
Chapter 1

A Compiler for a Functional
Quantum Programming
Language
Jonathan Grattage and Thorsten Altenkirch

Abstract: We introduce a compiler for the functional quantum programming
language QML [1], developed in Haskell. The compiler takes QML expressions
as input and outputs a representation of quantum circuits (via the categoryFQC of
finite quantum computations) which can be simulated by the simulator presented
here, or by using a standard simulator for quantum gates. We discuss the structure
of the compiler and how the semantic rules are compiled.

1.1 INTRODUCTION

Quantum programming is now a firmly established field; see recent text books
as an example [2, 4] However, quantum programs are usually presented as low
level quantum gates. There are a number of proposals as to how best to integrate
quantum effects in a high level language, [5, 6, 7, 9], but none of them introduce
high level structures for quantum control and quantum data. In our previous paper
we introduced the language QML [1] which realizes quantum control structures
acting on quantum data, and which can, in principle, be translated in quantum
circuits. This paper explains in detail how a compiler, which translates QML
programs into quantum circuits, is implemented. The compiler itself is written in
Haskell and its source code is available from http://www.cs.nott.ac.uk/∼jjg/qml.

We begin by describing the structure of QML programs and the compiler.
The compilation of QML terms is then discussed in detail, with emphasis on the
differences between the strict and non-strict case constructs, and orthogonality
judgements. This leads to the definition of a compiler following the denotational
semantics and rules of QML.

1



1.2 SYNTAX OF QML

QML programs are typed expressions defined by the syntax and grammar of
QML. The BNF grammar for QML types and expressions is:

σ = 1 | σ⊗ τ | σ⊕ τ
t = x | let x = t in u
| x↑ys| ()
| (t,u) | let (x,y) = t in u
| qinl t | qinr u
| case t of {qinl x⇒ u | qinr y⇒ u′}
| case◦ t of {qinl x⇒ u | qinr y⇒ u′}
| {(κ) t | (ι) u}

As an illustration of a program, a simple example is the Hadamard operation
on a single qbit, given by:

had: Q2 ( Q2
had x= if◦ x

then {qfalse| (−1) qtrue}
else {qfalse| qtrue}

This program can be read as an operation which, depending on the input qbitx,
returns one of two possible superpositions of a qbit. Note thatif◦ is a special case
of case◦. We can also easily calculate that applying the program twice returns the
qbit to the original state, cancelling the amplitudes. Note that qtrue and qfalse
are syntactic-sugar for qinl() and qinr(), respectively. The type of a single qbit,
denotedQ2, is 1⊕1

The compiler must have some way of interpreting these typed terms, and this
is achieved by implementing the grammar in the compiler as Haskell datatypes:Ty
representing the QML expression types andTmrepresenting the QML expressions
themselves.

data Ty = T1 | Ty⊕Ty | Ty⊗Ty

data Tm= Var String | Let String Tm Tm(Maybe Ty)
| Weak Tm[String] | Void
| Tm⊗Tm | LetP String String Tm Tm(Maybe Ty)
| Inl Tm | Inr Tm
| Case Tm(String,Tm) (String,Tm)
| Caseo Tm(String,Tm) (String,Tm) Orth
| Sup(C,Tm) (C,Tm)
| Embed Tm

The final construct above inTm, Embed, is not syntactic, but is a type level
construct. It embeds a strict computation into a non-strict computation, see [1].

Returning to the example programhad, passing it to the QML parser would
rewrite it according to the internal representation, producing the term:

Caseo (Var "x" ) ("_l" ,Sup(1,qfalse) (−1,qtrue))
("_r" ,Sup(1,qfalse) (1,qtrue)) OSup

whereOSupis an orthogonality judgement, which is required whenever the strict
morphismCaseo is used; see section 1.5.4.



1.3 QUANTUM MACHINE CODE

The low level machine code that out compiler generates is anFQC morphism
that is represented as a quantum circuit. This is included along with some other
information in the computation type,Comp:

data Comp= Comp{uCon∈ Snoc String, ty∈ Ty, fqc∈ FQC}
This datatype is constructed by three functions. The first,uCon(used context),

returns a list which contains the names of all variables that are used by the com-
putation. This is for type correctness: a computation is not correct unless every
variable passed to it by the context has been used. The second contains the re-
turned type of the function, and the last contains theFQC morphism, represented
by the typeFQC:

data FQC= FQC{a,h,b,g∈ Int,φ ∈ Unitary}
This datatype is made up from five destructor functions:a, h, b, andg, which all
return integers, andφ, which returns an object of typeUnitary. a represents the
‘size’ of the input to thisFQC (i.e, the size of the input type; the number of qbits
required to represent it),b represents the size of the output, whileh andg represent
the size of the heap and garbage required, respectively. There is the condition
that a+ h = b+ g, but this does not need to be enforced as the compiler never
builds FQC objects where this is not true.φ ∈ A⊗H (unitary B⊗G represents
a reversible quantum computation as a unitary operator on Hilbert spaces — for
details see [1]/

We represent unitary operators as circuits which can be constructed using the
following combinators:

data Unitary =
⊗

[Unitary] |
⊙

[Unitary]
| Perm[Int ] | Cond Unitary Unitary
| Rotate(C,C) (C,C)⊗

takes a list ofUnitary, and represents these operations acting in parallel (hence
the use of the tensor symbol). Similarly,

⊙
represents theUnitary operations

passed to it acting in series (the choice of symbol represents composition).Perm xs
is simply a permutation operator.Rotaterepresents any 1-qbit unitary rotation to
the state passed, which is used to generate any given superposition - we can repre-
sent negation as a special rotationunot= Rotate(0,1) (1,0). It follows from the
Kitaev-Solovay theorem, see [4], pp. 616-624, that we can represent all unitary
operators this way.

Finally, Cond represents a conditional operation, and is slightly unusual. If
the control qbit is true then the first operation is performed on the remaining qbits,
while if it is false the second operation is performed. If the control qbit is in a su-
perposition, then both operations are applied to generate the correct superposition
of outputs. This is different to the standardcontrolled−U operation, where the
identity is applied if the control qbit is false, butCondcan be generated by simple
application of twocontrolled−U operations and twoNot operations, as shown



in the following circuit, for whichCondis a useful shorthand:

• X • X

U1 U2

Two further functions are often used when definingUnitary operators, to aid
understanding and to simplify what could otherwise become cumbersome defi-
nitions. These areidu x∈ Int→ Unitary andswapN o l n∈ Int→ Int→ Int→
Unitary. The functionidu simply creates an identity permutation of the required
size.swapNcreates another permutation operation, based on the three input inte-
gers,o, l andn. The permutation generated by this operation swaps a ‘block’ of
qbits from anywhere in a circuit to the top, putting what was originally first after
the moved block, followed by the remainder.o gives the size of the ‘offset’ to the
block we wish to move, withl giving the size of this block.n is simply the size of
the entire segment, for purposes of plumbing.

All objects of Unitary also have an associated arity; the number of qbits re-
quired to implement them. These are given by the following function:

arity ∈ Unitary →Maybe Int
arity (

⊗
[ ]) = Just0

arity (
⊗

(x : xs)) = do m← arity x
n ← arity (

⊗
xs)

return(m+n)
...
arity (Condφ ψ) = do m← arity φ

n ← arity ψ
guard(m≡ n)
return(1+m)

We define a functionevalwhich calculates the matrix representation of a uni-
tary circuit — here are some examples of how this mapping is achieved, with
matMult being matrix multiplication, andtensor calculating the matrix tensor
product:

type Row = [C ]
type Matrix = [Row]
eval∈ Unitary →Matrix
eval (

⊗
xs) = mPar(map eval xs)

eval (
⊙

xs) = mSeq(map eval xs)
...
mPar∈ [Matrix ]→Matrix
mPar [ ] = [[1]]
mPar (x : xs) = tensor x(mPar xs)
mSeq∈ [Matrix ]→Matrix
mSeq [x] = x
mSeq (x : xs) = matMult x(mSeq xs)
The compiler also allows a direct mapping from programs to matrices using



the computerather thancompilefunction. Additionally, the compiler also opti-
misesUnitary types to give an optimised representation of the circuit, without
changing the meaning.

1.4 STRUCTURE OF THE COMPILER

While the general structure of the compiler is quite standard, it is unual because
our language doesn’t allow implicit weakenenings. Hence we have to implement
some book keeping of used variables.It takes as input parsed QML programs, and
then performs a translation into its object language, in this caseFQC morphisms.
These morphisms, explained in [1], fully describe the computation, giving the size
of input required, how much heap is required, how much garbage is produced,
and a unitary operation that performs the computation. This unitary operation
is essentially a description of a low-level quantum circuit (our ‘machine’ code).
The FQC object can then be compiled further into the matrix that describes the
computation (the lowest level ‘machine’ code).

The compiler starts by taking parsed QML programs, which we assume to be
originally written as typed expressions, but have been converted by the parser into
its internal representation. We have already stated that QML programs are typed
expressions, and given the type for terms,Tm, and for QML types,Ty. These
types are combined to give the final type for QML programs, implemented in the
following way:

type Prog = Env FDef

data Env a= Env{unEnv∈ Snoc(String,a)}
data FDef = FDef FSig Tm

data FSig = FSig Con Ty

type Con = Env Ty
These constructors tell us that a QML program (Prog) is an environment (Env)

of function definitions (FDef). Function definitions are in turn defined as having
a function signature,FSig, which contains the required context (Con) with the
expected return type, and the QML term,Tm.

To illustrate theFQC morphism, the morphism generated for the quantum
equivalent of the negation operation is described, which in QML syntax could be
written:

qnot: Q2 ( Q2

qnot x= if◦ x
then qfalse
elseqtrue

From this the parser generates:
qnot∈ Prog
qnot= Env(SNil:< ("qnot" ,FDef (FSig(Env(SNil:< ("x" ,qb))) qb)

(Caseo (Var "x" ) ("_l" ,qfalse) ("_r" ,qtrue) (OInrl))))
The compiler now applies the compilation function to produce anFQC morphism



that performs the action of the program:
FQC{a = 1,h = 0,b = 1,g = 0,φ = Not}

This is packaged up inside theComptype, which also contains information about
the variables used to compute the program, and the output type of the program:

Comp{uCon= SNil:< "x" , ty = Q2,FQC= ...}
The morphismφ in theFQC object describes the simple circuit that negates a

single qbit, just the Not gate, while using theeval function described in section
1.3, we could further compile this into the standard matrix representation.

The actual mechanics of how compilation is achieved are described in the next
section, 1.5.

1.5 COMPILING QML

The compiler for QML is defined as a single Haskell function,compile. This func-
tion compiles each subterm of the expression that represents the QML program
into Compobjects, which contain theFQC morphism, by calling the recursive
functioncompileTm.

compile∈ Prog→ Error (Env Comp)
As can be seen from the type,compiletakes as input a QML program and returns,
if there are no errors, a list (environment) of computations. At present we only
consider programs consisting of a single function, and hence only return a sin-
gle computation. Thecompilefunction is mainly concerned with error checking,
using the Error monad, and passes the work of compilation onto thecompileTm
function. If there are no type, arity, or context errors then it returns the compu-
tation, viacleanComp, which simply ‘cleans’ the computation by optimising the
underlying unitary morphism thatcompileTmproduced.

The function that performs the majority of the compilation,compileTm, has
the type

compileTm∈ (Env Comp)→ Con→ Tm→Maybe Ty→ Error Comp
The type(Env Comp) simply contains the functions that have already been

compiled, and are available for use by the compiler.compileTmalso takes as input
the current context, the term to be compiled, and the expected type (if known,
hence the use of theMaybe) of the term. It returns either an error or aComp
object. The function is defined using pattern matching over the type of terms,
Tm, so there is a separate function for each of the twelve term forms given by the
grammar for QML, given by recursion over the term syntax. We begin by looking
at how the variable rule is compiled, as it is the first rule – and is very simple.

compileTm Γ (Var x) mTy=
do σ ← (elookup xΓ)

let |σ| = sizeσ
greturn mTy(Comp{uCon= (SNil:<x), ty = σ,

fqc = FQC{a = |σ|,h = 0,b = |σ|,g = 0,
φ = idu |σ|}})

To compile a variable, we first look up the type of the variablex in the context
Γ, and call itσ. TheEnv lookup function,elookup, would return an Error type



if the variable did not exist. The size of the type is then calculated, and this in-
formation is used to generate theFQC morphism. The context used in compiling
this term is simply the variable, henceuCon(used-Context) only containsx. The
type of the computation is the type of the variable,σ, and theFQC is the identity
morphism of the appropriate size.greturn is a small extension of the usualreturn
function that confirms the type correctness of the returned computation, or else
gives an informative error.

1.5.1 Context Sharing

Several of the more complicated circuit diagrams make use of a strictFQC mor-
phism labelledφC.

Γ⊗∆
φC

Γ

HΓ,∆
�

∆

This morphism is used in the compilation of several terms, and allows the inter-
pretation of the operator⊗ on contexts. It makes use ofδ2, which shares a single
qbit using a simple controlled-not operation [1]. We define theφC morphism as
CΓ,∆ ∈ FQC◦ JΓ⊗∆K(JΓK⊗ J∆K) by induction over the definition ofΓ⊗∆. If a
variablex : σ appears in both contexts we must useδσ ∈ FQC◦ JσK(JσK⊗ JσK)
which generalisesδ2 by applying it in parallel to all qbits. All the other cases can
be dealt with by applying monoidal isomorphisms. The implementation works
by taking the context,Γ⊗∆, and the two lists of the variables required by the
operations; one of which requiringΓ as its context, and the other∆. From this we
can calculate which variables need to be shared and the appropriate permutations
to output aFQC with the appropriate behaviour. The first|Γ| qbits containΓ, the
remaining|∆| contain∆, and the list of variables in these two contexts (for verifi-
cation purposes). This is arguably the most complicated function in the compiler.

1.5.2 CompilingLet

The QML Let statement is the standard construction, and has the usual interpre-
tation. Let is, however, interesting, as it demonstrates some of the subtleties of
context handling in QML. TheLet rule and diagram are given as:

Γ `a t : σ
∆, x : σ `b u : τ

let
Γ⊗∆ `aub let x = t in u : τ

Γ⊗∆
φC

Γ

66
66 ∆

φuHΓ,∆
�

∆

����
φt

σ τ

Ht
�

66
66

33
33 Gt

�

Hu
�

����
���� Gu

�

The function begins with a recursive call to compute the subtermt, and then
extracts some data:



compileTm cΓ (Let x t u tTy) mTy=
do tC ← compileTm cΓ t tTy

let nt = uCon tC

σ = ty tC

tF = fqc tC

Next, we extend the contextΓ with the typed variablex : σ. We call the extended
contextΓ′, and this is the context that will be passed to functions within the scope
of the Let statement. This is achieved by calling the auxiliary functionextEnv,
which simply adds the pair(x,σ) to the context environmentΓ:

let Γ′ = extEnvΓ (x,σ)
The compilation of the subterm over which our new variable has scope,u, can
now be performed. This is done in the usual way; but passingΓ′ as the context.

uC ← compileTm cΓ′ u mTy
let nu = uCon uC

τ = ty uC

uF = fqc uC

We must now verify the subtermu did indeed use the new variablex. This is done
by checking that the name ofx appears in the list of variables used by the subterm,
nu= uCon uC. If it is there then it is removed to give usnu′, which gives us the list
of variables in the contextΓ that are used the subterm (giving usΓ from Γ⊗∆, in
the diagram). Ifx does not appear innu then anError is returned and propagated
by the Error monad. This is done by the simple auxiliary functionfindrm (find
and remove):

nu′ ← findrm xσ nu
Using the used context lists from the two subterms we can now calculateφC,

using the function described before. From the diagram, the size ofΓ is equal to
a tF , and the size of∆ in the diagram is given bya cF −a tF :

let (ngd,cF ) = φC Γ nt nu′

|∆| = a cF −a tF

greturn mTy(Comp{uCon= ngd, ty = τ,
Finally, we compute theFQC morphism using this data, withφ following the

construction in the diagram exactly, which is returned aftergreturn verifies the
inferred and expected types match:

fqc= FQC{a = a cF ,h = h cF +h tF +h uF ,b = b uF ,g = g tF +g uF ,
φ =

⊙
[
⊗

[φ cF , idu (h tF +h uF )],
swapN(a tF ) |∆| (a tF + |∆|+h tF +h uF ),⊗

[ idu |∆|,φ tF , idu (h uF )],⊗
[ idu (a uF ),swapN(h tF ) (h uF ) (h tF +h uF )],⊗
[φ uF , idu (g tF )],⊗
[ idu (b uF ),swapN(g uF ) (g tF ) (g uF +g tF )]]}})

Note how the construction ofφ follows the construction of the circuit diagram,
with each line representing a column of the diagram. The computation ofuConis
simply the shared context, and the type follows from the computation. TheFQC
constructorsa, h, b, andg are easily calculated.

The implementation of the diagram for⊗ introduction, also denotedt⊗u (and



akin to pairing), is very similar. We simply compile the two subterms, generate
the appropriate context for each usingφC, and then construct theFQC object
following the circuit diagram given in [1].

1.5.3 CompilingInl (⊕)

A third interesting example is the compilation of injections, which shows some
of the complications implementing the diagrammatic form of the compilation;
specifically, care is required to ensure that the subcomputations are ‘plumbed’
correctly into the rest of the computation. The rule and compilation diagram for
constructingInl s are given as:

Γ `a s : σ
+intro1

Γ `a inl s : σ⊕ τ
Γ

φs φPσtτ
Hs

�
88

88 σtτ

Ht−s
�

����
JJJJJJ Q2

Q2 x�
tttttt Gs

�

The rule tells us that from a termsof some typeσ we can computeInl s:σ⊕τ.
The returned type cannot be inferred from the input as we know nothing aboutτ.
For this reason, in order to compileInl, thecompileTmfunction must be passed
the expected return type,mTywhich should beJustσ⊕ τ. Inr, Case, andCaseo

also need this information for the same reason.
These first few lines of the definition forInl take the type input and split it

into its component types using the simple functionunPlusMaybe. These are then
extracted from the Maybe monad usingunMaybeTyto give the expected return
type of the computed left injection.

compileTm cΓ (Inl s) mTy=
do (σ?,τ?)← unPlusMaybe mTy

σ′ ← unMaybeTyσ?

τ′ ← unMaybeTyτ?

We next compile the subtermsby callingcompileTmagain, and passingσ? as the
expected type of the subterm.

sC ← compileTm cΓ sσ?

let σ = ty sC

sF = fqc sC

There is no restriction that the sizes ofσ andτ must be equal, so if the types are of
different sizes we have to pad the smaller one to make them the same size, using
the padding operatorφP.

max(s,t) = max(sizeσ′) (sizeτ′)
δ = max(s,t)−(sizeσ)
pF = φP (b sF ) δ

Next we confirm that the inferred type for the subcomputation was indeed the type
returned. If they match, then the computation is constructed, directly following
the circuit diagram:



if σ 6≡ σ′ then Error ("Inl type mismatch: " ++ ...)
elsegreturn mTy(Comp{uCon= uCon tC, ty = σ⊕ τ′,

fqc= FQC{a = a sF ,h = δ+1,b = max(s,t) +1,g = g sF ,
φ =

⊙
[
⊗

[φ sF , idu δ,unot],⊗
[ idu (b sF ),swapN(g tF ) δ (g sF +δ+1)],⊗
[φ pF ,swapN(g sF ) 1 (1+g sF )]]}})

1.5.4 CompilingCase& Caseo

In QML there are two versions of the traditional case construct. The first,Case,
measures a qbit of the data over which we branch to determine which branch has
to be returned. By measuring, it collapses part of the quantum state, and causes
entangled states to decohere. The second,Caseo, is an example of thequantum
control available in QML. It does not measure the result of executing the con-
ditional statement, but produces a superposition of results which corresponds to
the superposition of data it analyses. It is the source of quantum parallelism; in-
tuitively both branches are run in parallel. However, there is a price to pay: we
have to provide evidence that both branches are observably different, i.e. orthog-
onal. Only then are we able to translate our quantum case analysis into quantum
circuits.

The rules and circuits for compilingCaseandCaseo are:

Γ ` c : σ⊕ τ
∆, x : σ ` t : ρ
∆, y : τ ` u : ρ

⊕−elim
Γ⊗∆ ` case c of {inl x⇒ t | inr y⇒ u} : ρ

Γ⊗∆ φC
Γ

44
4

φ[t|u]
HΓ,∆

�
∆






φc

σt τ ρ

Q2 Q2
�

Hc
�

<<
<< G

�

Ht−u
�

���� Gc
�

Γ `a c : σ⊕ τ
∆, x : σ `o t : ρ
∆, y : τ `o u : ρ t ⊥ u

⊕−elim◦
Γ⊗∆ `a case◦ c of {inl x⇒ t | inr y⇒ u} : ρ

Γ⊗∆ φC
Γ

44
4

φ[ f |g]
HΓ,∆

�
∆






φc

σt τ S

φt⊥u
ρ

Q2 Q2

Hc
�

<<
<<

H f−g
�

���� Gc
�



Note both of these circuits make use of the context sharing morphismφC,
defined earlier.

Looking at compilingCasefirst, the function begins by computing theComp
object for the conditional termcT , from which the subtypes (viaunPlus), context
required andFQC morphism are extracted:

compileTm cΓ (Case cT (x, t) (y,u)) mTy=
do cC ← compileTm cΓ cT Nothing

(σ,τ) ← unPlus(ty cC)
let nc = uCon cC

cF = fqc cC

Note that the type passed when compilingcT is Nothing. This is because we can-
not infer the type from the information given, and therefore restricts what terms
conditional statements can be composed of. Next, two extended contexts are cre-
ated,Γx:σ for the subtermt, andΓy:τ for u. These are then used in the compilation
of the subtermst andu:

Γx:σ = extEnvΓ (x,σ)
Γy:τ = extEnvΓ (y,τ)
tC ← compileTm cΓx:σ t mTy
uC ← compileTm cΓy:τ u mTy

Similar to the implementation of theLetconstruct, we now ensure the added vari-
ables were used and remove them from the appropriate list (or else fail). The types
andFQC objects are then extracted:

nt ← findrm xσ (uCon tC)
nu ← findrm yτ (uCon uC)

let ρt = ty tC

ρu = ty uC

tF = fqc tC

uF = fqc uC

We can now compute the context sharing usingφC, to give usΓ and∆ from the
diagram, and then compute the[t|u]F morphism. This is again done by an auxil-
iary function,condOp, which creates anFQC object using theCondoperator on
tF anduF , appropriately padded so they are the same size, and plumbed correctly.
Some useful mnemonics are then created to help in the definition ofφ:

( ,CF ) = φC Γ nc nt
[t|u]F = condOp uF tF True
|Γ| = a cF

|∆| = a CF +h CF −|Γ|
arity = |Γ|+ |∆|+h cF +h [t|u]F

We now begin to prepare theComp, but first must ensure that thatt andu make
use of the same variables from the original contextΓ; otherwise there is a context
error, and thatρt andρu also agree:

if nt 6≡ nu then Error "Context error"
else ifρt 6≡ ρu then Error "Type error"
elsegreturn mTy(Comp{uCon= nc++<nt, ty = ρt ,

Finally, the construction of theFQC can begin. The values ofa, h, b, andg can



be read from the diagram, and again the morphism is constructed using permuta-
tions and the subcomputations generated above, to match the construction of the
diagram:

fqc= FQC{a = a CF , h = h CF +h cF +h [t|u]F ,
b = b [t|u]F ,g = g [t|u]F +g cF ,
φ =

⊙
[
⊗

[φ CF , idu (h cF +h [t|u]F )],
swapN|Γ| |∆| arity,⊗

[ idu |∆|,φ cF , idu (h [t|u]F )],⊗
[ idu (|∆|+b cF ),

swapN(g cF ) (h [t|u]F ) (g cF +h [t|u]F )],⊗
[φ [t|u]F , idu (g cF )]]}})

As the diagram forCaseo is very similar to that forCase, so is the compilation
function. Only the differences are discussed:

compileTm cΓ (Caseo cT (x, t) (y,u) o) mTy=
do cC ← compileTm cΓ cT Nothing

(σ,τ) ← unPlus(ty cC)
let nc = uCon cC

cF = fqc cC

Γx:σ = extEnvΓ (x,σ)
Γy:τ = extEnvΓ (y,τ)

The next step in the implementation ofCaseis to compile the two subterms,t and
u, which are passed to thecondOpto give [t|u]F . However, note that in this case,
from the diagram, we want[ f |g]F , wheref andg are computations based ont
andu, but modified using the orthogonality judgement. This is carried out by the
orthcompfunction, see section 1.5.5. If this function fails, then we know that the
termst andu were not orthogonal. The compilation then proceeds as inCase:

( f C,gC,ρ)← orthcomp c(t,σ,Γx:σ) (u,τ,Γy:τ) mTy o
nf ← findrm xσ (uCon fC)
ng ← findrm yτ (uCon gC)
let f S = ty fC

gS = ty gC

f F = fqc fC

gF = fqc gC

( ,CF ) = φC Γ nc nf
[ f |g]F = condOp gF f F False
|Γ| = a cF

|∆| = a CF +h CF −|Γ|
arity = |Γ|+ |∆|+h cF +h [ f |g]F

orth = orth2unitary fS gS o
Now we must compile the orthogonality judgment morphism. This is done using
the auxiliary functionorth2unitary, which takes the type off andg, and the judg-
mento. This function simply computes the circuit (Unitary) for the orthogonality
judgment, and is explained in section 1.5.5.

if nf 6≡ ng then Error "Context error"



else if f S 6≡ gS then Error "Type error"
else iforthcheck t u o≡ False

then Error "Orthogonality Failure"
elsegreturn mTy(Comp{uCon= nc++<nf , ty = ρ,

The computation of theFQC morphism continues in the exact same way as be-
fore, but for the addition of the extraorth construct, as in the final column of the
diagram:

fqc= FQC{a = a CF , h = h CF +h cF +h [ f |g]F ,
b = b [ f |g]F ,g = g cF ,
φ =

⊙
[
⊗

[φ CF , idu (h cF +h [ f |g]F )],
swapN|Γ| |∆| arity,⊗

[ idu |∆|,φ cF , idu (h [ f |g]F )],⊗
[ idu (|∆|+b cF ),

swapN(g cF ) (h [ f |g]F ) (g cF +h [ f |g]F )],⊗
[φ [ f |g]F , idu (g cF )],⊗
[orth, idu (g cF )]]}})

1.5.5 CompilingOrth (⊥)

Here we briefly introduce the type of orthogonality judgments,Orth, and discuss
how theorth2unitaryfunction and theorthcompfunction, used inCaseo, behave
for some examples of theOrth type. TheOrth type is defined as:

data Orth = OInlr |OInrl
|OInl Orth |OInr Orth
|OPairl |OPairr
|OSup Orth Orth(C,C) (C,C)

which matches the seven rules given in [1].
The idea oft ⊥ u is that there exists a boolean observation which tells the two

terms apart in every environment. GivenΓ ` t,u : ρ, the interpretationJt ⊥ uK =
(St⊥u,φt⊥u), whereφt⊥u ∈ St⊥u⊗Q2 (unitary JρK is defined by induction over the
derivation.

OInlr & OInrl

OInlr
inl t ⊥ inr u

OInrl
inr t ⊥ inl u

Given Γ `◦ t : σ andΓ `◦ u : τ, we defineS= σt τ andφt⊥u is simply the
identity in the first case but negates the qbit in the second.

S

Q2

ρ

 S

Q2 X
ρ


This can be defined by the functionorth2unitaryas:
orth2unitary∈ Ty→ Ty→Orth → Unitary



orth2unitary t u (OInlr) =
⊗

[ idu (max(size t) (size u)), idu 1]
orth2unitary t u (OInrl) =

⊗
[ idu (max(size t) (size u)),Not]

For both of these rules,φ f is simply given byφt :

Γ
φt

σtτ

Httu

while φg is given byφu, in the same way. This is also straightforward:
orthcomp∈ Code→ (Tm,Ty,Con)→ (Tm,Ty,Con)

→Maybe Ty→Orth→ Error (Comp,Comp,Ty)
orthcomp c(Inl t,σ,Γx:σ) (Inr u,τ,Γy:τ) mTy(OInlr) =

do f C ← compileTm cΓx:σ t (Justσ)
gC ← compileTm cΓy:τ u (Justτ)
tC ← compileTm cΓx:σ (Inl t) mTy
return( f C,gC, ty tC)

OInr is identical. Note that the function also returns the type of the full subterm,
for use byCaseo. The simplest way of doing this (though least efficient) is to
compute the full subterm as well, and just extract the type.

OInl Orth

t ⊥ u
OInl

inl t ⊥ inl u inr t ⊥ inr u

Consider the first rule,OInl, only: We setS= Sinl t⊥inl u = St⊥u⊗Q2, to
deriveφinl t⊥inl u ∈ (St⊥u⊗Q2)⊗Q2 (unitary Jσt τK⊗Q2 from φt⊥u ∈ St⊥u⊗
Q2 (unitary JσK we just swap two qbits. The other case proceeds analogously.

St⊥u
φt⊥u

S Q2

77
77

7
77

77
7

φPσtτ
Ht−u

����
==

==
����

Q2

����
ρ




The code for creating this using theorth2unitaryfunction is simply:

orth2unitary t u(OInl o) =
⊙

[
⊗

[ idu max(t,u),swapN1 δ(t,u) (δ(t,u) +2)],⊗
[ idu (max(t,u) +δ(t,u)),Perm[1,0]],⊗
[ idu max(t,u),swapN1 δ(t,u) (δ(t,u) +2)],⊗
[orth2unitary t u o, idu (δ(t,u) +1)],⊗
[φ (φP (max(t,u) +1) δ(t,u)), idu 1]]

where max(t,u) = max(size t) (size u)
δ(t,u) = abs((size t)− (size u))

orth2unitary t u(OInr o) = orth2unitary t u(OInl o)
Calculatingφ f andφg is more involved, asφ ft⊥u andφgt⊥u. must also be cal-

culated. In the case where we haveinl ⊥ inl , φ f is given by:



Γ
φ ft⊥u

St⊥u

H ft⊥u

Q2 Q2

Ht−u Ht−u

Note the output,St⊥u⊗Q2⊗Ht−u, includesS. φg can be constructed in the
same way, substitutingφgt⊥u for φ ft⊥u. In the case where we haveinr ⊥ inr , the
construction ofφ f (andφg) is identical, except for a negation on the final wire –
the control qbit. The code fororthcomp, which calculates these trivial circuits, is
not shown here.

OPairl

t ⊥ u
OPairl

(t,v)⊥ (u,w) (v, t)⊥ (w,u)

Considering only the first rule above, givenΓ `◦ t,u : σ andΓ `◦ v,w : τ. We
setS= S(t,v)⊥(u,w) = St⊥u⊗τ, to deriveφ(t,v)⊥(u,w) ∈St⊥u⊗τ⊗Q2 (unitaryJσ⊗τK
from φt⊥u ∈ St⊥u⊗Q2 (unitary JσK requires simple rewiring.

St⊥u
φt⊥uS

τ
44

44 σ

Q2





 τ
ρ

 
This is computed by:

orth2unitaryσ τ OPairl =
⊙

[
⊗

[ idu |σ′|,
swapN|τ| 1 (|τ′|+1)],⊗

[orth2unitaryσ′ τ′ (OInrl),
idu |τ′|]]

where |σ′| = size s′

|τ′| = size t′

OK (σ′,τ′) = unPair τ
To calculateφ f in this instance, we make use ofφt andφv, to constructφt⊗φv,

which is an application of the⊗ - introduction rule, and can therefore be cal-
culated simply by a call tocompileTm(t⊗ v). φg is constructed analogously,
replacingφt with φu andφv with φw. For the case where the second rule is ap-
plied, the same constructions are used, but witht andv (u andw for φg) swapped
appropriately.

1.6 CONCLUSION

Our present work exploits the functional paradigm in two ways: first we have
designed a high level quantum programming language — QML — using con-



cepts from conventional functional programming [1]; and then in the present pa-
per we have used Haskell for a prototypical, high level implementation of QML.
In related work [8] use Haskell to explore the semantic foundation of QML by
implementing Super operators using the arrows [3].

ACKNOWLEDGEMENTS

Thanks are extended by the authors to Conor McBride, Peter Selinger, Amr Sabry,
Juliana Vizzotto, Graham Hutton, and Janine Swarbrick.

REFERENCES

[1] T. Altenkirch and J. Grattage. A functional quantum programming language. quant-
ph/0409065, November 2004.

[2] M. Hirvensalo.Quantum Computating. Springer-Verlag NewYork, Inc., 2001.

[3] J. Hughes. Generalising monads to arrows.Science of Computer Programming, 37:67–
111, May 2000.

[4] M. Nielsen and I. Chuang.Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge, 2000.

[5] P. Selinger. Towards a quantum programming language.Mathematical Structures in
Computer Science, 2004.

[6] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical
control. accepted for TLCA05, 2005.

[7] A. van Tonder. A lambda calculus for quantum computation. quant-ph/0307150, 2003.
to appear in SIAM Journal of Computing.

[8] J. K. Vizzotto, T.Altenkirch, and A. Sabry. Structuring quantum effects: Superopera-
tors as arrows. submitted for publication, 2004.

[9] P. Zuliani. Quantum Programming. PhD thesis, Oxford University, 2001.


