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Abstract programs.
As an illustration, one of the basic quantum circuits is
We introduce the language QML, a functional language the Hadamard gate, which is usually defined by presenting
for quantum computations on finite types. Its design is its matrix:
guided by its categorical semantics: QML programs are had — 1 (1 1 >
interpreted by morphisms in the categdRQC of finite v\l -1
guantum computations, which provides a constructive se-
mantics of irreversible quantum computations realisable as
guantum gates. QML integrates reversible and irreversible
guantum computations in one language, using first order
strict linear logic to make weakenings explicit. Strict pro-
grams are free from decoherence and hence preserve super-
positions and entanglement — which is essential for quan-
tum parallelism.

But what does this mean in programming terms? In QML
this operation is implemented by the following program
had : Q2 — Q2
had z = if° z
then {qfalse | (—1) qtrue}
else {qfalse | qtrue}
We can readad as an operation which, depending on its
input qubitz, returns one of two superpositions of a qubit.
We can also easily calculate that applyfngl twice gets us
) back where we started by cancelling out amplitudes.
1 Introduction An important feature of quantum programming is the
possibility to create superpositions which have non-local ef-
The discovery of efficient quantum algorithms by Shor fects. A simple application of this idea is the algorithm in
[18] and Grover [6] has triggered much interest in the field figure 1 to determine whether two classical bits, represented
of quantum programming. However, it is still a very hard as qubits, are equal, which is based on Deutsch’s algorithm
task to find new quantum algorithms. One of the reasons(see [12], pp.32). It exploits quantum parallelism by query-
for this situation might be that quantum programs are very ing both inputs at the same time; this corresponds to the fact
low level: they are usually represented as quantum circuits,that the expressiori§® « andif® b in our program are not
or in some combinator language which gives rise to circuits. nested. The famous algorithms by Shor and Grover rely on
Here we attempt to remedy this situation by introducing the a more subtle exploitation of this effect.
guantum programming language QML, which is based on  The reader may have noticed that we do not insist on
high-level constructs known from conventional functional quantum programs being reversible. We will discuss this
programming. Though functional (programs are expres- further in section 3, by comparing classical and quantum
sions), our language is first order and finitary; all datatypes computation. It turns out that in both cases irreversible
are finite. We will discuss possible extensions in the con- computations can be reduced to reversible ones in a simi-
clusions, but we believe that the approach presented heréar fashion. However, reversibility plays a more central role
represents a significant progress towards the goal of a natuin quantum computation due to the fact that forgetting infor-
ral quantum programming language. mation leads to decoherence, which destroys entanglement,
We present a semantics of our language by interpretingand hence negatively affects quantum parallelism. Thus one
terms as morphisms in the category of finite quantum com- of the central features of our languagecntrol of deco-
putationsFQC, which we introduce here. THEQC se- herence which is achieved by keeping track of weakening
mantics gives rise to a denotational semantics in terms of suthrough the use of strict linear logic (or just strict logic) and
peroperators, the accepted domain of irreversible quantumby offering different if-then-else (or, generally, case) opera-
computation, and at the same time to a compiler into quan-tors, one that measures the quifit,and a secondf®, that
tum circuits, an accepted operational semantics for quantumdoesn’t — but which can only be used in certain situations.



eq: Q2 - Q2 — Q2
eq a b=1let (z,y) = if°{qfalse | qtrue}
then (qtrue, if° a
then ({qfalse | (—1) qtrue}, (qtrue, b))
else ({(—1) qgfalse | qtrue}, (gfalse, b)))
else (qgfalse, if° b
then ({(—1) gfalse | qtrue}, (a, qtrue))
else ({qfalse | (—=1) gtrue}, (a, gfalse)))
in had x

Figure 1. A variant of Deutsch'’s algorithm

We hasten to add that thistrinsic decoherencés not re- incorporating higher order [20, 19] programs, however he
lated to the decoherence which is caused by thermal noisas not considering measurements as part of his language. In
in a hypothetical quantum computer. As one of the referees[19] he suggests a semantics for a strict higher order quan-
has pointed outgontrol of decoherencis in spirit similar tum language based on vector bundles. At the current time
to Reynold’scontrol of interferencgl13]. it is not clear to us, whether the details of this construction
work out.

Abramsky and Coecke [1] have investigated a categor-
ical semantics for quantum protocols using the compact
closed structure of the category of finite dimensional Hilbert

There are a number of papers on simulating or integrat-spaces. They suggest that their semantics may be relevant
ing quantum programming within conventional functional for type systems for quantum programming |anguage_ It
programming, e.g. Mu and Bird’s early proposal on mod- remains to be seen how this relates to our work, since our
elling quantum programming in a functional language [11], approach does not exploit compact closure.
Karczmarczuk's use of functional programming to model  A|l the previous approaches adopt a basically combina-
quantum systems [9] and Sabry’s proposal to structure em-ory approach to quantum data: operations on quantum data
bedded quantum programs usiigual valueg14]. Yetan-  are given by combinators implementing unitary operators.
other approach was suggested by Sanders and Zuliani [22]we believe that our work is novel in that we are proposing
which extends the probabilistic guarded command languagenigh-level quantum control structures, i.e. we are aiming at
[10] by quantum registers and operations on quantum reg-quantum control and quantum data.
isters.

Peter Selinger’s influential paper [15] introduces a
single-assignment (essentially functional) quantum pro-

gramming language, which is based on the separation of , , )
classical controland quantum data This language com- It is frequently emphasised that quantum computation

bines high-level classical structures with operations on relies on reversibility because quantum physics models re-

quantum data, and has a clear mathematical semantics il3(ersible processes. This is true, but the same holds for clas-

the form of superoperators. Quantum data can be manipu—SICaI computation — whether we base our notion of compu-

lated by using unitary operators or by measurement, which!@tion on Newtonian physics or Maxwellian electrodynam-
can affect the classical control flow. Recently, Selinger and ¢S+ the underlying physical processes are reversible for a

Valiron [17] have presented a functional language based onclosed system. Hence we should explain irreversible classi-
the classical controbndquantum dataaradigm cal computation based on a reversible mechanism. Here, we

. L o will develop a picture which lies to classical and quan-
Selinger and Valiron’s approach is in some sense com- develop a picture which applies to ¢ cal and q

plementary to ours: they use an affine type system (no Ccm_tum computation. This makes it easy to identify the essen-

traction), while we use a strict system (no weakening). The t'?.' d|ffe:en(;es andalso gwtde; t:whe deS|gntoI.QMI|_ Wh'cc:]. re-
lack of contraction is justified by the no-cloning property glsesn? rutci: urei ct(:mr;non toblci) h cc?rir;]pula |oina| ?ar:atilgnm;s
of quantum states. However, this does not apply to our ap- y syntactic constructs establishe classical functiona

. ; : rogramming.
proach, since we model contraction by sharing not by copy- P ) -
ing - this is also used in [4]. Indeed, also classical program- We introduce the categojQC of finite quantum com-

; . : : utations and, for purposes of comparison, the categor
ming languages do not implement contraction by copying %CC of finite class[i)calpcomputatioﬁspWe will interpretg !
data but by sharing via pointers.

Andre van Tonder has proposed a quantioalculus LFCC may be viewed as a categorical account of a finite version of

2 Related work

3 Finite classical and quantum computation




QML programs byFQC morphisms. It is straightforward e aunitary operatop € A @ H —oynitary B ® G.
to identify a classical sublanguage of QML which can be

interpreted ifFCC; however we will not carry this out in ~ GIven two computational systems we can compose them by

combining initial and final heaps:

detail.

Objects of both categories are finite sets, for which we |
use the lettersA, B, C. While classical computations are AT p B 7 c
carried out on the elements of those sets, quantum compu- H — i G
tations take place in finite dimensional Hilbert spaces; we
write C# for the space generated by whose elements are Hs | Gs
functions?. A reversible finite computation, that is a closed Bpoa
computational system, is modelled by a reversible operationpore formally, given the morphisms and3:
¢, which is a bijection of finite sets in the classical case,
and a unitary operator on the Hilbert spaces in the quantum a = (Hy he,Ga,da) € FCCAB
case. We writed —oynitary B for the set of unitary operators B3 = (Hg hg,Gs,¢3) € FCCBC

from the space generated byto the space generated by
B, which in the finite-dimensional case correspond exactly the composite morphisifio « = (H, h, G, ¢) is given by:
to norm-preserving linear isomorphisms. The initial state

of a computation is divided into the input and the initial H = H,x Hg
heapH, and the final state into the outpBt and garbage h = (ha, hg)
G, using cartesian produck( in the classical and tensor -
. G = Ga X Gﬁ
product ®) in the quantum case. To actually perform a
computation we also need a heap initialisation constant ¢ = (Gaxdp)o(Hpx ¢a)

which intuitively sets all memory cells in a defined state,
e.g.0. In the classical case this is just an element of the set
h € H, while in the quantum case it is an element of the
vector spacé € C. Such a computational system can be
visualised by the following diagram:

Note that we have omitted some obvious symmetric

monoidal isomorphisms fox from the definition ofp. We

leave it to the reader to construct the identity computation.
Analogously, given morphisms

A B « = (H(Jmh'OMGCwQSOé) e FQCAB
é B = (Hg,hg Gp,d5) € FQCBC
h /I H G — the compositeg o a = (H, h, G, ¢) is given by
Note that in the above diagram heap inputs are ini- H = H,®Hg
tialised with at-, and garbage outputs are terminated with h = h.ooh
a 1. To summarise, given finite set4, B a morphism N b
(H,h,G,¢) € FCC A B is given by: G = Ga®Gp

¢ = (Ga®¢p)o(Hp® da)

o Note that is actuallyx on the underlying finite sets, since
e aninitial heaph < H, CA @ CB ~ CA*B. However, we shall use the tensor sym-
bol because we interpret the constructed set as the basis of
the tensor product of the associated vector spaces. As in the

¢ afinite set of initial heap4#/,

¢ afinite set of garbage statés

e abijectionp € A x H ~ B x G, classical case we omit symmetric monoidal isomorphisms
. . o for ®.
while a morphism(H, h, G, ¢) € FQC A B is given by We consider two computational systems as extensionally

equal if they map the same inputs to the same outputs. That

fini h is of th f initial h
o afinite setH, the basis of the space of initial heaps, s, for FCC, a morphismy — (H.h.G.$) € FCC A B

¢ a heap initialisation vectdr € C*, gives rise to a function on finite setgdc o € A — B by
¢ afinite set, the basis of the space of garbage states, AxH———>BxG@G

Bennet's results [5]. (=,h) -
2C4 gives rise to &Kleisli structure [2], here bind is realised by matrix '

multiplication. Its Kleisli category is the category of finite dimensional A B
B —————
vector spaces. Urcc o



How do we do this folFQC? There is no sensible pro-
jection operation on tensor products. Indeed, forgetting a

be defined ag =z = (x,z); which can be easily realised
by a cNOT gate. The same implementation gives rise to

part of a pure state (i.e. a vector of the Hilbert space) leadsQ, — Q> ® Q,, writing Q- for the object2 in FQC. In

to a mixed state, which is modelled by a density operator
0 € A — A. This is a positive operator, whose eigen-

either case, we can compose this withe 2 x 2 — 2 (or
T € Q2 ® Qo —osyper Q2) Which leads to the following

values are interpreted as the probability that the system ispicture:

in the corresponding eigenstate. Extensionally, quantum
computations give rise to completely positive mappings,
also called superoperators, see [7], pp. 136 or [15] for
details. Givena = (H,h,G,¢) € FQC A B we write

cE € A® H —ogyper B ® G for the associated superop-
eratorqASp ¢ o po ¢f. The heap initialisation vector

h € CH can be lifted to a density matrix € Dens H by

h = |h) (h|. Combining this with the partial trace operator
trg € B ® G —osyper B We obtain qc o € A —ogyper B

by

AR H—B®G
T_(@E Ltrc
A Urac o B

in the category of superoperators.

We say that two computations 5 € F' A B are exten-
sionally equal ¢ =ext (), if the induced maps are equal;
Ura = Up g whereF € {FCC,FQC}. We define the
homsets o' CC, FQC as the quotients of the underlying
representation by extensional equality. It is straightforward
to verify that composition respects extensional equality.

As a consequence of our definition we obtain that the
assignment of maps to computations gives rise to forget-
ful functors Urpcc € FCC — FinSet and Urqc €
FQC — Super. Both functors are fulf and faithful.
Hence, our categorid8CC andFQC can be viewed just
as different presentations BinSet andSuper. However,
going viaFCC and FQC has the benefit that we get an
implementation of our programs as reversible circuits in the
classical case and quantum circuits in the quantum case.

An important class of morphisms are the ones which do
not produce garbage, i.e. whare= 1, they give rise sub-
categoriesFCC°, FQC?® of strict morphisms. All strict
maps are isometries, i.e. linear maps such ¢liat f w) =
(v|w). However, not all isometries arise from strict compu-
tations.*

While FQC andFCC are very similar indeed, the fact
that FQC is based on wave mechanics enables non-local
interaction which is exploited in quantum programming.
However, there is also a new challenge: the possibility of
decoherence. Lef € 2 — 2 x 2 where2 = {0,1}

3In the case oFQC fullness is a consequence of Kraus’ decomposi-
tion theorem.

4This is only due to dimensional reasons, indeed in the domain of our
interpretation where all spaces are of a $i2ethe functor is full.
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Clearly, classically we have just defined an inefficient ver-
sion of the identityr; o § = I; we copy a bit and then throw
the copy away. However, the situation is quite different in
the quantum case: while the implementation is given by the
same diagram by replacing classical reversible circuits with
guantum circuits, the composition is not the identity, it is
a measuremenpperation. That is, if we input a pure state
Iike R ={750)+ % |1>} the output is a mi.xed state
1{|0)}+3{[1)} corresponding to a random qubit. We have
lost the advantage of quantum computation and are back in
the world of classical probabilistic computations.

As a consequence of this observation we draw the con-
clusion that one of the main issues a quantum programming
language has to address is ttomtrol of decoherencerlhis
is somehow the opposite of the common view which in-
sists that theno cloning theorenoutlaws contraction. We
observe that the implementation d&hares a qubit, but it
doesn't clone it; considering® again we obtain the EPR
state{% |00) + % |11)} after executing only. We claim
that this is a natural explanation of contraction because it
is completely uniform in both the classical and the quan-
tum case. Indeed, classical functional languages do not
implement contraction by copying data either.is strict
and therefor maps pure states to pure states. In contrast,
operations liker; are interpreted by a non-trivial partial
trace which introduces decoherence. Hencewtéaakening
which deserves our attention, remintraction

0}

4 QML: Rules and semantics

We introduce here the typing rules and the denotational
semantics of QML, the latter gives rise to a compilation of
QML programs to quantum circuits. The compilation is pre-
sented diagramatically, implementing it requires some care
to make sure that the wires generated by subcomputations
match as intended.

4.1 Typingrules

We will only present the typed syntax of QML, which
is based on strict linear logic, the untyped syntax is im-
plicit in the typed one. We do allow explicit weakenings



annotating a term by by a context. This leads to an unam-

The interpretation of a type is tH#8QC object of quan-

biguous type assignment. Any weakening will be translated tum registers of the right sizefo] = Q,l°l. Contexts

into the use of a non-trivial partial trace, and hence deco-

herence in thalenotational semanticsAnother source of
decoherence is the use ochise or its special instancd-
then-else We make this explicit by introducing two dif-

'=xy:7m,...,2, : 7, are interpreted as the tensor prod-
uct of their componentil’] = [11] ® [=] ® ... [.]. A
typing derivationl” + ¢ : ¢ is interpreted as aRQC mor-
phism[t] € FQC [I'] [¢]. correspondinglyI’ F° ¢ : o is

ferent case-operators: one which observes a qubit and thuinterpreted a§t] € FQC® [T'] [¢].

leads to decoherence; and another which is free of deco-
herence but requires that we derive that the two alternativesGivenT" +° ¢ :

The interpretation of orthogonality is more involved.
ocandI” F° u : o where|l'| = |IV|

live in orthogonal spaces. For this purpose we introduce we interpret a derivatiom L « as a structurésS, f, g, v)

a judgement 1 wu. Another novelty of our language is
a term—formerto create superpositions; we can,for exam-
ple, write { (qtrue, qtrue) | (gfalse, qfalse) }, to create an
EPR state. Note that we are ignoring the factgr which
can be automatically inserted by the compiler. The con-

struction of a superposition also requires to show that the

participating terms are orthogonal.
Our basic typing judgements are- ¢ : ¢ meaning that
t has types under context'. andl” -° ¢ : o for strict terms.
We embed-° in |-:
I'F°t:o

I'kt:o

where S is an object ofFQC, | € FQCJ[I']S, g €
FQC[I'] S such that[t] = ¢ o (qtrue ® —) o f and
[u]l = ¢ o (afalse® —)og.

To interpret the operatop on contexts we define an
FQC° morphism G o € FQC° [I' @ A] ([T'] ® [A])

roA — r

Hr A l—EI: A
by induction over the definition of ® A: If a variable
x : o appears in both contexts we have to use €
FQC° [o] ([e] @ [o]) which generalises),, discussed

earlier, by applying it in parallel to all qubits. All the
other cases can be dealt with by applying monoidal isomor-

To avoid repetition, we also use the schematic judgementsOhismS- Similarly, we define an explicit weakening operator

' ¢: o0 wherea € {—, o}. We user,m andp to quantify
over types, which are generated hyr & 7,0 ® 7. Qubits
are defined a€)s = 19 1.

I"is a context, i.e. a function from a finite set of variables
domI into the set of types. We write contextsias= x; :
T1,...,Zn ¢ T, @and uses for the empty contextI', x : 7
is the context” extended byr : 7. This operation is only
defined IifT" does not already assign a typexto

For the additive rules, we introduce the operatamap-
ping pairs of contexts to contexts:

Fz:o@A,z:0 = T®A),xz:0
Mz:c®A = T®A),z:0 ifz¢domA
oA = A

This operation is partial — it is only well-defined if the two
contexts do not assign different types to the same variable.

4.2 Denotational semantics

We assign to every type the numbelo| which is the
size of a quantum register needed to store elementswé
also interpret expressions of the foem 7:

i =0
lcur| = max{|o|,|7|}
lc®r| = |loUr|+1
lo@1| = lof+|7|

Wr 4 € FQC [T ® A][I].
4.3 Structural rules

We start with the strict variable rule and the non-strict
weakening and their interpretations

I'Ft:0o
F@ AR tloma . 5

r
¢WF,A
Hy | { Gr-a

Next, we introduce a let-rule which is also the basic vehicle
to define first order programs.

var

weak
z:0F°z:0

o oA —

[ea

Gt

'F*t:o
A z:oFlu:r

Fro AR 1et x=tinu:r

let

oMo = o and— otherwise. We leave the condition that
I' ® A is defined as an implicit precondition of this and
subsequent rules usirgg. The interpretation of the let-rule
is given by the following circuit:

wa o[,
C
Hr A

Hy

Pu




Weakenings can affect the meaning of a program. As anAgain it is important to mark the variables with the empty

example consider:
y:QokFlet x =y inx{}:Qg

This program will be interpreted as the identity circuit, in
particular it is decoherence-free. However, consider

y:QokFlet x =y inx{y}:Qg

set of variables. The alternative program
p:Q® Qb let (z,y) =pin (y'",21): 0y ® Qy

would measure the qubits while swapping them.
4.5 Rules fore

We represent values in & 7 as words of fixed length,

This program is interpreted by a circuit equivalent to the one as in classical computing. Unfolding our type interpretation

corresponding tar; o 6 shown earlier; hence it introduces a
measurement.

4.4 Rulesfor®

The rules forl, @ are the standard rules from linear
logic. In the case ofl instead of an explicit elimination
rule we allow implicit weakening:

e:1F%t: 0o
I'%t:o

—— 1 —intro
.}_0():1 1 — weak

The interpretation of the rules fdrin terms of circuits is
invisible, sincel doesn't carry any information. The inter-
pretation of the rules for is more interesting — the intro-
duction rule simply merges the components

I't:0c AF%u:r
Fre AR (tu):0®T

Tloe| A
— T

® — intro

oA

Plastes
Hy | Gy
bu
Hy, | | Gu

The interpretation of the elimination rule is similar to the
let-rule:
I'H*t:o@T
Az:oy:TH u:p
F@AF™ let (z,y) =tinu:p

® — elim

A — —r, A
bc
Hr A o
bu
- p
Hy Gy
Hy ¥ Gy

As an example, here is a simple program which swaps two

qubits:

p:Q2® Qo k let (z,y) =pin (yV,2V): Qs ® Oy

we have thafo 7] = Q2 ® [oU7] where[oLIT] can store
a value either of o] or [r]. To adjust the size we use an
easily definable padding operatg/ R € FQC [o] [oUT],
which simply sets unused bits o

The introduction rules fo are the usual classical rules
for +; note that they preserve strictness.

I'H*s:0
I'*4inl s: 0@ T

.
X

+ introq

ouTr

Hi_s | Qo

Q’.’ Gs

T'H*¢t: 7
T'Finr t: 0@ T

+ introo

r

Py,

Hy

ouTr

Ht—s Qo

Qo ><: Gy
whereX is negation.
We defineqtrue® = inl ()X : Q, andqfalse® =
inr ()X : Qy. To be able to interpret case expressions
we introduce a biconditional operation on unitary operators.

Giveng, ¢ € A —oynitary B We construct
dlp € Q2 ® A —ounitary Q2 ® B

by the following matrix

ol (true,a) (true,b) = ¢ab
ol (false,a) (false,b) = 1ab
Pl (x,a)(y,b) = 0 everywhere else

As already indicated we have two different elimination rules
— we begin with the one which measures a qubit, since it
is basically the classical rule modulo additivity of contexts.

I'Fc:o®T
Ax:obt:p

Ajy:Thu:p & — olim

I'® Al case cof {inlz =t |inry=u}:p



We have [t] € FQC[A ® o][p] and [u] € to the following diagram:
FQC A ® 7] [p]. By padding the input we turn them into
(1417, [Tu]] € FQC[A ® (o U7)] [p]- There is no reason bo |
why the size of the associated heap and garbage should péa H bfldg 57 bi1u g
the same, however, we have that + G, = H, + G; and <2
hence we can stretch both maps uniformlyfc= H; LI H,, H.
andG = G; UG, giving rise tog,y anderp,py of identi-  Hr—g | | Ge
cal dimensions. Hence we can apply the choice operator toNote that we only allow strict terms in the branches of a
constructy) = @pp1|érpugy. @and with some plumbing we strict case. In a previous draft of this paper we tried to

obtain: be more liberal, however, this causes problems because the
qubit we are branching over can be indirectly measured
reA —| -, by the garbage. This problem was pointed out by Peter
Hroa ¢c | 4 . , Selinger. . _
W Using the decoherence-free versiifii we can imple-
$e 22 Q2 ment standard reversible and hence quantum operations
He | [ G such asynot:
Hiw ¥ | G, qnot : Q2 — Q2
We can derive if-then-else as gnot x = if° z
if b then ¢ else u = then qfalse
case bof {inl _=t|inr _= u} else qgtrue
and use this to implement a form of negation: and the conditional natnot:
mnot : Qz — Qg2 cnot : Qz — Q2 — Q2 ® Q2
mnot ¢ = if = then gfalse else qtrue cnot ¢z = if° ¢
However, this program will measure the qubit before negat- then (qtrue, gnot )
ing it. If we want to avoid this we have to use the else (qgfalse, z)

decoherence-free version of case, which relies on the or-and finally the Toffolli operator which is basically a condi-
thogonality judgement: L u, which is defined for termsin  tional cnot:

the same type and conteRt- ¢, u : A. We will introduce toff 1 Qa2 —o Qa — Q2 — Q2 ® (Q2 ® Q1)
the rules for orthogonality later. Intuitively, L « holds if _epo
. toff cx y=1if" ¢
the outputg andwu are always orthogonal, e.g. we will be then (qtrue, cnot o y)
able to derivegtruel} | gfalse!!. Hence, we introduce else (qfalse’ (2. 1))
the strict case by: 2, Y

4.6 Superpositions

I'tc:o0T
Ay xz:okF°t:p There is a simple syntactic translation we use to reduce
Ay:tHFu:p tlu & — elim® the superposition operator to the problem of creating an ar-
— elim ; - ; .
T@A 1 case® cof bitrary 1-qubit state:
{inlz =t|inry=u}:p ' tu:o t1lu
AP +[IV]2=1 AN #0
It turns out that there is no sensible way to defiage® if r = {Vt|(N)u}:o
o andr have different sizes. Hence we define the orthogo- = if° {(A)qtrue|(N)qfalse}
nality judgement in a way that it only succeeddgif = |7| then t else u

and hencdo] = [7].
To define the interpretation, w e have to exploit the data The algorithm for the preparation of the one-qubit state to

from the orthogonality judgemerit L u] = (S, f,g,¢) a given degree of precision (which is a parameter of the

whereg € .5 © Qo —ouniary [o] andf, g € FQC” ([A] & compilation) can be obtained from the one-qubit case of the
[o]) S. We note that both morphisms must have the Same\jtaev-Solovay theorem, see [12], page 616-624.
heap and hence we can construct

6716, € FQC® (Q2 ® [A] ® [0]) (Q2 ® ). 4.7 Orthogonality

Now, the main observation is that we just have to apply the GivenT' - ¢ : o0 andA F u : o where|A| = [T
unitary operator, | , to make the qubit disappear, leading we definet 1 w by the following rules. The idea of



t L w is that there is a boolean observation which tells As before, assume as given the interpretation dof u as
the two terms apart in every environment. The interpreta- (S, f, g,%). We construct the interpretation of the conclu-
tion [t L u] = (S, f, g, ) is defined by induction over the  sion as(S, f, g,v¢’) where’ is given as

derivations. We present here a sound but incomplete for-

malisation of orthogonality, achieving completeness is sub- s P

ject of further work. o

T'F°t:o I'Fu:r

using the rotationy € Qa —ounitary Q2 given by

inlt¢ | inru inrt 1 inlu

. Ao A1

Herep = o & 7, we setS = o LU 7. In both casey is ¢ = P

obtained by interpreting combined with padding andis

given by the mterpretaﬂon af anfj padding. The circuits 4.8 Programs

for ¢ for these rules are given by:

s } s } So far we have introduced a language of expressions. It
P o is straightforward to extend this to a notion of first order
% Q2 + programs. E.g. we consider a prograhto be a sequence

of function definitions of the forr#' " = ¢ : o, we have to
tlu parameterise every judgement Byand require thal’ Fx
inlt 1l inlwu dinrt 1 inru t : o for the definition to be a wellformed extension Xf

We also have to introduce a rule for function-application
LetT F° inl ¢,inl uw : o & 7 and let(S, f, g, ) be the which can just be translated into an iterated let-expression.
interpretation ot L u. From this data we are constructing
the interpretation ofnl ¢ 1 inl w as(S, f',¢',¢’'). We
setS’ = S ® Q2 ® H whereH is the heap needed hiyl.
We constructf’ andg’ by applyinginl to I, r on the level

of semantics using the appropriate parS6fas the heapy We have introduced a language for finite quantum pro-
is given by the following diagram: grams which uniformly extends a finitary classical lan-

guage. The classical part of our language may be of interest
for its own sake because it introduces a natural way to com-

5 Conclusions and further work

s pile functional terms into space efficient reversible circuits,
g 0, ¥ as we avoid creating unnecessary garbage. This uniformity
VP, is one of the main design principles of our language, which,
H } o we hope, makes it a natural vehicle to express quantum pro-
Qe gramming and to develoguantum thinking

We are currently implementing a compiler for QML

in Haskell. The compiler produces a representation of

tLlu guantum circuits which can be simulated (inefficiently, of

(to) L (w,w) (0,0) L (w,) course) by our own simulator or by using a standard simu-
’ ’ ’ ’ lator for quantum gates.

There are other design ideas for quantum programming
languages. A potential criticism of our approach is that we
leave contractions implicit, which is an operation which de-
pends on the choice of basis. However, our type assignment
system clearly fixes the places where contractions have to
happen, and moreover, and we believe more importantly, it

The second rule foinr is done symmetrically.

As above, lel” ° (t,v), (u,w) : 0 ® 7 and let(S, f, g,v)
be the interpretation af L « to construct the interpretation
of (t,v) L (u,w)as(S’, f',¢,¢"). We setS’ = S® 7 and
constructf’ andg’ by pairing withv,w, semantically.

The definition ofy’ is given by the following diagram:

S fixes the places where projections t@cing, is happening.
g/{ A central feature of any quantum programming language

T A, seemgontrol of decoherence

Q- T Having pointed this out it seems that decoherence is

i} . something you always want to minimise. It is straightfor-
tLu Agro = —A1k1 ward to design an inference algorithm which infers weak-
L)t | (A} L {(ko)t | (k1)u} eningst®™"" such that decoherence is minimised. Maybe




this should be the default, which can be overridden, if the In joint work with Sabry and Vizzotto we are currently
programmer wants to enforce measurement. developing an equational theory for QML, an algebra for

We would like to have an orthogonality judgement which quantum programming, which is sound and complete, with
is complete with respect to the denotational semantics. One'epect to the denotational semantics suggested here. Since
of the referees commented that we would need an innerthe completeness proof relies mwverting evaluationsuch
product judgement to achieve this. We plan to explore this @ proof also gives rise to normalisation; exploiting the ap-
proposal in future work. proach developed in [3] for a classical system.

The restriction thatase® is only allowed for balanced
coproducts is a direct reaction to the comments of the sameAcknowledgements
referee who pointed out that our previous approach, which

involved padding the data, is problematic. Indeed, this prob-  we would like to acknowledge interesting discussions on
lem seems unfixable, if we branch o@r® Q, the garbage  the subject of this paper with Slava Belavkin, Martin Hof-
which is created by padding may indirectly measure the mann, Conor McBride, Alex Simpson and Thomas Stre-
qubit we are branching over. Consequently, this approachicher. Amr Sabry and Juliana Vizotti provided extensive
would not be compositional and hence should be rejected.feedback on previous drafts of this paper. Peter Selinger
The inability to deal with quantum control over arbitrary pointed out a serious flaw in the definition chse® and
coproducts is a consequence of the fact that while we deakefuted our conjecture that strict maps classify monos in
with quantum data and COﬂtrOl, the structure, i.e. the mem-super. We would like to thank the anonymous referees
ory allocation, of our data is classical. One way to over- for their valuable feedback, especially one of the referees,

come this limitation would be to use an operational seman-who provided very detailed and extremely useful technical
tics which employs a quantum memory allocation. Such a comments on our work.

semantics would have to exploit an infinite state space, and
it is questionable whether such a system is physically plau-
sible. Another direction, which seems more feasible, would
gﬁetct)irl:ed.ex quantum structures by classical values at com- [1] S. Abramsky and B. Coecke_. A categorical semantics of
. quantum protocols. IRroceedings of the 19th IEEE confer-
We have some doubts as to whether the understanding of  gnce on Logic in Computer Science (LiICS @004
general recursion and partiality in quantum programming is [2] T. Altenkirch and B. Reus. Monadic presentations of lambda
essential, because partiality is only interesting for systems terms using generalized inductive types. Qomputer Sci-
with infinite state spaces. Moreover, it is not clear how to ence Logi¢volume 1683, pages 453—-468. Springer-Verlag,
observe the termination of such a hypthothetical quantum 1999.

program of unknown runtime without disturbing the com- [3] T. Altenkirch and T. Uustalu. Normalization by evaluation
for A~2. In Functional and Logic Programmingiumber
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