
A functional quantum programming language

Thorsten Altenkirch and Jonathan Grattage
School of Computer Science and IT, Nottingham University

email:{txa,jjg }@cs.nott.ac.uk

Abstract

We introduce the language QML, a functional language
for quantum computations on finite types. Its design is
guided by its categorical semantics: QML programs are
interpreted by morphisms in the categoryFQC of finite
quantum computations, which provides a constructive se-
mantics of irreversible quantum computations realisable as
quantum gates. QML integrates reversible and irreversible
quantum computations in one language, using first order
strict linear logic to make weakenings explicit. Strict pro-
grams are free from decoherence and hence preserve super-
positions and entanglement – which is essential for quan-
tum parallelism.

1 Introduction

The discovery of efficient quantum algorithms by Shor
[18] and Grover [6] has triggered much interest in the field
of quantum programming. However, it is still a very hard
task to find new quantum algorithms. One of the reasons
for this situation might be that quantum programs are very
low level: they are usually represented as quantum circuits,
or in some combinator language which gives rise to circuits.
Here we attempt to remedy this situation by introducing the
quantum programming language QML, which is based on
high-level constructs known from conventional functional
programming. Though functional (programs are expres-
sions), our language is first order and finitary; all datatypes
are finite. We will discuss possible extensions in the con-
clusions, but we believe that the approach presented here
represents a significant progress towards the goal of a natu-
ral quantum programming language.

We present a semantics of our language by interpreting
terms as morphisms in the category of finite quantum com-
putationsFQC, which we introduce here. TheFQC se-
mantics gives rise to a denotational semantics in terms of su-
peroperators, the accepted domain of irreversible quantum
computation, and at the same time to a compiler into quan-
tum circuits, an accepted operational semantics for quantum

programs.
As an illustration, one of the basic quantum circuits is

the Hadamard gate, which is usually defined by presenting
its matrix:

had =
1√
2

(
1 1
1 −1

)
But what does this mean in programming terms? In QML
this operation is implemented by the following program

had : Q2 (Q2

had x = if◦ x
then {qfalse | (−1) qtrue}
else {qfalse | qtrue}

We can readhad as an operation which, depending on its
input qubitx, returns one of two superpositions of a qubit.
We can also easily calculate that applyinghad twice gets us
back where we started by cancelling out amplitudes.

An important feature of quantum programming is the
possibility to create superpositions which have non-local ef-
fects. A simple application of this idea is the algorithm in
figure 1 to determine whether two classical bits, represented
as qubits, are equal, which is based on Deutsch’s algorithm
(see [12], pp.32). It exploits quantum parallelism by query-
ing both inputs at the same time; this corresponds to the fact
that the expressionsif◦ a andif◦ b in our program are not
nested. The famous algorithms by Shor and Grover rely on
a more subtle exploitation of this effect.

The reader may have noticed that we do not insist on
quantum programs being reversible. We will discuss this
further in section 3, by comparing classical and quantum
computation. It turns out that in both cases irreversible
computations can be reduced to reversible ones in a simi-
lar fashion. However, reversibility plays a more central role
in quantum computation due to the fact that forgetting infor-
mation leads to decoherence, which destroys entanglement,
and hence negatively affects quantum parallelism. Thus one
of the central features of our language iscontrol of deco-
herence, which is achieved by keeping track of weakening
through the use of strict linear logic (or just strict logic) and
by offering different if-then-else (or, generally, case) opera-
tors, one that measures the qubit,if , and a second,if◦, that
doesn’t – but which can only be used in certain situations.

eq : Q2 (Q2 (Q2

eq a b = let (x , y) = if◦{qfalse | qtrue}
then (qtrue, if◦ a

then ({qfalse | (−1) qtrue}, (qtrue, b))
else ({(−1) qfalse | qtrue}, (qfalse, b)))

else (qfalse, if◦ b
then ({(−1) qfalse | qtrue}, (a, qtrue))
else ({qfalse | (−1) qtrue}, (a, qfalse)))

in had x

Figure 1. A variant of Deutsch’s algorithm

We hasten to add that thisintrinsic decoherenceis not re-
lated to the decoherence which is caused by thermal noise
in a hypothetical quantum computer. As one of the referees
has pointed out,control of decoherenceis in spirit similar
to Reynold’scontrol of interference[13].

2 Related work

There are a number of papers on simulating or integrat-
ing quantum programming within conventional functional
programming, e.g. Mu and Bird’s early proposal on mod-
elling quantum programming in a functional language [11],
Karczmarczuk’s use of functional programming to model
quantum systems [9] and Sabry’s proposal to structure em-
bedded quantum programs usingvirtual values[14]. Yet an-
other approach was suggested by Sanders and Zuliani [22],
which extends the probabilistic guarded command language
[10] by quantum registers and operations on quantum reg-
isters.

Peter Selinger’s influential paper [15] introduces a
single-assignment (essentially functional) quantum pro-
gramming language, which is based on the separation of
classical controland quantum data. This language com-
bines high-level classical structures with operations on
quantum data, and has a clear mathematical semantics in
the form of superoperators. Quantum data can be manipu-
lated by using unitary operators or by measurement, which
can affect the classical control flow. Recently, Selinger and
Valiron [17] have presented a functional language based on
theclassical controlandquantum dataparadigm.

Selinger and Valiron’s approach is in some sense com-
plementary to ours: they use an affine type system (no con-
traction), while we use a strict system (no weakening). The
lack of contraction is justified by the no-cloning property
of quantum states. However, this does not apply to our ap-
proach, since we model contraction by sharing not by copy-
ing - this is also used in [4]. Indeed, also classical program-
ming languages do not implement contraction by copying
data but by sharing via pointers.

Andre van Tonder has proposed a quantumλ-calculus

incorporating higher order [20, 19] programs, however he
is not considering measurements as part of his language. In
[19] he suggests a semantics for a strict higher order quan-
tum language based on vector bundles. At the current time
it is not clear to us, whether the details of this construction
work out.

Abramsky and Coecke [1] have investigated a categor-
ical semantics for quantum protocols using the compact
closed structure of the category of finite dimensional Hilbert
spaces. They suggest that their semantics may be relevant
for type systems for quantum programming language. It
remains to be seen how this relates to our work, since our
approach does not exploit compact closure.

All the previous approaches adopt a basically combina-
tory approach to quantum data: operations on quantum data
are given by combinators implementing unitary operators.
We believe that our work is novel in that we are proposing
high-level quantum control structures, i.e. we are aiming at
quantum control and quantum data.

3 Finite classical and quantum computation

It is frequently emphasised that quantum computation
relies on reversibility because quantum physics models re-
versible processes. This is true, but the same holds for clas-
sical computation — whether we base our notion of compu-
tation on Newtonian physics or Maxwellian electrodynam-
ics, the underlying physical processes are reversible for a
closed system. Hence we should explain irreversible classi-
cal computation based on a reversible mechanism. Here, we
will develop a picture which applies to classical and quan-
tum computation. This makes it easy to identify the essen-
tial differences and also guides the design of QML which re-
alises structures common to both computational paradigms
by syntactic constructs established in classical functional
programming.

We introduce the categoryFQC of finite quantum com-
putations and, for purposes of comparison, the category
FCC of finite classical computations1. We will interpret

1FCC may be viewed as a categorical account of a finite version of

QML programs byFQC morphisms. It is straightforward
to identify a classical sublanguage of QML which can be
interpreted inFCC; however we will not carry this out in
detail.

Objects of both categories are finite sets, for which we
use the lettersA,B,C. While classical computations are
carried out on the elements of those sets, quantum compu-
tations take place in finite dimensional Hilbert spaces; we
write CA for the space generated byA, whose elements are
functions2. A reversible finite computation, that is a closed
computational system, is modelled by a reversible operation
φ, which is a bijection of finite sets in the classical case,
and a unitary operator on the Hilbert spaces in the quantum
case. We writeA (unitaryB for the set of unitary operators
from the space generated byA to the space generated by
B, which in the finite-dimensional case correspond exactly
to norm-preserving linear isomorphisms. The initial state
of a computation is divided into the inputA and the initial
heapH, and the final state into the outputB and garbage
G; using cartesian product (×) in the classical and tensor
product (⊗) in the quantum case. To actually perform a
computation we also need a heap initialisation constanth,
which intuitively sets all memory cells in a defined state,
e.g.0. In the classical case this is just an element of the set
h ∈ H, while in the quantum case it is an element of the
vector spaceh ∈ CH . Such a computational system can be
visualised by the following diagram:

A B

φ

h
�

H G
�

Note that in the above diagram heap inputs are ini-
tialised with a`, and garbage outputs are terminated with
a a. To summarise, given finite setsA,B a morphism
(H,h,G, φ) ∈ FCCAB is given by:

• a finite set of initial heapsH,

• an initial heaph ∈ H,

• a finite set of garbage statesG,

• a bijectionφ ∈ A×H ' B ×G,

while a morphism(H,h,G, φ) ∈ FQCAB is given by

• a finite setH, the basis of the space of initial heaps,

• a heap initialisation vectorh ∈ CH ,

• a finite setG, the basis of the space of garbage states,

Bennet’s results [5].
2CA gives rise to aKleisli structure, [2], here bind is realised by matrix

multiplication. Its Kleisli category is the category of finite dimensional
vector spaces.

• a unitary operatorφ ∈ A⊗H (unitaryB ⊗G.

Given two computational systems we can compose them by
combining initial and final heaps:

A

φα

B
φβ

C

Hα
�

>>
>>

>>

88
88

8 Gα
�

Hβ
�

������

����� Gβ
�

φβ◦α
More formally, given the morphismsα andβ:

α = (Hα, hα, Gα, φα) ∈ FCCAB

β = (Hβ , hβ , Gβ , φβ) ∈ FCCBC

the composite morphismβ ◦ α = (H,h,G, φ) is given by:

H = Hα ×Hβ

h = (hα, hβ)
G = Gα ×Gβ

φ = (Gα × φβ) ◦ (Hβ × φα)

Note that we have omitted some obvious symmetric
monoidal isomorphisms for× from the definition ofφ. We
leave it to the reader to construct the identity computation.

Analogously, given morphisms

α = (Hα, hα, Gα, φα) ∈ FQCAB

β = (Hβ , hβ , Gβ , φβ) ∈ FQCBC

the compositeβ ◦ α = (H,h,G, φ) is given by

H = Hα ⊗Hβ

h = hα ⊗ hβ

G = Gα ⊗Gβ

φ = (Gα ⊗ φβ) ◦ (Hβ ⊗ φα)

Note that⊗ is actually× on the underlying finite sets, since
CA ⊗CB ' CA×B . However, we shall use the tensor sym-
bol because we interpret the constructed set as the basis of
the tensor product of the associated vector spaces. As in the
classical case we omit symmetric monoidal isomorphisms
for ⊗.

We consider two computational systems as extensionally
equal if they map the same inputs to the same outputs. That
is, for FCC, a morphismα = (H,h,G, φ) ∈ FCCAB
gives rise to a function on finite sets UFCC α ∈ A→ B by

A×H
φ

// B ×G

π1

��
A

(−,h)

OO

UFCC α
// B

How do we do this forFQC? There is no sensible pro-
jection operation on tensor products. Indeed, forgetting a
part of a pure state (i.e. a vector of the Hilbert space) leads
to a mixed state, which is modelled by a density operator
δ ∈ A (A. This is a positive operator, whose eigen-
values are interpreted as the probability that the system is
in the corresponding eigenstate. Extensionally, quantum
computations give rise to completely positive mappings,
also called superoperators, see [7], pp. 136 or [15] for
details. Givenα = (H,h,G, φ) ∈ FQCAB we write
φ̂ ∈ A ⊗ H (super B ⊗ G for the associated superop-
erator φ̂ ρ = φ ◦ ρ ◦ φ†. The heap initialisation vector
h ∈ CH can be lifted to a density matrix̃h ∈ DensH by
h̃ = |h〉 〈h|. Combining this with the partial trace operator
trG ∈ B ⊗G (superB we obtain UFQC α ∈ A (superB
by

A⊗H
φ̂

// B ⊗G

trG

��
A

−⊗h̃

OO

UFQC α
// B

in the category of superoperators.
We say that two computationsα, β ∈ F AB are exten-

sionally equal (α =ext β), if the induced maps are equal;
UF α = UF β whereF ∈ {FCC,FQC}. We define the
homsets ofFCC,FQC as the quotients of the underlying
representation by extensional equality. It is straightforward
to verify that composition respects extensional equality.

As a consequence of our definition we obtain that the
assignment of maps to computations gives rise to forget-
ful functors UFCC ∈ FCC → FinSet and UFQC ∈
FQC → Super. Both functors are full3 and faithful.
Hence, our categoriesFCC andFQC can be viewed just
as different presentations ofFinSet andSuper. However,
going viaFCC andFQC has the benefit that we get an
implementation of our programs as reversible circuits in the
classical case and quantum circuits in the quantum case.

An important class of morphisms are the ones which do
not produce garbage, i.e. whereG = 1, they give rise sub-
categoriesFCC◦,FQC◦ of strict morphisms. All strict
maps are isometries, i.e. linear maps such that〈f v|f w〉 =
〈v|w〉. However, not all isometries arise from strict compu-
tations.4

While FQC andFCC are very similar indeed, the fact
that FQC is based on wave mechanics enables non-local
interaction which is exploited in quantum programming.
However, there is also a new challenge: the possibility of
decoherence. Letδ ∈ 2 → 2 × 2 where 2 = {0, 1}

3In the case ofFQC fullness is a consequence of Kraus’ decomposi-
tion theorem.

4This is only due to dimensional reasons, indeed in the domain of our
interpretation where all spaces are of a size2n the functor is full.

be defined asδ x = (x, x); which can be easily realised
by a CNOT gate. The same implementation gives rise to
Q2 (Q2 ⊗ Q2, writing Q2 for the object2 in FQC. In
either case, we can compose this withπ1 ∈ 2 × 2 → 2 (or
π1 ∈ Q2 ⊗ Q2 (super Q2) which leads to the following
picture:

2 • 2

0
� �������� �

φδ φπ1

Clearly, classically we have just defined an inefficient ver-
sion of the identityπ1 ◦ δ = I; we copy a bit and then throw
the copy away. However, the situation is quite different in
the quantum case: while the implementation is given by the
same diagram by replacing classical reversible circuits with
quantum circuits, the composition is not the identity, it is
a measurementoperation. That is, if we input a pure state
like R = { 1√

2
|0〉 + 1√

2
|1〉} the output is a mixed state

1
2{|0〉}+ 1

2{|1〉} corresponding to a random qubit. We have
lost the advantage of quantum computation and are back in
the world of classical probabilistic computations.

As a consequence of this observation we draw the con-
clusion that one of the main issues a quantum programming
language has to address is thecontrol of decoherence. This
is somehow the opposite of the common view which in-
sists that theno cloning theoremoutlaws contraction. We
observe that the implementation ofδ shares a qubit, but it
doesn’t clone it; consideringR again we obtain the EPR
state{ 1√

2
|00〉+ 1√

2
|11〉} after executing onlyδ. We claim

that this is a natural explanation of contraction because it
is completely uniform in both the classical and the quan-
tum case. Indeed, classical functional languages do not
implement contraction by copying data either.δ is strict
and therefor maps pure states to pure states. In contrast,
operations likeπ1 are interpreted by a non-trivial partial
trace which introduces decoherence. Hence it isweakening
which deserves our attention, notcontraction.

4 QML: Rules and semantics

We introduce here the typing rules and the denotational
semantics of QML, the latter gives rise to a compilation of
QML programs to quantum circuits. The compilation is pre-
sented diagramatically, implementing it requires some care
to make sure that the wires generated by subcomputations
match as intended.

4.1 Typing rules

We will only present the typed syntax of QML, which
is based on strict linear logic, the untyped syntax is im-
plicit in the typed one. We do allow explicit weakenings

annotating a term by by a context. This leads to an unam-
biguous type assignment. Any weakening will be translated
into the use of a non-trivial partial trace, and hence deco-
herence in thedenotational semantics. Another source of
decoherence is the use ofcase, or its special instanceif-
then-else. We make this explicit by introducing two dif-
ferent case-operators: one which observes a qubit and thus
leads to decoherence; and another which is free of deco-
herence but requires that we derive that the two alternatives
live in orthogonal spaces. For this purpose we introduce
a judgementt ⊥ u. Another novelty of our language is
a term–formerto create superpositions; we can,for exam-
ple, write{(qtrue, qtrue) | (qfalse, qfalse)}, to create an
EPR state. Note that we are ignoring the factor1√

2
which

can be automatically inserted by the compiler. The con-
struction of a superposition also requires to show that the
participating terms are orthogonal.

Our basic typing judgements areΓ ` t : σ meaning that
t has typeσ under contextΓ. andΓ `◦ t : σ for strict terms.
We embed̀ ◦ in `:

Γ `◦ t : σ

Γ ` t : σ

To avoid repetition, we also use the schematic judgements
Γ `a t : σ wherea ∈ {−, ◦}. We useσ,τ andρ to quantify
over types, which are generated by1, σ ⊕ τ, σ ⊗ τ . Qubits
are defined asQ2 = 1⊕ 1.

Γ is a context, i.e. a function from a finite set of variables
domΓ into the set of types. We write contexts asΓ = x1 :
τ1, . . . , xn : τn and use• for the empty context.Γ, x : τ
is the contextΓ extended byx : τ . This operation is only
defined ifΓ does not already assign a type tox.

For the additive rules, we introduce the operator⊗ map-
ping pairs of contexts to contexts:

Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ
Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ if x /∈ dom∆
• ⊗∆ = ∆

This operation is partial – it is only well-defined if the two
contexts do not assign different types to the same variable.

4.2 Denotational semantics

We assign to every typeσ the number|σ| which is the
size of a quantum register needed to store elements ofσ, we
also interpret expressions of the formσ t τ :

|1| = 0
|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ |+ 1
|σ ⊗ τ | = |σ|+ |τ |

The interpretation of a type is theFQC object of quan-
tum registers of the right size:JσK = Q2

|σ|. Contexts
Γ = x1 : τ1, . . . , xn : τn are interpreted as the tensor prod-
uct of their componentsJΓK = Jτ1K⊗ Jτ2K⊗ . . .⊗ JτnK. A
typing derivationΓ ` t : σ is interpreted as anFQC mor-
phismJtK ∈ FQC JΓK JσK, correspondingly,Γ `◦ t : σ is
interpreted asJtK ∈ FQC◦ JΓK JσK.

The interpretation of orthogonality is more involved.
Given Γ `◦ t : σ and Γ′ `◦ u : σ where |Γ| = |Γ′|
we interpret a derivationt ⊥ u as a structure(S, f, g, ψ)
whereS is an object ofFQC, l ∈ FQC JΓKS, g ∈
FQC JΓ′KS such thatJtK = φ ◦ (qtrue ⊗ −) ◦ f and
JuK = φ ◦ (qfalse⊗−) ◦ g.

To interpret the operator⊗ on contexts we define an
FQC◦ morphism CΓ,∆ ∈ FQC◦ JΓ⊗∆K (JΓK⊗ J∆K)

Γ⊗∆
φC

Γ

HΓ,∆
�

∆

by induction over the definition ofΓ ⊗ ∆: If a variable
x : σ appears in both contexts we have to useδσ ∈
FQC◦ JσK (JσK ⊗ JσK) which generalisesδ2, discussed
earlier, by applying it in parallel to all qubits. All the
other cases can be dealt with by applying monoidal isomor-
phisms. Similarly, we define an explicit weakening operator
WΓ,∆ ∈ FQC JΓ⊗∆K JΓK.

4.3 Structural rules

We start with the strict variable rule and the non-strict
weakening and their interpretations

var
x : σ `◦ x : σ

Γ ` t : σ
weak

Γ⊗∆ ` tdom∆ : σ

σ σ Γ⊗∆
φWΓ,∆

Γ
φt

σ

55
55 Gt

�

Ht
�

				 GΓ−∆
�

Next, we introduce a let-rule which is also the basic vehicle
to define first order programs.

Γ `a t : σ
∆, x : σ `b u : τ

let
Γ⊗∆ `aub let x = t in u : τ

◦ u ◦ = ◦ and− otherwise. We leave the condition that
Γ ⊗ ∆ is defined as an implicit precondition of this and
subsequent rules using⊗. The interpretation of the let-rule
is given by the following circuit:

Γ⊗∆
φC

Γ

99
99 ∆

φuHΓ,∆
�

∆

����
φt

σ τ

Ht
�

99
99

9
33

33 Gt
�

Hu
�

�����
���� Gu

�

Weakenings can affect the meaning of a program. As an
example consider:

y : Q2 ` let x = y in x{} : Q2

This program will be interpreted as the identity circuit, in
particular it is decoherence-free. However, consider

y : Q2 ` let x = y in x{y} : Q2

This program is interpreted by a circuit equivalent to the one
corresponding toπ1 ◦ δ shown earlier; hence it introduces a
measurement.

4.4 Rules for⊗

The rules for1, ⊗ are the standard rules from linear
logic. In the case of1 instead of an explicit elimination
rule we allow implicit weakening:

1− intro
• `◦ () : 1

Γ, x : 1 `a t : σ
1− weak

Γ `a t : σ

The interpretation of the rules for1 in terms of circuits is
invisible, since1 doesn’t carry any information. The inter-
pretation of the rules for⊗ is more interesting — the intro-
duction rule simply merges the components

Γ `a t : σ ∆ `a u : τ
⊗− intro

Γ⊗∆ `a (t, u) : σ ⊗ τ

Γ⊗∆
φC

Γ

φt

σ σ

HΓ,∆
�

∆

99
99

77
77

7 τ

Ht
�

�����
φu

τ

���� Gt
�

Hu
�

Gu
�

The interpretation of the elimination rule is similar to the
let-rule:

Γ `a t : σ ⊗ τ
∆, x : σ, y : τ `b u : ρ

⊗− elim
Γ⊗∆ `aub let (x, y) = t in u : ρ

Γ⊗∆
φC

Γ

99
99 ∆

φu

HΓ,∆
�

∆

����

φt

σ

τ ρ

Ht
�

99
99

9
33

33 Gt
�

Hu
�

�����
���� Gu

�

As an example, here is a simple program which swaps two
qubits:

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

Again it is important to mark the variables with the empty
set of variables. The alternative program

p : Q2 ⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2 ⊗Q2

would measure the qubits while swapping them.

4.5 Rules for⊕

We represent values inσ ⊕ τ as words of fixed length,
as in classical computing. Unfolding our type interpretation
we have thatJσ⊕τK = Q2⊗JσtτK whereJσtτK can store
a value either ofJσK or JτK. To adjust the size we use an
easily definable padding operator Pσtτ ∈ FQC JσK JσtτK,
which simply sets unused bits to0.

The introduction rules for⊕ are the usual classical rules
for +; note that they preserve strictness.

Γ `a s : σ
+ intro1

Γ `a inl s : σ ⊕ τ

Γ
φs

σ

φPσtτ
Hs

�
==

== σtτ

Ht−s
�

����
33

33 Q2

Q2 X

���� Gs
�

Γ `a t : τ
+ intro2

Γ `a inr t : σ ⊕ τ

Γ
φt

τ

φPτtσ
Ht

�

77
77

7 σtτ

Ht−s
�

����
33

33 Q2

Q2
�

���� Gt
�

whereX is negation.
We defineqtrueX = inl ()X : Q2 andqfalseX =

inr ()X : Q2. To be able to interpret case expressions
we introduce a biconditional operation on unitary operators.
Givenφ, ψ ∈ A (unitaryB we construct

φ|ψ ∈ Q2 ⊗A (unitaryQ2 ⊗B

by the following matrix

φ|ψ (true, a) (true, b) = φa b
φ|ψ (false, a) (false, b) = ψ a b
φ|ψ (x, a) (y, b) = 0 everywhere else

As already indicated we have two different elimination rules
— we begin with the one which measures a qubit, since it
is basically the classical rule modulo additivity of contexts.

Γ ` c : σ ⊕ τ
∆, x : σ ` t : ρ
∆, y : τ ` u : ρ

⊕− elim
Γ⊗∆ ` case c of {inl x⇒ t | inr y ⇒ u} : ρ

We have JtK ∈ FQC J∆ ⊗ σK JρK and JuK ∈
FQC J∆⊗ τK JρK. By padding the input we turn them into
dJtKe, dJuKe ∈ FQC J∆⊗ (σ t τ)K JρK. There is no reason
why the size of the associated heap and garbage should be
the same, however, we have thatHt +Gu = Hu +Gt and
hence we can stretch both maps uniformly toH = HttHu

andG = Gt tGu giving rise toφdJtKe andφdJuKe of identi-
cal dimensions. Hence we can apply the choice operator to
constructψ = φdJtKe|φdJuKe, and with some plumbing we
obtain:

Γ⊗∆
φC

Γ

99
99

ψ
HΓ,∆

�
∆

����

φc

σ t τ ρ

Q2 Q2
�

Hc
�

CC
CC

C G
�

Ht−u
�

{{{{{ Gc
�

We can derive if-then-else as
if b then t else u =

case b of {inl ⇒ t | inr ⇒ u }
and use this to implement a form of negation:

mnot : Q2 (Q2

mnot x = if x then qfalse else qtrue
However, this program will measure the qubit before negat-
ing it. If we want to avoid this we have to use the
decoherence-free version of case, which relies on the or-
thogonality judgement:t ⊥ u, which is defined for terms in
the same type and contextΓ ` t, u : A. We will introduce
the rules for orthogonality later. Intuitively,t ⊥ u holds if
the outputst andu are always orthogonal, e.g. we will be
able to deriveqtrue{} ⊥ qfalse{}. Hence, we introduce
the strict case by:

Γ `a c : σ ⊕ τ
∆, x : σ `◦ t : ρ
∆, y : τ `◦ u : ρ t ⊥ u

⊕− elim◦

Γ⊗∆ `a case◦ c of
{inl x⇒ t | inr y ⇒ u} : ρ

It turns out that there is no sensible way to definecase◦ if
σ andτ have different sizes. Hence we define the orthogo-
nality judgement in a way that it only succeeds, if|σ| = |τ |
and henceJσK = JτK.

To define the interpretation, w e have to exploit the data
from the orthogonality judgementJt ⊥ uK = (S, f, g, φ)
whereφ ∈ S ⊗Q2 (unitary JρK andf, g ∈ FQC◦ (J∆K ⊗
JσK)S. We note that both morphisms must have the same
heap and hence we can construct

φf |φg ∈ FQC◦ (Q2 ⊗ J∆K⊗ JσK) (Q2 ⊗ S).

Now, the main observation is that we just have to apply the
unitary operatorφt⊥u to make the qubit disappear, leading

to the following diagram:

Γ⊗∆
φC

Γ
77

7

φf |φg

HΓ,∆
�

∆

���

φc

σ t τ S

φt⊥u

ρ

Q2 Q2

Hc
�

DDDD

Hf−g
�

{{{{{ Gc
�

Note that we only allow strict terms in the branches of a
strict case. In a previous draft of this paper we tried to
be more liberal, however, this causes problems because the
qubit we are branching over can be indirectly measured
by the garbage. This problem was pointed out by Peter
Selinger.

Using the decoherence-free versionif◦ we can imple-
ment standard reversible and hence quantum operations
such asqnot :

qnot : Q2 (Q2

qnot x = if◦ x
then qfalse
else qtrue

and the conditional notcnot :
cnot : Q2 (Q2 (Q2 ⊗Q2

cnot c x = if◦ c
then (qtrue, qnot x)
else (qfalse, x)

and finally the Toffolli operator which is basically a condi-
tionalcnot :

toff : Q2 (Q2 (Q2 (Q2 ⊗ (Q2 ⊗Q2)
toff c x y = if◦ c

then (qtrue, cnot x y)
else (qfalse, (x , y))

4.6 Superpositions

There is a simple syntactic translation we use to reduce
the superposition operator to the problem of creating an ar-
bitrary 1-qubit state:

Γ `◦ t, u : σ t ⊥ u
||λ||2 + ||λ′||2 = 1 λ, λ′ 6= 0

Γ `◦ {(λ)t | (λ′)u} : σ
≡ if◦ {(λ)qtrue | (λ′)qfalse}

then t else u

The algorithm for the preparation of the one-qubit state to
a given degree of precision (which is a parameter of the
compilation) can be obtained from the one-qubit case of the
Kitaev-Solovay theorem, see [12], page 616-624.

4.7 Orthogonality

Given Γ ` t : σ and ∆ ` u : σ where |∆| = |Γ|
we definet ⊥ u by the following rules. The idea of

t ⊥ u is that there is a boolean observation which tells
the two terms apart in every environment. The interpreta-
tion Jt ⊥ uK = (S, f, g, ψ) is defined by induction over the
derivations. We present here a sound but incomplete for-
malisation of orthogonality, achieving completeness is sub-
ject of further work.

Γ `◦ t : σ Γ `◦ u : τ

inl t ⊥ inr u inr t ⊥ inl u

Hereρ = σ ⊕ τ , we setS = σ t τ . In both casesf is
obtained by interpretingt combined with padding andr is
given by the interpretation ofu and padding. The circuits
for ψ for these rules are given by:

S

Q2

ρ

 S

Q2 X
ρ


t ⊥ u

inl t ⊥ inl u inr t ⊥ inr u

Let Γ `◦ inl t, inl u : σ ⊕ τ and let(S, f, g, ψ) be the
interpretation oft ⊥ u. From this data we are constructing
the interpretation ofinl t ⊥ inl u as(S, f ′, g′, ψ′). We
setS′ = S ⊗ Q2 ⊗H whereH is the heap needed byinl .
We constructf ′ andg′ by applyinginl to l, r on the level
of semantics using the appropriate part ofS′ as the heap.ψ
is given by the following diagram:

S
ψ

S′ Q2

77
77

7
77

77
7

ψPσtτ
H

����
==

==
����

Q2

����
ρ




The second rule forinr is done symmetrically.

t ⊥ u

(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)

As above, letΓ `◦ (t, v), (u,w) : σ ⊗ τ and let(S, f, g, ψ)
be the interpretation oft ⊥ u to construct the interpretation
of (t, v) ⊥ (u,w) as(S′, f ′, g′, ψ′). We setS′ = S⊗ τ and
constructf ′ andg′ by pairing withv ,w , semantically.

The definition ofψ′ is given by the following diagram:

S
ψS′

τ
44

44 σ

Q2

 τ
ρ

 
t ⊥ u λ∗0κ0 = −λ∗1κ1

{(λ0)t | (λ1)u} ⊥ {(κ0)t | (κ1)u}

As before, assume as given the interpretation oft ⊥ u as
(S, f, g, ψ). We construct the interpretation of the conclu-
sion as(S, f, g, ψ′) whereψ′ is given as

S

ψ
ρ

Q2 φ

using the rotationφ ∈ Q2 (unitaryQ2 given by

φ =
(
λ0 λ1

κ0 κ1

)
4.8 Programs

So far we have introduced a language of expressions. It
is straightforward to extend this to a notion of first order
programs. E.g. we consider a programΣ to be a sequence
of function definitions of the formF Γ = t : σ, we have to
parameterise every judgement byΣ and require thatΓ `Σ

t : σ for the definition to be a wellformed extension ofΣ.
We also have to introduce a rule for function-application
which can just be translated into an iterated let-expression.

5 Conclusions and further work

We have introduced a language for finite quantum pro-
grams which uniformly extends a finitary classical lan-
guage. The classical part of our language may be of interest
for its own sake because it introduces a natural way to com-
pile functional terms into space efficient reversible circuits,
as we avoid creating unnecessary garbage. This uniformity
is one of the main design principles of our language, which,
we hope, makes it a natural vehicle to express quantum pro-
gramming and to developquantum thinking.

We are currently implementing a compiler for QML
in Haskell. The compiler produces a representation of
quantum circuits which can be simulated (inefficiently, of
course) by our own simulator or by using a standard simu-
lator for quantum gates.

There are other design ideas for quantum programming
languages. A potential criticism of our approach is that we
leave contractions implicit, which is an operation which de-
pends on the choice of basis. However, our type assignment
system clearly fixes the places where contractions have to
happen, and moreover, and we believe more importantly, it
fixes the places where projections, ortracing, is happening.
A central feature of any quantum programming language
seemscontrol of decoherence.

Having pointed this out it seems that decoherence is
something you always want to minimise. It is straightfor-
ward to design an inference algorithm which infers weak-
eningstdomΓ such that decoherence is minimised. Maybe

this should be the default, which can be overridden, if the
programmer wants to enforce measurement.

We would like to have an orthogonality judgement which
is complete with respect to the denotational semantics. One
of the referees commented that we would need an inner
product judgement to achieve this. We plan to explore this
proposal in future work.

The restriction thatcase◦ is only allowed for balanced
coproducts is a direct reaction to the comments of the same
referee who pointed out that our previous approach, which
involved padding the data, is problematic. Indeed, this prob-
lem seems unfixable, if we branch overQ1⊗Q2 the garbage
which is created by padding may indirectly measure the
qubit we are branching over. Consequently, this approach
would not be compositional and hence should be rejected.
The inability to deal with quantum control over arbitrary
coproducts is a consequence of the fact that while we deal
with quantum data and control, the structure, i.e. the mem-
ory allocation, of our data is classical. One way to over-
come this limitation would be to use an operational seman-
tics which employs a quantum memory allocation. Such a
semantics would have to exploit an infinite state space, and
it is questionable whether such a system is physically plau-
sible. Another direction, which seems more feasible, would
be to index quantum structures by classical values at com-
pile time.

We have some doubts as to whether the understanding of
general recursion and partiality in quantum programming is
essential, because partiality is only interesting for systems
with infinite state spaces. Moreover, it is not clear how to
observe the termination of such a hypthothetical quantum
program of unknown runtime without disturbing the com-
putation.

Higher order programming would be a worthwhile ad-
dition to reflect the way many quantum algorithms are pre-
sented: e.g. the Quantum Fourier Transform can be parame-
terised by a function on quantum words. Recently, Selinger
investigated this problem [16] and it seems that currently
no canonical higher order structure onSuper is known.
We are investigating whether the category of presheaves
overSuper would provide a sound denotational model for
higher order quantum computation. This semantics would
employ Day’s construction to interpret tensorproducts.

Another line of work is to reap the benefits of the fact that
our language uses high level constructs, and develop high
level reasoning principles for QML programs. To achieve
this our next goal is to give a direct translation of QML to
superoperators which factors through theFQC semantics
presented here. This translation will be based on the im-
plementation of superoperators using arrows [8] in Haskell
[21]. A direct consequence of this construction is that the
translation presented here is compositional with respect to
the extensional equality.

In joint work with Sabry and Vizzotto we are currently
developing an equational theory for QML, an algebra for
quantum programming, which is sound and complete, with
repect to the denotational semantics suggested here. Since
the completeness proof relies oninverting evaluation, such
a proof also gives rise to normalisation; exploiting the ap-
proach developed in [3] for a classical system.

Acknowledgements

We would like to acknowledge interesting discussions on
the subject of this paper with Slava Belavkin, Martin Hof-
mann, Conor McBride, Alex Simpson and Thomas Stre-
icher. Amr Sabry and Juliana Vizotti provided extensive
feedback on previous drafts of this paper. Peter Selinger
pointed out a serious flaw in the definition ofcase◦ and
refuted our conjecture that strict maps classify monos in
Super. We would like to thank the anonymous referees
for their valuable feedback, especially one of the referees,
who provided very detailed and extremely useful technical
comments on our work.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of
quantum protocols. InProceedings of the 19th IEEE confer-
ence on Logic in Computer Science (LiCS’04), 2004.

[2] T. Altenkirch and B. Reus. Monadic presentations of lambda
terms using generalized inductive types. InComputer Sci-
ence Logic, volume 1683, pages 453–468. Springer-Verlag,
1999.

[3] T. Altenkirch and T. Uustalu. Normalization by evaluation
for λ→2. In Functional and Logic Programming, number
2998 in LNCS, pages 260 – 275, 2004.

[4] P. Arrighi and G. Dowek. Operational semantics for a formal
tensorial calculus, 2004. Draft proceedings of the 2nd Inter-
national Workshop on Quantum Programming Languages.

[5] C. H. Bennett. Logical reversibility of computation.IBM
Journal of Research and Development, 17(6):525–532,
1973.

[6] L. Grover. Quantum mechanics helps in searching for a nee-
dle in a haystack.Physics Review Letters, 79(2):325–328,
1997.

[7] M. Hirvensalo. Quantum Computating. Springer-Verlag
NewYork, Inc., 2001.

[8] J. Hughes. Generalising monads to arrows.Science of Com-
puter Programming, 37:67–111, May 2000.

[9] J. Karczmarczuk. Structure and interpretation of quantum
mechanics: a functional framework. InProceedings of the
ACM SIGPLAN workshop on Haskell, pages 50–61. ACM
Press, 2003.

[10] C. Morgan and A. McIver. pgcl: Formal reasoning for ran-
dom algorithms.South African Computer Journal, 1999.

[11] S.-C. Mu and R. S. Bird. Quantum functional program-
ming. In 2nd Asian Workshop on Programming Languages
and Systems, 2001.

[12] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, Cam-
bridge, 2000.

[13] J. C. Reynolds. Syntactic control of interference. InPro-
ceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 39–46. ACM
Press, 1978.

[14] A. Sabry. Modeling quantum computing in haskell. InPro-
ceedings of the ACM SIGPLAN workshop on Haskell, pages
39–49. ACM Press, 2003.

[15] P. Selinger. Towards a quantum programming language.
Mathematical Structures in Computer Science, 14(4):527–
586, 2004.

[16] P. Selinger. Towards a semantics for higher-order quantum
computation.Proceedings of the International Workshop on
Quantum Programming Languages, pages 127–143, 2004.

[17] P. Selinger and B. Valiron. A lambda calculus for quantum
computation with classical control. To appear in Proceed-
ings of the International Conference on Typed Lambda Cal-
culi and Applications, 2005.

[18] P. Shor. Algorithms for quantum computation: discrete log-
arithms and factoring. InProceedings, 35th Annual Sympo-
sium on Foundations of Computer Science. CA: IEEE Press,
1994.

[19] A. van Tonder. Quantum computation, categorical semantics
and linear logic. quant-ph/0312174, 2003.

[20] A. van Tonder. A lambda calculus for quantum computation.
SIAM Journal of Computing, 33:1109–1135, 2004.

[21] J. K. Vizzotto, T.Altenkirch, and A. Sabry. Structuring quan-
tum effects: Superoperators as arrows. Submitted for publi-
cation, 2005.

[22] P. Zuliani.Quantum Programming. PhD thesis, Oxford Uni-
versity, 2001.

