids

A monoid, or a semi-group, is defined as an algebraic structure with an
associative binary operation, along with an identity element. In Haskell,
we can realise this as a type-class that provides an element of the under-
lying type as the identity element, and a binary function acting on and
returning the underlying type as the monoidal operation. In Haskell
the identity element is usually referred to as mempty and the binary
operator as mappend .

class Monoid a where
mempty :: a
mappend :: a → a → a

A nice example of a type which can fulfil the requirements of the monoid
type-class is the Word type which we have defined above.

instance Monoid Word where
mempty = Word zero
(Word a) ‘mappend ‘ (Word b) = Word (a ‘add ‘ b)

The identity element is the zero (lifted to a Word), and the binary
operation is the add function (again lifted to words).

With monoids it is also possible to introduce an idea of stateful pro-
grams within the pure world of Haskell. However, it is not possible to

8 Thorsten Altenkirch and Alexander S. Green

access the state at intermediary stages within a computation. A stateful
computation over the state type s is defined by a transition function:

data State s = State{runState :: s → s }

The destructor function runState, i.e. the inverse to the constructor, is
generated automatically, satisfying the equation runState (State f) = f .

The monoidal structure is used to define how these transition functions
can be sequenced:

instance Monoid (State s) where
mempty = State id
(State f) ‘mappend ‘ (State g) = State (g ◦ f)

The sequencing of these state transition functions is simply just func-
tional composition.

1.2.3 Monads

Monads are a natural generalisation of the concept of a monoid in Cat-
egory Theory, by looking at monoids in a given category. In functional
programming they are used as a notion for defining computations. These
computations in themselves don’t necessarily need to be pure computa-
tions, which can be achieved by defining datatypes that describe the
side-effects that a computation may have. In this way, it is possible to
define effectful computations within Haskell as computations within a
monad. The idea of a monad in Haskell is quite simple, but is used
extensively to create any sort of computations that would otherwise not
be pure. In section 1.2.4 we’ll see that all I/O in Haskell takes place in
the IO monad, and that the use of monads within Haskell is so common
that Haskell provides the do notation which is a form of syntactic sugar
that enables monadic programs to be written in a more imperative style.
In this section we shall introduce monads, starting with their definition
as a type-class within Haskell:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Here m :: ∗ → ∗ is an operator on types, this fact is inferred by Haskell.
A monad is defined by a return function whose job it is to lift a member
of the underlying type into the monadic version of the same type, and

The Quantum IO Monad 9

a bind function (denoted >>=) which defines how computations can be
sequenced within the monad.

A simple example of a monad is the Maybe monad, which is defined
by the data type

data Maybe a = Just a | Nothing

a member of this data type is either Just a member of the underlying
data-type, or it’s Nothing . A simple way of thinking of this, is that
Nothing defines an error value in the monad, and it is the job of the
monadic structure to propagate Nothing values through any computa-
tion where they may occur. This is achieved by defining Maybe as an
instance of the monad type class as follows:

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x)>>= f = f x

the return function lifts values into the monad by making them a Just
value, and the bind function pattern matches on the monadic type to
either propagate a Nothing or apply a computation to the underlying
Just value.

A more interesting example of monads in Haskell is the state monad,
which like the state monoid above allows stateful computations to be
defined. However, unlike the monoid example, the state monad also
allows values to be accessed, giving us effects (e.g. changes in state),
and values which may depend on previous effectful computations. A
stateful computation over the state type s that can return values of
type a is defined by a transition function that returns a value along
with the new state.

data StateM s a = StateM {runStateM :: s → (a, s)}

We can now define the monadic behaviour required to thread state
through a computation. The return function can simply create a transi-
tion function that returns the underlying value, but has no effect on the
state. The bind function returns a transition function that extracts the
value and new state from applying its left hand argument to the given
state, and uses these new values in applying its right hand argument.

10 Thorsten Altenkirch and Alexander S. Green

instance Monad (StateM s) where
return a = StateM (λs → (a, s))
(StateM x)>>= f = StateM (λs → let (v , s ′) = x s

in runStateM (f v) s ′)

In order to actually use the state monad it is necessary to create some
sort of an interface to it. The MonadState class is often used for this: †

class MonadState m s | m → s where
get :: m s
put :: s → m ()

instance MonadState (State s) s where
get = State (λs → (s, s))
put s = State (λ → ((), s))

The get function is used to return the current state as the returned value,
and leaves the overall state unchanged, and the put function updates the
state to the given value. Since put doesn’t return any information we
are using Haskell’s unit type () corresponding to void in C.

We shall now give some examples of monads which we have created
specifically for the implementation of the QIO monad. Firstly, a type of
vectors which are used in QIO for the creation of probability distribu-
tions, which we will use when defining the sim function later.

A vector over types x and a is defined as a list of pairs of those types.

data Vec x a = Vec{unVec :: [(a, x)]}

‡ The following functions are defined over vectors:

empty :: Vec x a
empty = Vec []

(@) :: (Num x ,Eq a)⇒ Vec x a → a → x
(Vec ms)@a = foldr (λ(b, k) m → if a ≡ b then m + k else m) 0 ms

(⊗) :: Num x ⇒ x → (Vec x a)→ Vec x a
l ⊗ (Vec as) = (Vec (map (λ(a, k)→ (a, l ∗ k)) as))

(⊕) :: (Vec x a)→ (Vec x a)→ Vec x a
(Vec as)⊕ (Vec bs) = (Vec (as ++ bs))

empty is simply the empty vector, @ is a lookup function that requires
the type x to be in the Num class (of numeric types), and the type a

† The functional dependency m → s is a hint to the Haskell type checker and may
be ignored by the reader.

‡ unVec is the inverse of the constructor Vec.

The Quantum IO Monad 11

to have equality (Eq), and returns the sum of the numeric argument
of every member of the vector that matches the given argument. ⊗ is
a scalar multiplication function that again requires the x type to be a
numeric type, such that it can multiply the numeric part of each member
of the vector by the given scalar. The ⊕ is simply the concatenation
function for vectors, and joins two vectors by using list concatenation.

We can now define vectors over numeric types as a monad, specifically
such that they can be used to hold the probability distributions required.
The return function lifts an underlying value into the monad type by
just giving it a probability of 1 as the only member of the probability
distribution. The bind operation, applies the bound function to the
first argument of every member of the current probability distribution,
and multiplies the numeric argument by this new result, with the effect
of updating the probability distribution depending on the effect of the
given function.

instance Num n ⇒ Monad (Vec n) where
return a = Vec [(a, 1)]
(Vec ms)>>= f = Vec [(b, i ∗ j) | (a, i)← ms, (b, j)← unVec (f a)]

To make use of these vectors in the implementation of QIO we now define
a PMonad or a probability monad as a monad along with the extra
function merge. The merge function can be thought of as a function
that defines how two computations (c,d) of the same type can be merged
depending on the given R argument, where merge p c d means that the
probability of c occurring is p, and the probability of d occurring is 1−p.

class Monad m ⇒ PMonad m where
merge :: R→ m a → m a → m a

To create our probability distributions for the sim function we can now
define the actual type of our probability distributions (Prob a).

data Prob a = Prob{unProb :: Vec R a }

In this case, the distribution can be over any type a with a R argument
as its current probability. We continue by defining the type Prob as a
monad by lifting the monadic operations for Vec.

instance Monad Prob where
return = Prob ◦ return
(Prob ps)>>= f = Prob (ps >>= unProb ◦ f)

12 Thorsten Altenkirch and Alexander S. Green

instance PMonad Prob where
merge pr (Prob ift) (Prob iff) = Prob ((pr ⊗ ift)

⊕ ((1− pr)⊗ iff))

The PMonad is then defined with the merge function multiplying each
probability distribution by its respective probability, and joining them.
In comparison, the run function requires that the IO monad is defined as
a PMonad which is achieved by using the built in random number gen-
erator to probabilistically return one of the given arguments depending
on the given probability:

instance PMonad IO where
merge pr ift iff = Random.randomRIO (0, 1.0)

>>= λpp → if pr > pp then ift else iff

We’ll see more on how the PMonad type is used in the implementation
of QIO in section 1.6.

1.2.4 Haskell’s IO Monad, and do notation

All I/O in Haskell takes place within the IO Monad, in fact in a compiled
Haskell program, the main function which is called by the system at
run-time has type IO (). This should not be that surprising as any
interaction with the system makes use of I/O. A simple Hello World
program written in Haskell would be:

main :: IO ()
main = putStrLn "Hello, world!"

where the function putStrLn :: String → IO () defines an effectful com-
putation that outputs the given string to stdout, and returns the unit
type as its value.

The IO Monad defines many standard I/O functions that can be used
within Haskell programs, however, we shall not discuss them all in detail
here.

As the IO monad is indeed a monad within Haskell, it is necessary
to bind all IO computations together using the monadic bind function.
For example, if we wanted to write a function that echoes a character
to the screen we could use the two following IO functions:

getChar :: IO Char
putChar :: Char → IO ()

The Quantum IO Monad 13

getChar is a computation that reads a character from stdin, putChar is
a computation that outputs the given character to stdout, returning the
unit type. The echo function below binds these two functions together
such that the character obtained from the getChar function is fed as the
argument to the putChar function and hence echoed to the screen. The
echo function then goes on to call itself again.

echo :: IO ()
echo = getChar >>= (λc → putChar c)>> echo

This is quite a simple example, and already the monadic notation is
looking quite complicated. Imagine if we wanted to bind lots of monadic
operations together, such as prompting for a file name, reading in the file
name, opening the file, reading in the file contents, doing a computation
with the file contents, then saving the new data back to the file. This
isn’t an unlikely request for a program, but it would seem that a compli-
cated function would need to be defined in order to bind all these actions
together. However, Haskell once again comes to our rescue, providing
what is known as the do notation to simplify the creation of monadic
programs. do notation is in fact just syntactic sugar, and the compiler
converts it back to the necessary binds at compile time. The do notation
is designed to give monadic programs a more imperative look and style.
For example the echo example from above written using do notation:

echo = do c ← getChar
putChar c
echo

For the rest of this chapter we shall be making extensive use of do
notation which can be used for any monadic programs. In the next
section (1.3) we shall introduce the QIO monad, in the style of the IO
monad, whereby we shall be introducing its constructors and how they
are used as apposed to the details of their implementation. For more
details on the implementation please see section 1.6 towards the end of
the chapter.

1.3 The QIO interface

The QIO monad (figure 1.1) provides a functional interface to quantum
programming, similar to the way the IO monad provides an interface
to conventional stateful programming. We will provide a constructive
semantics of QIO later in section 1.6, but for the moment we will explain

14 Thorsten Altenkirch and Alexander S. Green

Qbit :: ∗
QIO :: ∗ → ∗
U :: ∗
instance Monad QIO

mkQbit :: Bool → QIO Qbit
applyU :: U → QIO ()
measQbit :: Qbit → QIO Bool

instance Monoid U

swap :: Qbit → Qbit → U
cond :: Qbit → (Bool → U) → U
rot :: Qbit → ((Bool ,Bool) → C) → U
ulet :: Bool → (Qbit → U) → U

urev :: U → U

Prob :: ∗ → ∗
instance Monad Prob

run :: QIO a → IO a
sim :: QIO a → Prob a
runC :: QIO a → a

Fig. 1.1. The QIO API

its constructs informally. The basic idea is that our classical computer is
connected to a quantum device which contains a number of qubits. The
quantum device can be instructed to set qubits to one of the computa-
tional base states (i.e. |0〉 = False or |1〉 = True), to perform unitary
operations involving one or several qubits, or to measure qubits and
observe the outcome, this operation is probabilistic.

Figure 1.1 gives a quick overview of the API: it consists of two types†
Qbit and U and an operator on types QIO . We read QIO a as the type
of quantum operations which return values of type a. The API specifies
that QIO is a monad, i.e. provides operations for embedding functional
computation (return) and allows sequential composition (>>=). Simi-
larly, U is a monoid, i.e. it has a neutral element mempty and an oper-
ation mappend . The difference reflects the fact that we cannot extract
any information from a reversible computation.

As for conventional IO we use Haskell’s do notation, which enables
us to write imperative looking programs which are translated into pure
functional programs using monadic combinators. As a first trivial ex-
ample lets write our quantum hello world program, which initialises a
qubit and then measures it:

hqw :: QIO Bool

hqw = do q ← mkQbit False
measQbit q

† The kind of types is written ∗ in Haskell.

The Quantum IO Monad 15

We can now either run our quantum program, using run hqw , or since
it doesn’t involve any non-classical steps, using runC hqw . runC is only
able to run QIO computations consisting of the classical subset of avail-
able operations, and will throw an error if any quantum operations occur.
We provide this functionality since the classical simulation is much more
efficient and can be used to test classical (but reversible) components of
a quantum program. Alternatively we can simulate the quantum pro-
gram using sim hqw which calculates a probability distribution, in this
case the difference is unremarkable.

A more interesting example is to apply the Hadamard transformation

1√
2

[
1 1
1 −1

]
to our qubit before measuring it. Given a qubit q the expression uhad q ::
U represents this unitary, i.e. reversible computation - we’ll provide the
implementation later. The function applyU :: U → QIO () allows us
to run a unitary computation, thereby embedding reversible into non-
reversible quantum computations. We arrive at the following piece of
code:

rnd :: QIO Bool

rnd = do q ← mkQbit False
applyU (uhad q)
measQbit q

The expression run rnd will now produce a random result. How can
this be, given that Haskell is a pure functional language? Indeed run
embeds QIO into Haskell’s IO-monad which allows us to access effects
such as random computations. In contrast sim rnd doesn’t use IO but
returns the probability distribution: [(True, 0.5), (False, 0.5)]

To demonstrate that QIO goes beyond classical random computation
we can produce a pair of entangled qubits. To do this we use the uni-
tary conditional cond which allows us to construct branching reversible
quantum programs. I.e. given q :: Qbit and t , u :: U the expression
cond q (λb → if b then t else u) intuitively runs the programs t , u
depending on q . Actually, if the current value of q is not a base state,
both computations t and u will contribute to the result. This is the
source of quantum parallelism.

We exploit the conditional to produce a bell pair, and measure it.
Given a qubit qa in any state and another qubit qb prepared in the base
state False we can entangle qb with qa using the one-sided ifQ which is

16 Thorsten Altenkirch and Alexander S. Green

implemented as a conditional that applies the empty computation when
the control qubit is False. The expression unot qb :: U negates qb.

Putting everything together we obtain:

testBell :: QIO (Bool ,Bool)

testBell = do qa ← mkQbit False
applyU (uhad qa)
qb ← mkQbit False
applyU (ifQ qa (unot qb))
a ← measQbit qa
b ← measQbit qb
return (a, b)

Evaluating sim testBell reveals that the two apparently independent
measurements always agree: [((True,True), 0.5), ((False,False), 0.5)].
The reason is that we created an entangled quantum state 1√

2
(|00〉+|11〉)

and once we measure one of the bits it is projected into one of the base
states |00〉 and |11〉 with probability 1

2 = | 1√
2
|2.

The reader may wonder, whether cond or ifQ will always produce a
unitary, i.e. reversible operation. Couldn’t we irreversibly reset a qubit
q by running ifQ q (unot q)? Indeed, the conditional has a semantic
side condition that the computations in the branches will not change
the qubit we are branching over. Haskell’s type system is too weak to
express this constraint but this violation will be caught by sim or run
at runtime. This could be fixed by using a more expressive type system,
e.g. Coq (The Coq development team (2004)) or Agda (Norell (2007)).

Using functional abstraction we can organise our quantum programs
more succinctly. E.g. the bell example exploits the fact that we can share
the state of a qubit. This can be realised by the following function:

share :: Qbit → QIO Qbit
share qa = do qb ← mkQbit False

applyU (ifQ qa (unot qb))
return qb

It is important to realise that the quantum state is not copied (this
would contradict the no-cloning theorem), but merely shared †. That is
share qa produces a new qubit which shares the state of the given qubit.

† Quantum sharing is used in QML (Altenkirch and Grattage (2005)) and for the
linear-algebraic λ-calculus (Arrighi and Dowek (2008)) to model non-linear use of
quantum variables.

The Quantum IO Monad 17

We can also separate the production of a qubit in the |+〉 or |−〉 states:

|+〉 :: QIO Qbit
|+〉 = do q ← mkQbit False

applyU (uhad q)
return q

|−〉 :: QIO Qbit
|−〉 = do q ← mkQbit True

applyU (uhad q)
return q

More over we can separate the production of a bell pair and its mea-
surement:

bell :: QIO (Qbit ,Qbit)
bell = do qa ← |+〉

qb ← share qa
return (qa, qb)

Now the function bell simply generates a bell pair. The main function
testBell now becomes

testBell = do (qa, qb)← bell
a ← measQbit qa
b ← measQbit qb
return (a, b)

This shows that functional abstraction and quantum programming in-
teract well, extending Haskell’s functional approach for classical effects
to quantum effects.

We can go further and use Haskell’s class system to organise quantum
data. The reader may have noticed that the functions mkQbit ::Bool →
QIO Qbit and measQbit :: Qbit → QIO Bool look like inverses, relating
the classical type Bool with the quantum representation Qbit . This
idea extends to other types, i.e. in the example testBell we may want to
exploit the correspondence of (Bool ,Bool) and (Qbit ,Qbit) by providing
functions mk2Qbits : (Bool ,Bool)→ QIO (Qbit ,Qbit) and meas2Qbits :
(Qbit ,Qbit) → QIO (Bool ,Bool). Indeed, also the conditional can be
lifted to pairs, while cond had the type Qbit → (Bool → U) → U
the corresponding operation for pairs allows us to branch over a pair:
cond2Qbits : (Qbit ,Qbit)→ ((Bool ,Bool)→ U)→ U .

More generally, we can introduce a class which allows us to relate
classical data and quantum data in a systematic fashion: †

† The definition also exploits functional dependencies a → qa, qa → a which are
again hints to the Haskell type checker.

18 Thorsten Altenkirch and Alexander S. Green

class Qdata a qa | a → qa, qa → a where
mkQ :: a → QIO qa
measQ :: qa → QIO a
condQ :: qa → (a → U)→ U

An instance of this class is qubits with booleans:

instance Qdata Bool Qbit where
mkQ = mkQbit
measQ = measQbit
condQ q br = cond q br

and we can show that Qdata is closed under pairing:

instance (Qdata a qa,Qdata b qb)⇒ Qdata (a, b) (qa, qb) where

mkQ (a, b) = do qa ← mkQ a
qb ← mkQ b
return (qa, qb)

measQ (qa, qb) = do a ← measQ qa
b ← measQ qb
return (a, b)

condQ (qa, qb) br = condQ qa (λx → condQ qb (λy → br (x , y)))

Other instances of this class include the closure of Qdata over lists:

instance Qdata a qa ⇒ Qdata [a] [qa] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

letU as xsu = letU ′ as []
where letU ′ [] xs = xsu xs

letU ′ (a : as) xs =
letU a (λx → letU ′ as (xs ++ [x]))

condQ qs qsu = condQ ′ qs []
where condQ ′ [] xs = qsu xs

condQ ′ (a : as) xs =
condQ a (λx → condQ ′ as (xs ++ [x]))

and in section 1.4 we’ll even present a quantum integer data type (QInt),
that is a member of Qdata along with the classical Int data type.

We can now use the generic operation measQ to define testBell :

The Quantum IO Monad 19

testBell = do qab ← bell
measQ qab

The complete overview of the QIO API is given in figure 1.1. Let’s
explain the operations we haven’t yet covered in our examples. First
note that U is actually a monoid, i.e. we can execute unitary oper-
ations sequentially using mappend . The neutral element is the empty
computation mempty which is actually needed to derive ifQ from cond :

ifQ :: Qbit → U → U
ifQ q u = cond q (λx → if x then u else mempty)

For brevity, we shall now write mappend as � and mempty as •. Our
examples also already exploited the fact that QIO is a monad, using
the do notation which translates programs with an imperative look into
pure monadic functional programs.

Our primitive unitary operations are rot and swap. The function rot
allows us to apply any unitary 2× 2 complex valued matrix represented
as a function (Bool ,Bool) → C to a given qubit. We can derive the
operations uhad , unot and uphase:

unot :: Qbit → U
unot x = rot x (λ(x , y)→ if x ≡ y then 0 else 1)

uhad :: Qbit → U
uhad x = rot x (λ(x , y)→ if x ∧ y then− h else h)

where h = (1 / sqrt 2)

uphase :: Qbit → R→ U
uphase x r = rot x (rphase r)

rphase :: R→ Rotation
rphase (False,False) = 1
rphase r (True,True) = exp (0 : + r)
rphase (,) = 0

We also include swap x y as a primitive for reasons of efficiency even
though this function could be derived: The swap operation is equivalent
to three controlled not operations in a row as in the following circuit
diagram:

|ψ〉 • X • |φ〉

|φ〉 X • X |ψ〉

which could easily be implemented in QIO as:

20 Thorsten Altenkirch and Alexander S. Green

swap :: Qbit → Qbit → U
swap qa qb = ifQ qa (unot qb)

� ifQ qb (unot qa)
� ifQ qa (unot qb)

Many useful quantum computations use ancillas, i.e. auxiliary qubits,
an example is quantum addition as we will see later (section 1.4). A
quantum computation using ancillas is unitary, if it doesn’t change the
state of the ancilla. This may sound useless, however, we are allowed to
use the ancilla as long as we make sure that we leave it back in the state
in which we found it. The QIO API supports ancillas with the function
ulet :: Bool → (Qbit → U) → U : the expression ulet b f temporarily
creates a new qubit q initialised in the base state b, runs f q and then
returns q to the pool of unused qubits. Again ulet imposes a semantic
condition: After running f q the qubit q has to again be in the base
state b. As before, this semantic condition is caught at runtime. As the
ulet constructor is again a function relating Booleans and qubits, we are
able to extend the Qdata class with the function:

class Qdata a qa | a → qa, qa → a where
...
letU :: a → (qa → U)→ U

meaning any members of the Qdata class must also define a letU function
to allow any Qdata to be used as an auxiliary quantum data structure.
For example the letU functions for qubits and for pairs of Qdata are as
follows:

instance Qdata Bool Qbit where
...
letU b xu = ulet b xu

instance (Qdata a qa,Qdata b qb)⇒ Qdata (a, b) (qa, qb) where
...
letU (a, b) xyu = letU a (λx → letU b (λy → xyu (x , y)))

Finally, we have an operation urev which calculates the inverse of
a given invertible operation. The following subsections go on to give
some slightly more in depth examples of quantum computations written
in QIO. Section 1.3.1 gives details of our implementation of Deutsch’s
algorithm, and section 1.3.2 gives details of our implementation of quan-
tum teleportation.

The Quantum IO Monad 21

1.3.1 Deutsch’s algorithm

Deutsch’s Algorithm (Deutsch (1985)) was presented as one of the first
and simplest quantum algorithms that could be proven to provide a so-
lution to its problem quicker than any classical solution. The problem
involves being given a function f :: Bool → Bool and being asked to cal-
culate whether the function is balanced or constant. There are only four
possible functions that f can be, which relate to the identity function,
the not function, the constant False function or the constant True func-
tion. Classically it can be shown that two applications of f are required
to tell whether it is one of the balanced or one of the constant functions,
but in a quantum computer it is possible to get the answer having only
to run the function f once (albeit over a quantum state).

In the QIO monad the algorithm can easily be modelled: we initialise
two qubits in the |+〉 and |−〉 states, and then conditionally negate
the second qubit depending on the outcome of applying f to the first
qubit. We then apply the Hadamard transformation to the first qubit
and measure it. This is confusing at the first glance because classically
it seems that the first qubit should be unaffected by the operation we
have performed. But indeed, doing the operation in the |+〉, |−〉-basis
does the trick and we have to consult f only once.

deutsch :: (Bool → Bool)→ QIO Bool
deutsch f = do x ← |+〉

y ← |−〉
applyU (cond x (λb → if f b then unot y else •))
applyU (uhad x)
measQ x

In either of the cases where f was a constant function then the mea-
surement will yield False (with probability 1), and in the cases where
f is a balanced function the measurement will yield True (again with
probability 1).

Evaluating, sim (deutsch ¬) gives [(True, 1.0)], sim (deutsch id) also
gives [(True, 1.0)]. sim (deutsch (λx → False)) gives [(False, 1.0)], and
sim (deutsch (λx → True)) also gives [(False, 1.0)].

1.3.2 Quantum Teleportation

Quantum teleportation can be thought of as a process that transfers
the state of a single qubit to another single qubit. It makes use of an

22 Thorsten Altenkirch and Alexander S. Green

entangled pair of qubits that are shared between the transmitting and
receiving parties (usually referred to as Alice and Bob). It doesn’t break
the rule of no-cloning as the state of the original qubit is lost in the
process. An example text-book description of quantum teleportation as
taken from (Nielsen and Chuang (2000)) is as follows:

Alice and Bob met long ago but now live far apart. While together they
generated an EPR pair, each taking one qubit of the EPR pair when they
separated. Many years later, Bob is in hiding, and Alice’s mission, should she
choose to accept it, is to deliver a qubit |ψ〉 to Bob. She does not know the
state of the qubit, and moreover can only send classical information to Bob.
Should Alice accept the mission?

Intuitively, things look pretty bad for Alice. She doesn’t know the state
|ψ〉 of the qubit she has to send to Bob, and the laws of quantum mechanics
prevent from determining the state when she only has a single copy of |ψ〉 in
her possession. What’s worse, even if she did know the state |ψ〉, describing
precisely takes an infinite amount of classical information since |ψ〉 takes val-
ues in a continuous space. So even if she did know |ψ〉, it would take forever
for Alice to describe the state to Bob. It’s not looking good for Alice. For-
tunately for Alice, quantum teleportation is a way of utilising the entangled
EPR pair in order to send |ψ〉 to Bob, with only a small overhead of classical
communication.

In outline, the steps of the solution are as follows: Alice interacts the qubit
|ψ〉 with her half of the EPR pair, and then measures the two qubits in her
possession, obtaining one of four classical results, 00, 01, 10, and 11. She
sends this information to Bob. Depending on Alice’s classical message, Bob
performs one of four operations on his half of the EPR pair. Amazingly by
doing this he can recover the original state |ψ〉!

The following quantum circuit gives a more precise description of
quantum teleportation.

|ψ〉 • H 76 5401 23M1 •

EPR
X 76 5401 23M2 •

XM2 ZM1 |ψ〉

The top two lines represent Alice’s qubits, that is the input qubit (which
is in the state |ψ〉), and her qubit from the EPR pair. The bottom
line represents Bob’s qubit. Alice entangles the input qubit with her
EPR pair qubit using a controlled Not operation, as we have shown
previously in the sharing example. Then she performs a Hadamard
rotation on the input qubit before measurement (which is equivalent
to a measurement in the Hadamard basis). The double lines coming

The Quantum IO Monad 23

from the measurements represent the classical data that she sends to
Bob, who correspondingly has to perform (conditionally depending on
the classical bits) an X and a Z rotation on his qubit, which will then
be in the state |ψ〉. It is also clear to see that the state of the original
input qubit has been lost as it will be in one of the base states, |0〉 or
|1〉, depending upon the measurement outcome.

Within the QIO monad, quantum teleportation can be considered as
given by 3 functions. Firstly there is what Alice has to do, secondly
there is what Bob has to do, but thirdly there is the requirement that
they each have one qubit from an entangled pair of qubits. This third
requirement means that each part of the teleportation algorithm must
take part within the same quantum system.

Alice has her initial qubit (aq) and one of the entangled pair of qubits
(eq). All she has to do is apply a controlled not between these two qubits,
and then perform the hadamard rotation on the first one. Finally she has
to measure these two qubits and send the results of this measurement
to Bob. In the QIO monad this can be coded as:

alice :: Qbit → Qbit → QIO (Bool ,Bool)
alice aq eq = do applyU (ifQ aq (unot eq))

applyU (uhad aq)
measQ (aq , eq)

Bob has his qubit from the entangled pair (eq), and receives the clas-
sical data from Alice (cd). Depending on the classical data, Bob must
apply the necessary unitary. Again, in the QIO Monad this can be coded
as:

uZ :: Qbit → U
uZ qb = (uphase qb 0.5)

bobsU :: (Bool ,Bool)→ Qbit → U
bobsU (False,False) eq = •
bobsU (False,True) eq = (unot eq)
bobsU (True,False) eq = (uZ eq)
bobsU (True,True) eq = ((unot eq) � (uZ eq))

bob :: Qbit → (Bool ,Bool)→ QIO Qbit
bob eq cd = do applyU (bobsU cd eq)

return eq

The teleportation algorithm can be defined by creating an entangled
pair, Alice uses the input qubit and one of the pair to return the clas-

24 Thorsten Altenkirch and Alexander S. Green

sical data. Bob can then use this classical data and his element of the
entangled pair to return the teleported qubit. In the QIO Monad this
is coded as:

teleportation :: Qbit → QIO Qbit
teleportation iq = do (eq1 , eq2)← bell

cd ← alice iq eq1
tq ← bob eq2 cd
return tq

1.4 Reversible arithmetic

Quantum computation is a superset of classical reversible computation,
enabling classical reversible computations to be defined within QIO.
Reversible computation can by definition have no side-effects, and in-
deed our runC function for the evaluation of the classical subset of
QIO doesn’t need to embed the result of the evaluation in a monad:
runC :: QIO a → a just returns a pure result. However, as we are
working in the quantum realm, it is possible to run these purely classi-
cal computations over a quantum state. In essence, this has the effect
of running the computation over each base state within a given super-
position. We’ll see later, in section 1.5, that being able to run an albeit
classical modular exponentiation function over a super-position of states,
plays a major role in Shor’s algorithm, and in the rest of this section we
shall be looking at our library of reversible arithmetic functions in QIO,
that will build up to give us this modular exponentiation function that
is required. Much of our work on reversible arithmetic follows from the
work in (Vedral et al. (1995)).

For this section we have created the quantum data-type QInt which
is essentially a wrapper for a list of qubits.

data QInt = QInt [Qbit] deriving Show

We provide functions which convert between classical integers and lists
of Booleans of fixed length. The length is defined by:

qIntSize :: Int

These functions (int2bits and bits2int) are then used to create an in-
stance of the Qdata class between Int and QInt . The definitions mostly
use the definitions for lists of Qdata but lifted to the QInt datatype.

The Quantum IO Monad 25

instance Qdata Int QInt where
mkQ n = do qn ← mkQ (int2bits n)

return (QInt qn)
measQ (QInt qbs) = do bs ← measQ qbs

return (bits2int bs)
letU n xu = letU (int2bits n) (λbs → xu (QInt bs))
condQ (QInt qi) qiu = condQ qi (λx → qiu (bits2int x))

In simple boolean arithmetic circuits, (such as we have defined pre-
viously in section 1.2.1) the addition of integers is performed by going
through the bits, adding the corresponding bits, and keeping track of
any overflow. We can express both the calculation of the current sum
and the calculation of the carry as reversible algorithms:

sumq :: Qbit → Qbit → Qbit → U
sumq qc qa qb =

cond qc (λc →
cond qa (λa → if a 6≡ c then unot qb else •))

carry :: Qbit → Qbit → Qbit → Qbit → U
carry qci qa qb qcsi =

cond qci (λci →
cond qa (λa →

cond qb (λb →
if ci ∧ a ∨ ci ∧ b ∨ a ∧ b then unot qcsi else •)))

We note that carry needs access to the current and the next carry-bit,
while sumq only depends on the current qubits. Using these functions
we could now implement reversible addition as a function of type

qadd :: QInt → QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) (QInt qcs) qc = qadd ′ qas qbs qcs qc
where qadd ′ [] [] [] qc

= •
qadd ′ [qa] [qb] [qci] qc

= carry qci qa qb qc �
sumq qci qa qb

qadd ′ (qa : qas) (qb : qbs) (qci : qcsi : qcs) qc
= carry qci qa qb qcsi �

qadd ′ qas qbs (qcsi : qcs) qc �
urev (carry qci qa qb qcsi) �
sumq qci qa qb

26 Thorsten Altenkirch and Alexander S. Green

The algorithm requires an additional 3rd register which needs to be
initialised to |~0〉, i.e. a quantum register where each qubit is |0〉, to
store the auxiliary carry bits. We have designed the algorithm so that
it leaves this register in the same state |~0〉, as it has found it. This is
achieved by undoing the computation of the carry bit using urev after it
has been used. Hence, we could measure this additional register without
affecting the rest of the computation. However, measuring the register
means that we have to define a potentially irreversible operation living in
QIO , which means that we cannot use addition to derive other unitary
operations, which is exactly what we want to do for Shor’s algorithm.
The other alternative is to thread the auxiliary qubits through all the
arithmetic operations we define, reusing it at other places where we need
temporary qubits. This leads to a very low level design, where memory
management is explicit — this leads to a drastic loss of modularity.

This is exactly the reason why we need ulet , which temporarily creates
qubits which can be used in a unitary operation under the condition that
they are restored to the state they were found in.

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc′ =
ulet False (qadd ′ qas qbs)
where qadd ′ [] [] qc = ifQ qc (unot qc′)

qadd ′ (qa : qas) (qb : qbs) qc =
ulet False (λqc′ → carry qc qa qb qc′ �

qadd ′ qas qbs qc′ �
urev (carry qc qa qb qc′)) �

sumq qc qa qb

Extending on this function for reversible addition, we can carry on
following (Vedral et al. (1995)) and create the necessary functions to
build up to the goal of a reversible modular exponentiation algorithm.

The next step is to create a modular addition function using the ad-
dition function we have already created.

adderMod :: Int → QInt → QInt → U

Then we can use the modular addition function to create a modular
multiplication function.

multMod :: Int → Int → QInt → QInt → U

This can easily be adapted into a controlled operation with our ifQ
constructor:

The Quantum IO Monad 27

condMultMod :: Qbit → Int → Int → QInt → QInt → U
condMultMod q n a x y = ifQ q (multMod n a x y)

Modular exponentiation is achieved by using iterated squaring, and
takes advantage of the fact that modular inverses can be computed effi-
ciently classically.

modExp :: Int → Int → QInt → QInt → U

1.5 Shor’s algorithm

Shor’s algorithm (Shor (1994)) is perhaps the most famous of all algo-
rithms that have been designed specifically for use on quantum com-
puters. It can be used to find the factors of large numbers, which in
classical computation is currently believed to be computationally infea-
sible. The best known classical solution to the problem is an algorithm
of exponential time complexity in the size of its input (the number of
bits used). However, Shor’s algorithm, which is a quantum algorithm,
has only a polynomial time complexity. This is an exponential speed up
over the best known classical solution.

Shor’s algorithm is sometimes referred to as the “Killer Application”
for quantum computers. This nomenclature came about because fac-
torising large numbers was thought to be so computationally infeasible
that it forms the basis of the RSA encryption protocol (Rivest et al.
(1977)). The RSA encryption protocol is a very widely used public-key
protocol for sending secure information over public channels such as the
Internet. It works on the principle that multiplying 2 large prime num-
bers (p and q) is computationally easy, and a public and private key can
be computed from the result (n = p ∗ q). However, if it is possible for
an eaves-dropper to compute p and q from n then it is also possible for
them to work out the private key. If we can now factor large numbers
in polynomial time this encryption scheme has effectively been broken
allowing anyone with a sufficiently large quantum computer to intercept,
and decode encrypted data. It is not much of a coincidence that since
1994 when Peter Shor first published his algorithm, that governments
and other large organisations have been giving more and more money
for the research into quantum computers and quantum computation!

Peter Shor exploited the fact that the factors of a number can be
computed from the period of a given modular exponentiation function.
In fact, the exponentiation function required was shown to be of the form

28 Thorsten Altenkirch and Alexander S. Green

|0〉 / H⊗t
|j〉

• QFT † 76540123M
|1〉 / xjmodN

Fig. 1.2. Shor’s algorithm

f(x) = axmodN where N is the number we wish to factorise, and a is
known to be co-prime to N . That is, that the greatest common divisor of
a and N is 1. Calculating the greatest common divisor of two numbers
can be done efficiently classically, using the Euclidean algorithm, and
hence finding values for a can also be done classically. Depending on
the value of a, it is possible that the period of this function can be used
to find factors of the input. Shor discovered that finding the period of
this function (and other periodic functions) can be done efficiently on
a quantum computer. The efficiency of this period-finding algorithm
comes directly from the use of quantum parallelism.

Two quantum registers (of sufficient number of qubits to represent
N) are initialised into the state |~0〉. The first of these two quantum
registers is placed into an equal super-position of all its possible base
states (using Hadamard rotations). This register (|k〉) is then used as x
in our exponential function f(x) = axmodN such that the result of the
function is stored in the second quantum register. At this point in the
computation our quantum registers will be in the state (|k, akmodN〉)
in such a way that each value of k in the first register is entangled with
its corresponding akmodN in the second register. Shor goes on to show
that the application of a discrete Fourier transform to the first register
will (with high probability) yield the period of the given input function.

Figure 1.2 shows us what we essentially need to implement Shor’s
algorithm within QIO. We can easily set up the required Hadamard
rotations, and section 1.4 shows us how we’ve implemented the neces-
sary modular exponentiation function, all we need now is the function
implementing the inverse quantum Fourier transform.

1.5.1 Quantum Fourier transform

The Quantum Fourier Transformation (QFT) is basically the fast, dis-
crete Fourier Transformation applied to a quantum register, where the
discrete Fourier transform maps functions in the time domain into func-
tions in the frequency domain, or in other words, decomposes a function

The Quantum IO Monad 29

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉 + e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉 + e2πi0.j2...jn |1〉

.

.

.

.

.

.

.

.

.

.

.

.
|jn−1〉 · · · • · · · • · · · H R2 |0〉 + e

2πi0.jn−1jn |1〉

|jn〉 · · · • · · · • · · · • |0〉 + e2πi0.jn |1〉

where Rk is the unitary

[
1 0
0 e

2πi

2k

]

Fig. 1.3. A circuit for the Quantum Fourier transform

in terms of sinusoidal functions of different frequencies. In Shor’s algo-
rithm the inverse Fourier transformation is used to recover the frequency
representation of the modular exponential, thus giving direct access to
the period. The QFT as developed in (Nielsen and Chuang (2000)),
pp. 216-221 (given here in figure 1.3) can be easily encoded in the QIO
monad, giving rise to a nice functional implementation over a list of
qubits:

qft :: [Qbit]→ U
qft qs = condQ qs (λbs → qftAcu qs bs [])

The qft functions makes use of a conditional statement over a list of
qubits, allowing the definition to be decomposed into terms of an accu-
mulator function: †

qftAcu :: [Qbit]→ [Bool]→ [Bool]→ U
qftAcu [] [] = •
qftAcu (q : qs) (b : bs) cs = qftBase cs q � qftAcu qs bs (b : cs)

qftBase :: [Bool]→ Qbit → U
qftBase bs q = f ′ bs q 2

where f ′ [] q = uhad q
f ′ (b : bs) q x = if b then (rotK x q) � f ′ bs q (x + 1)

else f ′ bs q (x + 1)

rotK :: Int → Qbit → U
rotK k q = uphase q (1.0 / (2.0 ↑ k))

† Accumulator functions are often used in Haskell to create more efficient imple-
mentations of list processing functions, e.g. fast reverse.

30 Thorsten Altenkirch and Alexander S. Green

Although we have created the QFT here, Shor’s algorithm requires the
inverse QFT. Fortunately, because of the reversible nature of unitaries,
the inverse QFT can be given by urev qft .

1.5.2 Shor in QIO

We’ve now seen how we can create all the necessary pieces for Shor’s
algorithm, we can define the hadamards function recursively over the
list representation of the QInt .

hadamards :: QInt → U
hadamards (QInt []) = •
hadamards (QInt (q : qs)) = uhad q � hadamards (QInt qs)

The inverse quantum Fourier transform can also be lifted to the QInt
data-type.

qftI :: QInt → U
qftI (QInt i) = urev (qft i)

The unitary used by Shor’s algorithm can now be given as:

shorU :: QInt → QInt → Int → Int → U
shorU k i1 x n = hadamards k �

modExp n x k i1 �
qftI k

To ensure that the given QInt arguments to the shorU function are cor-
rect (|0〉 and |1〉) we can now define shor as a function which takes two
classical inputs, n the number to be factorised, and x a number which is
co-prime to n. The shor function initialises the necessary quantum in-
tegers, the shorU unitary applies the Hadamard rotations to the zeroed
input, then the modExp unitary is applied over both of the quantum
integers (along with the necessary classical inputs), and then the inverse
quantum Fourier transform is applied. Finally, the period is measured
and returned.

shor :: Int → Int → QIO Int
shor x n = do i0 ← mkQ 0

i1 ← mkQ 1
applyU (shorU i0 i1 x n)
p ← measQ i0
return p

The Quantum IO Monad 31

Finding the x argument can be done classically, and extracting the result
from the returned period is also a classical problem. These can easily
be programmed in Haskell and used with the QIO monad to create the
overall factorisation function (factor :: Int → QIO (Int , Int)). A typical
evaluation of run (factor 15) is (5, 3).

1.6 Implementing QIO

In this section we shall go through the implementation of the QIO API,
specifically how we realise run, runC , and sim. If we had a real quan-
tum computer we could implement run much more efficiently, but here
we use a classical random number generator to simulate the quantum
behaviour.

To represent quantum states within a classical system, it is necessary
to define a data structure that represents a super-position of classical
base states. For this purpose we have defined a class of Heaps which
are used to represent the classical base states, and then we have de-
fined a class of vectors we have dubbed VecEq , that can hold multiple
occurrences of the heaps, whereby each one is associated with its corre-
sponding complex amplitude in the current super-position. The name
VecEq for these vectors is derived from the way that the primitive op-
erations available for the vectors should automatically keep the overall
state normalised, and hence never allow a super-position to take up more
space in memory than the number of classical base states that make up
the super-position. Building the normalisation directly into the vector
class in this way, follows from the fact that only types with equality can
be normalised (such as our Heaps).

1.6.1 Heaps

We define the Heap class by

class Eq h ⇒ Heap h where
initial :: h
update :: h → Qbit → Bool → h
(?) :: h → Qbit → Maybe Bool
forget :: h → Qbit → h
hswap :: h → Qbit → Qbit → h
hswap h x y = update (update h y (fromJust (h ? x)))

x (fromJust (h ? y)

32 Thorsten Altenkirch and Alexander S. Green

The Maybe monad is used here so that un-initialised qubits can have
the state Nothing and don’t lead to an undefined Heap. A Heap must
provide an initial element, which represents an empty Heap, before any
qubits have been initialised.

To accommodate the application of mkQbit the Heap must also come
with an update function. The update function, when given a heap, a
qubit, and a boolean value, should just return a new heap in which the
given qubit has been updated to the given boolean value. This update
function is also used whenever a rotation is applied to a state, as the
only effect a rotation may have on the individual base states of a super-
position is to apply the classical not function to one of the qubits in the
base state.

To deal with measurements, a query function (?) must also be pro-
vided, which just applies the given heap to the given qubit, and returns
the boolean value of that qubit. If the qubit isn’t initialised, meaning
the heap computes to Nothing then a suitable error message is returned.
The main case where an error of this sort occurs in practise is in a
conditional where the control qubit appears as a variable in one of the
branches. To accommodate the throwing of a run-time error whenever
such a conditional occurs, the control qubit is temporarily forgotten from
each base state using the provided forget function and hence, if it is used
in one of the branches, the query function will fail, returning the error.

A generic swap function on heaps, hswap is also provided. This swaps
the positions of two qubits within a Heap, and is how the swap unitary
is dealt with at the level of heaps.

We use Haskell’s Map data type for our implementation of a Heap.
The Map data type is an efficient implementation of key-value maps,
which is exactly what we require for our heaps (between qubits and
booleans), and the operations required for heaps can be directly trans-
lated into the primitive operations provided by the Maps.

type HeapMap = Map.Map Qbit Bool

instance Heap HeapMap where
initial = Map.empty
update h q b = Map.insert q b h
h ? q = Map.lookup q h
forget h q = Map.delete q h

The classical simulator runC uses a single Heap to represent the entire

The Quantum IO Monad 33

state of the system, along with an integer representing the next free
qubit.

data StateC = StateC{freeC :: Int , heap :: HeapMap}

Any QIO program that only uses classical rotations is just translated
into the primitive Heap operations given above.

1.6.2 Vectors

To hold our quantum states we define a class of vectors similar to the
vectors we introduced in section 1.2.3. The main difference being that
these vectors (VecEq) require that the type they hold is a member of
the Eq class. This is a requirement here as we know that we shall be
using these vectors over the Heap data type, along with their complex
amplitude in the current super-position. Heap is a member of Eq , and it
allows us to keep the vectors normalised at the level of vector operations
(specifically ⊕). This is achieved by combining the members of the
vector that are equal, when concatenating two vectors. We have defined
VecEq as a class such that we can change the specific implementation
if we find a more efficient data type that fulfils the class.

class VecEq v where
vzero :: v x a
(⊕) :: (Eq a,Num x)⇒ v x a → v x a → v x a
(⊗) :: (Num x)⇒ x → v x a → v x a
(@) :: (Eq a,Num x)⇒ a → v x a → x
fromList :: [(a, x)]→ v x a
toList :: v x a → [(a, x)]

For the moment the implementation we’re using for VecEq is again lists
of pairs, as in the Vec example. The main difference now being how the
⊕ operation works:

data VecEqL x a = VecEqL{unVecEqL :: [(a, x)]} deriving Show

vEqZero :: VecEqL x a
vEqZero = VecEqL []

The ⊕ function (vEqPlus) uses a fold operation to add each element
from the first vector to the second vector. The add function takes care
of this by combining elements that occur in both vectors by adding their
numeric values.

34 Thorsten Altenkirch and Alexander S. Green

vEqPlus :: (Eq a,Num x)⇒
VecEqL x a → VecEqL x a → VecEqL x a

(VecEqL as) ‘vEqPlus‘ vbs = foldr add vbs as

add :: (Eq a,Num x)⇒ (a, x)→ VecEqL x a → VecEqL x a
add (a, x) (VecEqL axs) = VecEqL (addV ′ axs)

where addV ′ [] = [(a, x)]
addV ′ ((by@(b, y)) : bys) | a ≡ b = (b, x + y) : bys

| otherwise = by : (addV ′ bys)

The ⊗ and @ functions (vEqTimes and vEqAt), are equivalent to the
functions we saw for the vectors in section 1.2.3.

vEqTimes :: (Num x)⇒ x → VecEqL x a → VecEqL x a
l ‘vEqTimes‘ (VecEqL bs) | l ≡ 0 = VecEqL []

| otherwise
= VecEqL (map (λ(b, k)→ (b, l ∗ k)) bs)

vEqAt :: (Eq a,Num x)⇒ a → VecEqL x a → x
a ‘vEqAt ‘ (VecEqL []) = 0
a ‘vEqAt ‘ (VecEqL ((a ′, b) : abs)) | a ≡ a ′ = b

| otherwise
= a ‘vEqAt ‘ (VecEqL abs)

instance VecEq VecEqL where
vzero = vEqZero
(⊕) = vEqPlus
(⊗) = vEqTimes
(@) = vEqAt
fromList as = VecEqL as
toList (VecEqL as) = as

The requirement that the underlying type is a member of Eq leads to
a problem that we can no longer define VeqEq as a monad, which we
require so we can sequence the QIO operations over it. To overcome
this problem we use a technique suggested in (Sittampalam (2008)). We
define an EqMonad class

class EqMonad m where
eqReturn :: Eq a ⇒ a → m a
eqBind :: (Eq a,Eq b)⇒ m a → (a → m b)→ m b

of which VecEq is a member:

The Quantum IO Monad 35

instance (VecEq v ,Num x)⇒ EqMonad (v x) where
eqReturn a = fromList [(a, 1)]
eqBind va f = case toList va of

([])→ vzero
((a, x) : [])→ x ⊗ f a
((a, x) : vas)→ (x ⊗ f a)⊕ ((fromList vas) ‘eqBind ‘ f)

Members of the EqMonad class can now be embedded into a monad
using the AsMonad data-type.

data AsMonad m a where
Embed :: (EqMonad m,Eq a)⇒ m a → AsMonad m a
Return :: EqMonad m ⇒ a → AsMonad m a
Bind :: EqMonad m ⇒

AsMonad m a → (a → AsMonad m b)→ AsMonad m b

instance EqMonad m ⇒ Monad (AsMonad m) where
return = Return
(>>=) = Bind

In order to make use of our embedded EqMonad we provide the fol-
lowing unEmbed function.

unEmbed :: Eq a ⇒ AsMonad m a → m a
unEmbed (Embed m) = m
unEmbed (Return a) = eqReturn a
unEmbed (Bind (Embed m) f) = m ‘eqBind ‘ (unEmbed ◦ f)
unEmbed (Bind (Return a) f) = unEmbed (f a)
unEmbed (Bind (Bind m f) g) = unEmbed

(Bind m (λx → Bind (f x) g))

Now we have our VecEq as monads we can see how our unitary oper-
ations (U) in QIO are translated into operations on them.

1.6.3 Evaluating QIO computations

We start by defining the data-type Pure as a vector of heaps along with
their complex amplitudes:

type Pure = VecEqL C HeapMap

We now define a type Unitary which are functions that take a Heap
and return a new Pure value. We will see that all members of our U
data-type are converted into a Unitary which is then used to evaluate

36 Thorsten Altenkirch and Alexander S. Green

the specific U . The Unitary data-type is also defined as a monoid so
that unitaries can be combined using the (embedded) monadic structure
of the underlying Pure data-type.

data Unitary = U {unU :: Int → HeapMap → Pure }
instance Monoid Unitary where
• = U (λfv h → unEmbed (return h))
(U f) � (U g) = U (λfv h → unEmbed (do h ′ ← Embed (f fv h)

h ′′ ← Embed (g fv h ′)
return h ′′

))

Defining the Unitary data-type as a monoid in this way allows the uni-
tary operations to be mapped over a whole Pure data-type as is required
to run a unitary over the whole quantum state:

runU :: U → Unitary
runU UReturn = •
runU (Rot x a u) = uRot x a � runU u
runU (Swap x y u) = uSwap x y � runU u
runU (Cond x us u) = uCond x (runU ◦ us) � runU u
runU (Ulet b xu u) = uLet b (runU ◦ xu) � runU u

The functions uRot , uSwap, uCond and uLet actually convert each of
the underlying U type into a Unitary . For example, the uRot function
is as follows:

uRot :: Qbit → Rotation → Unitary
uRot q r = (uMatrix q (r (False,False),

r (False,True),
r (True,False),
r (True,True)))

uMatrix :: Qbit → (C,C,C,C)→ Unitary
uMatrix q (m00 ,m01 ,m10 ,m11) = U (λfv h → (

if (fromJust (h ? q))
then (m01 ⊗ (unEmbed (return (update h q False))))

⊕ (m11 ⊗ (unEmbed (return h)))
else (m00 ⊗ (unEmbed (return h)))

⊕ (m10 ⊗ (unEmbed (return (update h q True))))))

We can define our state as a free variable (the next available qubit),
along with a Pure.

The Quantum IO Monad 37

data StateQ = StateQ{free :: Int , pure :: Pure }

We make use of the State monad to thread our state throughout our
computations

evalWith :: PMonad m ⇒ QIO a → State StateQ (m a)

The QReturn value is just the return of the monad.

evalWith (QReturn a) = return (return a)

initialising a qubit updates the current Pure state with the value of the
new qubit, and increases the free variable by one.

evalWith (MkQbit b g) = do (StateQ f p)← get
put (StateQ (f + 1)

(updateP p (Qbit f) b))
evalWith (g (Qbit f))

applying a unitary makes use of the runU function as described above.

evalWith (ApplyU u q) = do (StateQ f p)← get
put (StateQ f (unEmbed (

do x ← Embed (p)
x ′ ← Embed (uu f x)
return x ′

)))
evalWith q

where U uu = runU u

measurement splits the Pure state about the given qubit, then contin-
ues the computation in both Pure states, before leaving the merging of
these two results up to the merge function of whichever PMonad we are
working within.

evalWith (Meas x g) = do (StateQ f p)← get
(let Split pr ift iff = split p x

in if pr < 0 ∨ pr > 1
then error "pr < 0 or >1"

else do put (StateQ f ift)
pift ← evalWith (g True)
put (StateQ f iff)
piff ← evalWith (g False)
return (merge pr pift piff))

38 Thorsten Altenkirch and Alexander S. Green

Lazy evaluation is specifically useful here as if the merge function only
requires one of the Pure states (as is the case for the run function), then
the other Pure state is not evaluated.

The final definitions for run and sim simply call the eval function,
but their given types inform the type-system which PMonad it should
use.

eval :: PMonad m ⇒ QIO a → m a
eval p = evalState (evalWith p) initialStateQ

run :: QIO a → IO a
run = eval

sim :: QIO a → Prob a
sim = eval

1.7 Conclusions and further work

This work has proved to be a nice example of monadic programming,
and is hopefully also a footstep into the world of quantum computation
for many functional programmers. The work also leads us onto many
more ideas of what we would like to achieve in the realm of quantum
computation. Our first thought on extending QIO is to implement a
dependently typed version of QIO in either Coq or Agda, thus moving
the checking of the semantic side conditions from runtime to the type-
checker at compile time. This change will allow the type U of unitary
operations to be easier to reason about, leading to a nicer algorithmic
approach to the design of quantum computations within QIO . Moving
from functional programming to Type Theory also turns our programs
into a formal semantics for quantum programs, with the possibility to
develop formally verified quantum programs.

An underlying design factor of the QIO monad is its relation to the
circuit model of quantum computation. However, we are interested in
providing a different semantics more in keeping with the ideas presented
in the measurement calculus (Danos et al. (2007)). The idea would be
the same, that QIO will provide a interface from functional programming
to quantum computation, but this different semantics will be available
if the ideas of one-way quantum computation become the standard way
in which physicists are able to create real world quantum computers.

The Quantum IO Monad 39

Bibliography

Altenkirch, T. and Grattage, J. (2005) A functional quantum programming
language. In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS). IEEE Computer Society. Also arXiv:quant-
ph/0409065.

Arrighi, P. and Dowek, G. (2008) Linear-Algebraic A-Calculus: Higher-Order,
Encodings, and Confluence. In Rewriting Techniques and Applications:
19th International Conference, RTA 2008 Hagenberg, Austria, July 15-17,
2008, Proceedings, page 17. Springer.

Danos, V., Kashefi, E. and Panangaden, P. (2007) The measurement calcu-
lus. Journal of the ACM 54(2). Preliminary version in arXiv:quant-
ph/0412135.

Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer. Proceedings of the Royal Society of Lon-
don. Series A, Mathematical and Physical Sciences 400(1818):97–117.

Gay, S. J. (2006) Quantum programming languages: Survey and bibliography.
Mathematical Structures in Computer Science 16(4).

Green, A. (2008) The Quantum IO Monad, source code and examples.
http://www.cs.nott.ac.uk/˜asg/QIO/.

Hutton, G. (2007) Programming in Haskell . Cambridge University Press.
Jones, S. P. (2003) Haskell 98 Language and Libraries: The Revised Report .

Cambridge University Press.
Karczmarczuk, J. (2003) Structure and interpretation of quantum mechan-

ics — a functional framework. In Proceedings of the ACM SIGPLAN
Workshop on Haskell . ACM Press.

The Coq development team (2004) The Coq proof assistant reference manual .
LogiCal Project. Version 8.0.

Mu, S.-C. and Bird, R. (2001) Functional quantum programming. In Proceed-
ings of the 2nd Asian Workshop on Programming Languages and Systems.

Nielsen, M. A. and Chuang, I. L. (2000) Quantum Computation and Quantum
Information. Cambridge University Press.

Norell, U. (2007) Towards a practical programming language based on depen-
dent type theory . Ph.D. thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden.

Rivest, R. L., Shamir, A. and Adelman, L. M. (1977) A method for obtain-
ing digital signatures and public-key cryptosystems. Technical Report
MIT/LCS/TM-82.

Rüdiger, R. (2007) Quantum programming languages: An introductory
overview. The Computer Journal 50(2):134–150.

Sabry, A. (2003) Modelling quantum computing in Haskell. In Proceedings of
the ACM SIGPLAN Workshop on Haskell . ACM Press.

Shor, P. (1994) Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings, 35th Annual Symposium on Foundations
of Computer Science. CA: IEEE Press.

Sittampalam, G. (2008) Restricted monads in Haskell, live journal entry.
http://hsenag.livejournal.com/11803.html.

Swierstra, W. (2008) A Functional Specification of Effects. Ph.D. thesis, Uni-
versity of Nottingham.

Swierstra, W. and Altenkirch, T. (2007) Beauty in the beast: A functional

40 Thorsten Altenkirch and Alexander S. Green

semantics of the awkward squad. In Haskell ’07: Proceedings of the ACM
SIGPLAN workshop on Haskell .

Swierstra, W. and Altenkirch, T. (2008) Dependent types for distributed ar-
rays. Presented at Trends in Functional Programming (TFP 2008). Sub-
mitted for final poceedings.

Vedral, V., Barenco, A. and Ekert, A. (1995) Quantum networks for elemen-
tary arithmetic operations.

Vizzotto, J. K., Altenkirch, T. and Sabry, A. (2006) Structuring quantum
effects: Superoperators as arrows. Mathematical Structures in Computer
Science 16(3). Also arXiv:quant-ph/0501151.

