Chapter 1

Shor in Haskell
The Quantum 10 Monad

Alexander S. Green!, Thorsten Altenkirch!
Category: Research

Abstract: 'We present an interface from Haskell to quantum programming: the
Quantum IO monad, and use it to implement Shor’s factorisation algorithm. The
QIO monad separates reversible (i.e. unitary) and irreversible (i.e. probabilistic)
computations and provides a reversible let operation (ulet), allowing us to use
ancillas (auxiliary qubits) in a modular fashion. Exploiting Haskell’s class system
we can present our algorithms in a high level way, implementing abstractions in
the functional paradigm. We describe the implementation of Shor’s algorithm in
some detail also covering the necessary reversible arithmetic. QIO programs can
be simulated either by calculating a probability distribution or by embedding it
into the IO monad using the random number generator.

1.1 INTRODUCTION

Quantum programming exploits the strange nature of quantum physics to achieve
classically impossible tasks. Most famously Shor’s algorithm shows that on a
quantum computer we can factor a number in polynomial time, hence we could
break many encryption schemes. While physicists are working on building work-
ing quantum circuits with more than a handful of qubits [6], we computer sci-
entists grapple with the challenges quantum computing creates for software: in
designing algorithms, like Shor’s which exploit quantumness but also in design-
ing languages which support abstractions relevant for quantum computing, see [4]
for a recent survey.

Here we investigate a different approach: instead of implementing a new lan-
guage from scratch we provide a monadic interface to do quantum programming
in Haskell - the quantum IO monad (Q/0O). One big attraction of this approach is

IThe University of Nottingham, UK; E-mails: {asg, txa}@cs.nott.ac.uk

that we can exploit the existing means of abstraction present in Haskell to structure
our quantum programs, indeed we will give an example of this by implementing
the class Qdata which relates classical data-types with their quantum counterparts.

While QIO realises the infrastructure we need to control a quantum computer
from Haskell, we don’t have to wait until the physicists get their act together, we
can use the same interface to run a quantum simulator. Our approach is inspired
by the 2nd authors work with Wouter Swierstra on functional specifications of IO
[11]. Indeed, we provide some choice here: we can embed QIO into the IO monad
using pseudo-random numbers to simulate quantum randomness, we can statically
calculate the probability distribution of possible results given a quantum program
and we can simulate the classical subset of our quantum operations directly. The
latter is useful for testing components efficiently since the quantum simulation
generates a considerable overhead.

All the code described in this paper, i.e. the implementation of QIO and the
quantum algorithms implemented in it are available from the first authors web-
page [5].

Related work

There are a number of papers on modelling quantum programming in Haskell,
[8, 10, 7, 13] describe different abstractions one can use to simulate quantum
computation in a functional setting - however none uses a monadic approach in
the spirit of the IO monad. Also none of the previous work is intended to provide
an interface to a hypothetical quantum computer. Our previous work on QML
[1] proposed a first order functional quantum programming language, the present
work is more modest but gives us a stepping stone to experiment with various
alternative structures useful for structuring quantum programming and also to im-
plement future versions of languages like QML.

Overview of the paper

In section 1.2 we introduce the quantum IO monad as an interface to quantum
programming, then in section 1.3 we discuss the Qdata class which relates quan-
tum and classical data types. In section 1.4 we give some simple examples: we
implement sharing of quantum data and Deutsch’s algorithm. Our main goal is
to describe our implementation of Shor’s algorithm (section 1.5), to achieve this
goal we have to realise reversible arithmetic (section 1.6) and the Quantum Fourier
transformation (section 1.7). Finally, we discuss how QIO can actually be imple-
mented in Haskell (section 1.8).

1.2 THE QIO API

In figure 1.1 we give an overview over the QIO monad: irreversible operations live
in QIO which is the quantum analogue of /0. Locations for quantum bits are given
by the type Qbit. Reversible operations, which correspond to unitary operations

QObit = % instance Monoid U

Q0% — x swap :: Qbit — Qbit — U

Uix cond :: Qbit — (Bool — U) — U
instance Monad QIO rot :: Qbit — ((Bool,Bool) — C) — U
mkQbit :: Bool — QIO Qbit ulet :: Bool — (Qbit — U) — U
applyU ::U — QIO () urev::U — U

measQbit :: Qbit — QIO Bool
Prob :: % — x
instance Monad Prob

run :QI0a—10a
sim ::QIO a— Proba
runC:: QIO a — a

FIGURE 1.1. The QIO API

on a finite dimensional Hilbert space are elements of U, which is a Monoid. Ir-
reversible operations are constructed using mkQbit, applyU and measQBit, while
reversible ones are constructed using swap, cond, rot and ulet. Since computa-
tions living in U are reversible, there is an operation urev constructing the reverse
computation. As mentioned in the introduction, we can run our quantum opera-
tions using the random number generator, we can simulate (sim) them, giving rise
to a probability distribution Prob. Computations living in the classical subset can
be more efficiently simulated using runC, however this operation will return an
error if applied to a non-classical computation.

Qubit initialisation and Measurement

The basic type on which quantum computations can be performed is the qubit
(Obir) representing the location of a qubit in the quantum memory. Qbit resembles
IORefs in the conventional /O monad, but we are restricted to only one data-type
here. As is the case for IORefs we can create new Qbits and initialise them using
mkQbit :: Bool — QIO Qbit. This operation affects the allocation of quantum cells
in the classical part of the computer and the state of the quantum memory. We
can access qubits by measuring them using measQbit :: Qbit — QIO Bool which
measures and hence collapses it to a classical base state.

Unitary transformations

Along with the ability to initialise qubits and then measure them, we need to define
the unitary transformations corresponding to reversible operations on quantum
data, which can be applied to these qubits. The unitary transformations are in
essence the building blocks of quantum computation, and are used (possibly in
conjunction with measurements) to actually define the programs that can be run.
The Quantum IO Monad uses the function applyU :: U — QIO () which when

given a unitary (U), is able to return a QIO computation with the unit type, and
having the effect of running the unitary with the current state of the system.

The unitaries that are available form a complete model of quantum computa-
tion, the collection we have chosen is actually not minimal as some operations
can be defined in term of others, but has proven useful when designing quantum
algorithms:

e We can swap two qubits using swap :: Qbit — Qbit — U.

e We can branch conditionally on the state of a qubit using cond :: Qbit —
(Bool — U) — U, unlike measurement this operation doesn’t change the quan-
tum state irreversibly. A special case is the one-sided ifQ:

ifQ::0bit - U—U
ifO q u = cond q (Ax — if x then u else mempry)

e We can rotate a single qubit using rot:: Qbit — ((Bool,Bool) — C) — U This
corresponds to a rotation of the Bloch sphere which represents the state of a
single qubit. A rotation is given as a unitary matrix represented as a function
(Bool, Bool) — C. We use some predefined rotations such as

101 |11 {1 0
unot—{1 0},uhad—\/§[1 _l}anduphaseq)—{o 62“"‘7’}

e We can temporarily allocate a qubit and use it in a local computation using
ulet :: Bool — (Qbit — U) — U, here the sub-computation is applied to the
temporarily allocated qubit.

These operations are subject to some side conditions to ensure that the re-
sulting operation is indeed a unitary transformation. E.g. cond requires that the
branches do not change the state of the qubit we are branching over. Otherwise
we could define the following operation

notUnitary :: U

notUnitary = cond x (Ax — if x then unot x else mempty)
which will always leave the qubit x in the state False and is hence not reversible
(and not unitary). Other conditions which have to be checked are that the specified
rotation is indeed a unitary and that the local computation restores the auxiliary
qubit to the state it was initialised in. Failure to meet these conditions results in a
run-time error.

Combining Unitaries

As mentioned previously, quantum computations are built up using these sim-
ple unitary transformations. It is important to note that they form a Monoid and
thus can be sequentially combined onto one another using Haskell’s monoidal
operations, we shall write » for mappend and e for mempty to improve readabil-
ity. Another useful note is that, by definition, all the computations that can be
constructed with the available unitaries, are themselves unitaries, and hence re-
versible. We provide a function urev:: U — U which returns the inverse of the
given unitary.

Evaluation of QIO Programs

We have now seen the main API for creating programs in the QIO Monad, but
what can we do with these programs? QIO also provides three functions for eval-
uating the programs. First, there is the quantum simulator function, sim:: QIO a —
Prob a, which given a QIO program will return a probability distribution of the
measured states. Here Prob is a monad derived from our monadic representation
of (generalised) vector spaces (Vec), which we will explain later in section 1.8.
For example, simulating the randomBool function (given in section 1.4) gives
the distribution [(True,0.5), (False,0.5)]. The second means of evaluation is the
quantum run function, run:: QIO a — IO a, which uses the random number gen-
erator from the IO Monad to (probabilistically) return a single value for each
measurement. So running the randomBool function will give True half the time,
and False half the time. The last function that we introduce for evaluating QIO
programs is the classical run function, runC:: QIO a — a, which can only be used
to run QIO programs that consist of the classical subset of the available unitaries.
As these programs don’t have any side-effects the returned value is just a pure
value. If the runC function is called with a QIO program containing non-classical
unitaries then it will return an error.

1.3 REPRESENTING QUANTUM DATA

In classical computation, we hardly ever think of computations acting on single
bits, and it is much more useful to think of computations as acting on larger data-
types. The Qdata class can be used for constructing quantum data-types from
qubits (and other previously defined quantum data-types) in much the same way.
class Qdata a gqa | a — ga,qa — a where
mkQ::a — QIO qa
measQ::qa — QIO a
condQ ::qa— (a—U)—U
The constructors of Qdata define a relation between the new quantum data-type
and its classical counter-part by defining three functions which must be provided.
It must be possible for a member of the quantum data-type to be initialised from
its classical counter-part and it must also be possible to measure the quantum data
and to get a member of the classical data-type. The third constructor is used to
create conditional operations that can depend on the state of the whole quantum
data-type. This condQ operation is useful for many of the quantum algorithms
that we wish to model. The simplest example of an instance of Qdata would be
with booleans and qubits as follows:
instance Qdata Bool Qbit where
mkQ = mkQbit
measQ = measQbit
condQ q br = cond q br
It is easy to see that Qdata is closed under pairing:
instance (Qdata a qa, Qdata b gb) = Qdata (a,b) (qa,qb)

but even more interesting we can also create quantum lists:
instance Qdata a qa = Qdata [a] [qa] where
mkQ n = sequence (map mkQ n)
measQ qs = sequence (map measQ qs)
condQ gs gsu = condQ’ gs []
where condQ’ [] xs = gsu xs
condQ' (a:as) xs = condQ a (Ax — condQ' as (xs +[x]))
Using the previous instance we can implement quantum integers, once we fix
the size of quantum registers, e.g. glntSize = 8. Quantum integers are simply a
wrapper around lists of qubits:
newtype Qlnt = QlInt [Qbit]

instance Qdata Int QInt

1.4 SIMPLE EXAMPLES

To illustrate some simple uses of the Quantum IO monad we describe how to im-
plement sharing and then present one of the simplest but still interesting quantum
algorithms: Deutsch’s algorithm. We also have implemented the quantum teleport
protocol but we have to omit this from the this paper due to lack of space.

Quantum data sharing

The simplest example is to just initialise a qubit into one of its base states, and
simply return that qubit. The two following examples are for each base state
(|0, 1)) ! respectively.

|0Y,]1) :: QIO Qbit

|0) = mkQbit False

|1) = mkQbit True
A slightly more interesting example would be to create a qubit that is in a super-
position. We know that we have the Hadamard operation available to us which
takes a qubit from either of its base states into an equal super-position of both,

so we can just use that to produce either of the states |[4+) = % |0) + |1) or |—)
= L)1),
|+) : QIO Qbit |—) 1 QIO Qbit
|+) =dog —0) =) =dog —|1I)
applyU (uhad q) applyU (uhad q)
return q return q

Interestingly, these two qubits are in different quantum states, but their behaviour
upon measurement is the same. Both of these qubits, when measured, will col-
lapse into one of the base states (|0),|1)) with equal probability. So we could
create a quantum computation that returns a random Boolean value by creating
either of the above states and measuring it. For example, using |+), we’d get:

IWe use the ket notation introduced by Dirac to denote states.

randomBool :: QIO Bool
randomBool = do g — |+)
¢ < measQbit
return c
Another interesting aspect of quantum computing is the no-cloning theorem, which
states that for an arbitrary quantum state |y) there is no operation to create a clone
of that state. For example you cannot use the state [y) = a|0) + B |1) to create
the state (at|0) +B]1)) ® (o|0) + P|1)). However, it is possible to create the
state o0 |00) + B |11) whereby the complex amplitudes of the original state are now
“shared” in an entangled state of the two qubits. This sharing operation can be
achieved using a controlled not operation with the input state |y) acting as the
control qubit, over a new qubit initialised in the state |0). This operation is not
equivalent to a cloning of the original state because the two output qubits are en-
tangled, meaning that operations on one of them may have side-effects on the
other. This sharing operation can easily be modelled in the QIO Monad.

share :: Qbit — QIO Qbit

share ga = do gb — |0)

applyU (ifQ qa (unot gb))

return gb
It is modelled as a function that takes a qubit, and returns the new qubit with
which the input state is now entangled.

A bell state [2] is a maximally entangled quantum state of two-qubits, and
follows from John S. Bell’s famous Bell inequality. The correlations between the
two entangled qubits cannot be explained without quantum mechanics, and are
the foundations behind the concept of quantum teleportation. The share function
can easily be used to create a bell state as follows:

bell :: QIO (Qbit, Qbit)

bell = do ga +— |+)

gb «— share qa

return (qa,qb)
The |+) function creates a qubit in the state |y) = % |0) + % [1) and this is
then shared with a new qubit. The function returns a pair of qubits in the state

o) = % |00) 4+ % |11), which is a bell state in the |0), |1) basis.

Deutsch’s Algorithm

Deutsch’s Algorithm [3] was presented as one of the first and simplest quantum al-
gorithms that could be proven to provide a solution to its problem quicker than any
classical solution. The problem involves being given a function f :: Bool — Bool
and being asked to calculate whether the function is balanced or constant. There
are only four possible functions that f can be, which relate to the identity function,
the not function, the constant False function or the constant True function. Clas-
sically it can be shown that two applications of f are required to tell whether it is
one of the balanced or one of the constant functions, but in a quantum computer
it is possible to get the answer having only had to run the function f once (albeit

over a quantum state).

In the QIO monad the algorithm can easily be modelled: we initialise two
qubits in the gplus and gminus states, and then conditionally negate the second
qubit depending on f applied to the first qubit. Then we apply the Hadamard
transformation to the first qubit and measure it. This is confusing at the first
glance because classically it seems that the first qubit should be unaffected by
the operation we have performed. But indeed, doing the operation in the gminus,
gplus-base does the trick and we have to consult f only once.

deutsch:: (Bool — Bool) — QIO Bool

deutschf = do x — |+)

ye1=)
applyU (cond x (\b — iff b
then unot y
else o)
applyU (uhad x)
measQ x

In either of the cases where f was a constant function then the measurement will
yield False (with probability 1), and in the cases where f is a balanced function
the measurement will yield True (again with probability 1).

1.5 SHOR’S ALGORITHM

In this section we present Shor’s algorithm to factor integers, which consists of
a classical probabilistic algorithm reducing factorisation to period finding and a
quantum part which solves the latter problem. The quantum algorithm relies on
implementations of reversible arithmetic and on the Quantum Fourier Transform,
which we describe in subsequent sections.

Reduction of factorisation to period finding

The reduction of factorisation to period finding shows us that for finding the fac-
tors of N, we need to find a value x < N which is co-prime to N, e.g. x < N such
that ged(x,N) = 1. Which can be done classically with the help of the random
number generator in the IO monad.

rand_coprime :: Int — 10 Int

rand_coprime n = do x «— Random.randomRIO (2,n)

if gcd x n = 1 then return x else rand_coprime n

Using the values of x and N it is necessary to create a function f(j) = x/modN
which can be implemented such that j can be in a quantum state. Shor’s algorithm
is used to find the period, a, of this function, which can then (hopefully) be used
to find factors of N. In fact, the value a returned by this method cannot always be
used to find the factors of N (e.g. if a is odd, or x4/? = —1modN), if this is the
case then it is necessary to start again with a different value for x. It can be shown
that a suitable value for a will be returned using this method with a probability
of at least % The following code assumes that we have already implemented

shor :: Int — Int — QIO Int to return a value for a.
factor :: Int — 10 (Int, Int)
factorn|evenn = return (2,2)
| otherwise = do x — rand_coprime n
a «— run (shor x n)
letxa=x7(a/2)
inifoddaVxa=(n—1) ‘mod'n
then factor n
else return (ged (xa+1) n,ged (xa—1) n)
Once a suitable value for a is found then we know that one of gcd (x“/ 2+ 1,N)
is a non-trivial factor of N. So at least one of the values returned by the factor
function will be a non-trivial factor of the input. The only part of the algorithm
that requires a quantum computer to be calculated efficiently is the use of Shor’s
algorithm to find the period of the function x/modN.

Period finding

We will now explain how to implement shor using reversible arithmetic and the
quantum Fourier transform whose implementations are explained in sections 1.6
and 1.7.
The circuit in Figure 1.2 shows a simplified solution to Shor’s algorithm, over
the necessary x/modN function. The inputs to the circuit are two quantum regis-
/)

0) —{u ®
1)~ &modN | ————

FIGURE 1.2. Shor’s algorithm

ters. The algorithm first uses Hadamard rotations to put one of the quantum regis-
ters into a super-position, then uses this super-position to conditionally apply the
given x/modN function to the second qubit register. An application of the inverse
Quantum Fourier Transform finishes off the algorithm before a measurement of
the top register gets the result
hadamards :: QInt — U
hadamards (Qlnt []) =e
hadamards (QInt (x:xs)) = uhad x» hadamards (Qlnt xs)
shorU :: QInt — QInt — QInt — Int — U
shorU i0 il x n = hadamards i0»
condQ i0 (ha — modExp naxil)»
urev (gft i0)
shor :: Int — Int — QIO Int
shor xn=do ((i0,il),gx) < mkQ ((0,1),x)

applyU (shorU i0 il gx n)
p < measQ i0
return p

1.6 REVERSIBLE ARITHMETIC

Our presentation here is based on the circuits for reversible arithmetic as described
in [12]. The paper describes the circuits building up from a simple reversible
adder, up-to a circuit that performs modular exponentiation. These circuits have
to be able to act on registers of qubits such that they perform the correct operation
even when for example adding two quantum registers that are in super-positions
of any of their possible base states. This basically means that every circuit for
performing quantum arithmetic must be a reversible circuit. We are using the
Quantum IO Monad, and not quantum circuits, so we shall go through in detail
how our arithmetic functions work and how they relate to the circuits in [12].

Reversible Addition

In simple boolean arithmetic circuits, the addition of integers is performed by
going through the bits, adding the corresponding bits, and keeping track of any
overflow. We can express both the calculation of the current sum and the calcula-
tion of the carry as reversible algorithms:
sumq :: Qbit — Qbit — Qbit — U
sumq qc qa gb =
cond gc (hc —
cond ga (ha — if a # ¢ then unot gb else o))
carry:: Qbit — Qbit — Qbit — Qbit — U
carry qci ga gb qgcsi =
cond gci (Aci —
cond ga (ha —
cond gb (Ab —
ifciANaVciANbVaADbthen unot gcsi else o)))
We note that carry needs access to the current and the next carry-bit, while sumgq
only depends on the current qubits. Using these functions we could now imple-
ment reversible addition as a function of type
qadd :: QInt — Qlnt — QInt — Qbit — U

gadd (QInt gas) (Qlnt gbs) (QInt gcs) gc = qadd’ qas abs qcs qc

where gadd' [|[] |[] gc=e
gadd’ [ga] |[gb] [gci] qc = carry qci qa gb gc»
sumq qci qa gb

qadd’ (qa: qas) (gb: gbs) (qci: qcsi: ges) gec = carry qci ga gb gesiw
qadd’ qas gbs (qcsi: gcs) gew
urev (carry qci ga gb gcsi) »
sumq qci qa gb

10

The algorithm requires an additional 3rd register which needs to be initialised
to 0 to store the auxiliary carry bits. We have designed the algorithm so that it
leaves this register in the same state 0, as it has found it. Hence, we could mea-
sure this additional register without affecting the rest of the computation. How-
ever, measuring the register means that we have to define a potentially irreversible
operation living in Q/O, which means that we cannot use addition to derive other
unitary operations, which is exactly what we want to do in the Shor algorithm.
The other alternative is to thread the auxiliary qubits through all the arithmetic
operations we define, reusing it at other places where we need temporary qubits.
This leads to a very low level design, where memory management is explicit —
this leads to a drastic loss of modularity.

This is exactly the reason why we need ulet, which temporarily creates qubits
which can be used in a unitary operation under the condition that they are restored
to the state they were found in.

qadd :: QInt — Qlnt — Qbit — U

qadd (QInt qas) (QlInt gbs) qc =

ulet False (qadd' qas gbs)
where gadd' |] [] gc = ifQ qc (unot gc’)
qadd’ (qa: qas) (qb: qbs) gc =
ulet False (Agc' — carry qc qa gb qc’' »
aadd' qas gbs qc' »
urev (carry gc qa gb gc')) »
sumgq qc qa gb

Extending on this function for reversible addition, we can carry on following
[12] and create the necessary functions to build up to the goal of a reversible
modular exponentiation algorithm.

1.7 THE QUANTUM FOURIER TRANSFORM

The Quantum Fourier Transformation (QFT) is basically the fast, discrete Fourier
Transformation applied to a quantum register, where the discrete Fourier trans-
form maps functions in the time domain into functions in the frequency domain,
or in other words, decomposes a function in terms of sinusoidal functions of dif-
ferent frequencies. In Shor’s algorithm the inverse Fourier transformation is used
to recover the frequency representation of the modular exponential, thus giving
direct access to the period. The QFT as developed in [9], pp. 216-221 can be
easily encoded in the QIO monad, giving rise to a foldr on a list of qubits:

qft:: [0bit] - U

qft gs = condQ gs (Abs — qftAcu gs bs [])

qftAcu:: [Qbit] — [Bool] — [Bool] — U

aftAcu [][] - —

qftAcu (q:gs) (b:bs) cs = gftBase cs gw» qftAcu gs bs (b cs)

qftBase :: [Bool] — Qbit — U

qftBase bs g =f" bs q 2

11

where f’ [] q —=uhad q
S (b:bs) gx =if bthen (rotK x g)» ' bs q (x+1)
elsef' bsq (x+1)

rotK :: Int — Qbit — U

rotK k g = uphase g (1.0 / (2.0 1k))
Although we have created the QFT here, Shor’s algorithm requires the inverse
QFT. Fortunately, because of the reversible nature of unitaries, the inverse QFT
can be given by urev gft.

1.8 IMPLEMENTING QIO

We give here only a very high level sketch of our implementation, for details
please consult our code, which is available on-line [5]. As suggested in [11]
we follow a two-level approach, representing quantum computation first syntacti-
cally:
data U = UReturn | Rot Qbit ((Bool,Bool) — C) U
| Swap Qbir Qbit U | Cond Qbit (Bool — U) U | Ulet Bool (Qbit — U) U
data QIO a = QReturn a | MkQbit Bool (Qbit — QIO a) | ApplyU U (QIO a)
| Meas Qbit (Bool — QIO a)
and then interpreting both data-types in the appropriate semantical domain. One
advantage of this approach is that we can interpret urev as a function on the syntax,
another one relevant for future work is that we can also express compilation.

The classical case

It is useful to first look at the implementation of the classical fragment, before
describing the quantum case.We represent a classical heap as type Heap = Qbit —
Maybe Bool, where Nothing corresponds to an uninitialised bit. Classically, a
unitary is represented as
newtype Unitary = U{unU :: Int — Heap — Heap }
where the integer argument corresponds to the number of currently allocated bits.
It is straightforward to derive an instance of Monoid:
instance Monoid Unitary where
o = U (Afv bs — bs)
UfeUg=UMvh—gf(ffrh))
It is then relatively straightforward to implement the remaining operations on uni-
taries, e.g.
uLet :: Bool — (Qbit — Unitary) — Unitary
uLet bux=U (Mv h — unU (ux fv) (fv+ 1) (update h fv b))
which uses update :: Heap — Qbit — Bool — Heap. We define a quantum state as
data State = State{fv:: Int,heap :: Heap }
and implement the classical QIO fragment by interpreting both U and QIO using:
runU :: U — Unitary

runQState :: QIO a — State — a

12

The 2nd function could have been defined using the state monad. We derive runC
by applying runQState to an initial empty state.

Representing vectors

Before we can embark on implementing the quantum case, we need a represen-
tation of vectors. Our current approach is based on earlier work, in particular the
representation used in [13]. We basically represent a vector as an association list
associating amplitudes with values, e.g. heaps:
newtype Vec x a = Vec{unVec:: [(a,x)]} deriving Show
This structure gives rise to a monad:
instance Num n = Monad (Vec n) where
return a = Vec [(a,1)]
(Vec ms) >=f = Vec [(b,i) | (a,i) < ms, (b,j) < unVec (f a)]
In this approach we are not immediately adding up tuples whose first component
is equal. While it would be more efficent to do so, we would loose that Vec is a
monad, thus complicating our implementation. Instead we define an operation:
norm::Num x = (a — a — Bool) — (Vec x a) — (Vec x a)
which normalises a vector with respect to a given equality predicate. We can’t use
the class Eg here since we are going to use it on Heap which only has equality if
we know the number of qubits currently used. We also implement the classical
operation on vector spaces, i.e. addition and multiplication with a scalar:
(®)::Numx=x— (Vecxa) — Vecx a

(®)::(Vecxa) — (Vecxa) — Vecxa

The quantum case

We represent a pure quantum state as a vector of complex valued heaps:
type Pure = Vec C Heap
Unitaries are represented as functions from Heap to Pure indexed by the number
of qubits currently in use:
newtype Unitary = U{unU :: Int — Heap — Pure}
It is useful to note that for any number of qubits » the relevant functions Heap —
Pure correspond to n X n complex matrices. Indeed showing that Unitary is a
monoid is very similar to the classical case, replacing application by a monadic
bind:
instance Monoid Unitary where
e =U (AMv h — return h)
UfepUg=U(Mvh—ffrh>=gfv)
A quantum state is given by
data State = State{free:: Int,pure :: Pure }
To model measurement we introduce the concept of a probability monad, which
allows us to merge computations with different probabilities:
class Monad m = PMonad m where
merge::R —ma—ma—ma

13

The real number argument p corresponds to the probability that the first computa-
tion is chosen, the 2nd one is chosen with probability 1 — p. It is straightforward
to show that /O is a PMonad:
instance PMonad 10 where
merge pr ift iff = do pp — Random.randomRIO (0,1.0)
if pr > pp then ift else iff
Another useful PMonad is the type of probability distributions:
data Prob a = Prob{unProb::VecR a}
which uses multiplication and addition of vectors:
instance PMonad Prob where
merge pr (Prob ift) (Prob iff) = Prob ((pr ®ift) ® ((1 — pr) ®iff))
To implement measurements we have to be able to calculate the probability
amplitude of a given pure state:
pa:: Pure - R
pa (Vec as) = foldr (M—,k) p — p+ampk) 0 as
We can split a pure state depending on the value of a certain qubit whilst calculat-
ing the probability amplitude:
data Split = Split{p :: R, ifTrue, ifFalse :: Pure }
split :: Pure — Qbit — Split
Finally we implement evaluation wrt to any probability monad:
evalWith :: PMonad m = QIO a — State — m (a, State)
In the case for measurement we use the function split:
evalWith (Meas x g) (State f p) =
let Split pr ift iff = splitp x
in merge pr
(evalWith (g True) (State f ift))
(evalWith (g False) (State f iff))
We can now obtain both sim and run by using the fact that both /0 and Prob are
probability monads and using an initial state as before in the classical case.

1.9 CONCLUSIONS AND FURTHER WORK

With the Quantum IO monad we have proposed a simple, low level interface to
quantum programming, naturally extending Haskell’s IO monad. Using the power
of functional abstraction we can structure our quantum programming, exploiting
the existing Haskell mechanisms such as type classes as we have already demon-
strated with the Qdata class. With the ulet-construct we have also identified an
important control structure which is essential for modular quantum algorithms.

Our current implementation is actually too inefficent to even calculate simple
instances of Shor’s algorithm. We will look into using more efficent data struc-
tures to be able to actually simulate the algorithm.

At various places we have come across side conditions which are inexpressible
in Haskell, e.g. the side conditions for cond or ulet. We would like to explore
how dependent types can be used to overcome this limitation, reimplementing

14

QIO in Agda, Epigram or Coq. This would also provide a base for reasoning
about quantum algorithms, using a more abstract model based on density matrices.
Another line of work is to implement a compiler from the Quantum IO monad
into a more low level combinatorial model which could be directly executed on
a quantum computer, either based on the traditional quantum gate model or on
a more recent proposal such as measurement based quantum computing. At the
other end, as we have already mentioned we would like to use the QIO monad
as a testbed for new quantum control and data structures, continuing our work on
QML.

REFERENCES

[1] T. Altenkirch and J. J. Grattage. A functional quantum programming language. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science,
LICS 2005, pages 249-258. IEEE Computer Society Press, 2005.

[2] J. S. Bell. On the Einstein—Podolsky—Rosen paradox. Physics, 1(?7):195-200, 1964.

[3] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 400(1818):97-117, 1985.

[4] S.J. Gay. Quantum programming languages: Survey and bibliography. Mathematical
Structures in Computer Science, 16(4), 2006.

[5] A. Green. The Quantum IO Monad, source code. http://www.cs.nott.ac.uk/"asg/QIO/,
2008.

[6] W. Hensinger. Quantum computing with trapped ions. invited talk, at the second
QNET Workshop, December 2007.

[7] J. Karczmarczuk. Structure and interpretation of quantum mechanics — a functional
framework. In Proceedings of the ACM SIGPLAN Workshop on Haskell. ACM Press,
2003.

[8] S.-C. Mu and R. Bird. Functional quantum programming. In Proceedings of the 2nd
Asian Workshop on Programming Languages and Systems, 2001.

[9] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, October 2000.

[10] A. Sabry. Modelling quantum computing in Haskell. In Proceedings of the ACM
SIGPLAN Workshop on Haskell. ACM Press, 2003.

[11] W. Swierstra and T. Altenkirch. Beauty in the beast: A functional semantics of the
awkward squad. In Haskell '07: Proceedings of the ACM SIGPLAN workshop on
Haskell, 2007.

[12] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary arithmetic
operations, 1995.

[13] J. K. Vizzotto, T. Altenkirch, and A. Sabry. Structuring quantum effects: Superop-
erators as arrows. Mathematical Structures in Computer Science, 16(3), 2006. Also
arXiv:quant-ph/0501151.

15

