Chapter 1

A Compiler for a Functional
Quantum Programming
Language

Jonathan Grattage and Thorsten Altenkirch

Abstract: We introduce a compiler for the functional quantum programming
language QML [1], developed in Haskell. The compiler takes QML expressions
as input and outputs a representation of quantum circuits (via the cateQ@pf

finite quantum computations) which can be simulated by the simulator presented
here, or by using a standard simulator for quantum gates. We discuss the structure
of the compiler and how the semantic rules are compiled.

1.1 INTRODUCTION

Quantum programming is now a firmly established field; see recent text books
as an example [2, 4] However, quantum programs are usually presented as low
level quantum gates. There are a number of proposals as to how best to integrate
guantum effects in a high level language, [5, 6, 7, 9], but none of them introduce
high level structures for quantum control and quantum data. In our previous paper
we introduced the language QML [1] which realizes quantum control structures
acting on quantum data, and which can, in principle, be translated in quantum
circuits. This paper explains in detail how a compiler, which translates QML
programs into quantum circuits, is implemented. The compiler itself is written in
Haskell and its source code is available from http://www.cs.nott.asjjgégml.

We begin by describing the structure of QML programs and the compiler.
The compilation of QML terms is then discussed in detail, with emphasis on the
differences between the strict and non-strict case constructs, and orthogonality
judgements. This leads to the definition of a compiler following the denotational
semantics and rules of QML.

1.2 SYNTAX OF QML

QML programs are typed expressions defined by the syntax and grammar of
QML. The BNF grammar for QML types and expressions is:
o=1|0®1|0&T

t=x |letx=tinu
| x1ys|)
(t,u) |let (x,y) =tinu
ginlt | ginru

case tof {qginlx=-u|ginry=u}
cas€ tof {qinlx=u|qginry=u'}
| {)t] (1) u}

As an illustration of a program, a simple example is the Hadamard operation
on a single gbit, given by:

had: Q2 — Q2

had x=if° x

then {gfalse| (—1) qgtrue}
else {gfalse| gtrue}

This program can be read as an operation which, depending on the inpt gbit
returns one of two possible superpositions of a gbit. Noteith& a special case
of cas€. We can also easily calculate that applying the program twice returns the
gbit to the original state, cancelling the amplitudes. Note that gtrue and gfalse
are syntactic-sugar for qirf) and qinr(), respectively. The type of a single gbit,
denoted, is 1¢1

The compiler must have some way of interpreting these typed terms, and this
is achieved by implementing the grammar in the compiler as Haskell dataffypes:
representing the QML expression types damarepresenting the QML expressions
themselves.

dataTy =T1| TyeTy| Ty Ty

data Tm= Var String | Let String Tm TniMaybe Ty
| Weak TnjString| | Void
Tm®Tm | LetP String String Tm TrtMaybe Ty
Inl Tm [Inr Tm

Casé@ Tm(String Tm) (String Tm) Orth
Sup(C, Tm) (C,Tm)
| Embed Tm
The final construct above iim Embed is not syntactic, but is a type level
construct. It embeds a strict computation into a non-strict computation, see [1].
Returning to the example programad, passing it to the QML parser would
rewrite it according to the internal representation, producing the term:
Cas@ (Var"x") ("_I" ,Sup(1,gfalse (—1,qtrue)
("_r" ,Sup(1,qgfalse (1,qtrue)) OSup
whereOSupis an orthogonality judgement, which is required whenever the strict
morphismCase® is used; see section 1.5.4.

{
| Case Tn{String Tm) (String Tm)
|
|

1.3 QUANTUM MACHINE CODE

The low level machine code that out compiler generates iE@E morphism
that is represented as a quantum circuit. This is included along with some other
information in the computation typ&omp

data Comp= Comp{uCone Snoc Stringty € Ty,fqgce FQC}

This datatype is constructed by three functions. The fiGgn(used context),
returns a list which contains the names of all variables that are used by the com-
putation. This is for type correctness: a computation is not correct unless every
variable passed to it by the context has been used. The second contains the re-
turned type of the function, and the last containsR@C morphism, represented
by the typeFQC:

data FQC = FQC{a, h,b,g € Int,@ € Unitary}

This datatype is made up from five destructor functiamdy, b, andg, which all

return integers, ang, which returns an object of typdnitary. a represents the
‘size’ of the input to thiFQC (i.e, the size of the input type; the number of gbits
required to represent ith,represents the size of the output, witlandg represent

the size of the heap and garbage required, respectively. There is the condition
thata+ h = b+ g, but this does not need to be enforced as the compiler never
builds FQC objects where this is not trugp € A® H —oynitary B® G represents

a reversible quantum computation as a unitary operator on Hilbert spaces — for
details see [1]/

We represent unitary operators as circuits which can be constructed using the
following combinators:

data Unitary = @ [Unitary] | © [Unitary]

| Perm[Int] | Cond Unitary Unitary

| Rotate(C,C) (C,C)
X takes a list ofUnitary, and represents these operations acting in parallel (hence
the use of the tensor symbol). Similarly) represents th&nitary operations
passed to it acting in series (the choice of symbol represents composhern) xs
is simply a permutation operatdRotaterepresents any 1-gbit unitary rotation to
the state passed, which is used to generate any given superposition - we can repre-
sent negation as a special rotatiomot= Rotate(0,1) (1,0). It follows from the
Kitaev-Solovay theorem, see [4], pp. 616-624, that we can represent all unitary
operators this way.

Finally, Condrepresents a conditional operation, and is slightly unusual. If
the control gbit is true then the first operation is performed on the remaining gbits,
while if it is false the second operation is performed. If the control gbit is in a su-
perposition, then both operations are applied to generate the correct superposition
of outputs. This is different to the standardntrolled— U operation, where the
identity is applied if the control gbit is false, bGbndcan be generated by simple
application of twocontrolled— U operations and twdlot operations, as shown

in the following circuit, for whichCondis a useful shorthand:

Two further functions are often used when definigitary operators, to aid
understanding and to simplify what could otherwise become cumbersome defi-
nitions. These ar@u x € Int — Unitary andswapN o | ne Int — Int — Int —
Unitary. The functionidu simply creates an identity permutation of the required
size.swapNcreates another permutation operation, based on the three input inte-
gers,o, | andn. The permutation generated by this operation swaps a ‘block’ of
gbits from anywhere in a circuit to the top, putting what was originally first after
the moved block, followed by the remaindergives the size of the ‘offset’ to the
block we wish to move, witth giving the size of this blockn is simply the size of
the entire segment, for purposes of plumbing.

All objects of Unitary also have an associated arity; the number of gbits re-
quired to implement them. These are given by the following function:

arity € Unitary — Maybe Int

arity (®1[]) = Just0

arity (@ (x:xs)) = dom« arity x

n « arity (Q xs)
return (m+n)

arity (Cond@y) = dom« arity @
n «— arity g
guard(m=n)
return (1+m)

We define a functiomvalwhich calculates the matrix representation of a uni-
tary circuit — here are some examples of how this mapping is achieved, with
matMult being matrix multiplication, andensor calculating the matrix tensor
product:

typeRow = [C]

type Matrix = [Row|

evale Unitary — Matrix

eval (® xs) = mPar(map eval x5

eval (O xs) = mSeqmap eval x5

mPar e [Matrix] — Matrix

[
mPar [= [[1]]
mPar (x:xs) = tensor x(mPar x3
mSeqe [Matrix] — Matrix
mSeq [X] =X

mSeq (x:xs) = matMult x(mSeq X5
The compiler also allows a direct mapping from programs to matrices using

the computerather thancompilefunction. Additionally, the compiler also opti-
misesUnitary types to give an optimised representation of the circuit, without
changing the meaning.

1.4 STRUCTURE OF THE COMPILER

While the general structure of the compiler is quite standard, it is unual because
our language doesn't allow implicit weakenenings. Hence we have to implement
some book keeping of used variables.It takes as input parsed QML programs, and
then performs a translation into its object language, in this EQf@ morphisms.
These morphisms, explained in [1], fully describe the computation, giving the size
of input required, how much heap is required, how much garbage is produced,
and a unitary operation that performs the computation. This unitary operation
is essentially a description of a low-level quantum circuit (our ‘machine’ code).
The FQC object can then be compiled further into the matrix that describes the
computation (the lowest level ‘machine’ code).

The compiler starts by taking parsed QML programs, which we assume to be
originally written as typed expressions, but have been converted by the parser into
its internal representation. We have already stated that QML programs are typed
expressions, and given the type for terfis), and for QML types,Ty. These
types are combined to give the final type for QML programs, implemented in the
following way:

type Prog = Env FDef

data Env a= En\{ unEnve Snoc(String a) }
data FDef = FDef FSig Tm
data FSig = FSig Con Ty

type Con =EnvTy
These constructors tell us that a QML progrdnaQ) is an environmentgny)
of function definitions FDef). Function definitions are in turn defined as having
a function signaturel-Sig, which contains the required contextdn) with the
expected return type, and the QML terfim
To illustrate theFQC morphism, the morphism generated for the quantum
equivalent of the negation operation is described, which in QML syntax could be
written:
gnot: Q2 — Q2
gnot x=if°® x
then gfalse
elseqgtrue
From this the parser generates:
gnote Prog
gnot= Env(SNil:< ("gnot" ,FDef (FSig(Env(SNil:< ("x" ,qb))) qb)
(Cas@ (Var"x") ("_I" ,gfalse ("_r" ,qtrue) (Olnrl))))
The compiler now applies the compilation function to producE@& morphism

that performs the action of the program:
FQC{a=1h=0,b=1,g=0,¢= Not}
This is packaged up inside ti@mptype, which also contains information about
the variables used to compute the program, and the output type of the program:
Comp{uCon= SNil:<"x" ,ty=Q»,FQC=...}
The morphismpin the FQC object describes the simple circuit that negates a
single gbit, just the Not gate, while using theal function described in section
1.3, we could further compile this into the standard matrix representation.
The actual mechanics of how compilation is achieved are described in the next
section, 1.5.

1.5 COMPILING QML

The compiler for QML is defined as a single Haskell functioompile This func-
tion compiles each subterm of the expression that represents the QML program
into Compobjects, which contain thEQC morphism, by calling the recursive
functioncompileTm

compilee Prog— Error (Env Comp
As can be seen from the typsgpmpiletakes as input a QML program and returns,
if there are no errors, a list (environment) of computations. At present we only
consider programs consisting of a single function, and hence only return a sin-
gle computation. Theompilefunction is mainly concerned with error checking,
using the Error monad, and passes the work of compilation ontodhmpileTm
function. If there are no type, arity, or context errors then it returns the compu-
tation, viacleanCompwhich simply ‘cleans’ the computation by optimising the
underlying unitary morphism th@aompile Trmproduced.

The function that performs the majority of the compilaticompileTm has
the type

compileTme (Env Comp — Con— Tm— Maybe Ty— Error Comp

The type(Env Comp simply contains the functions that have already been
compiled, and are available for use by the compiempileTrnalso takes as input
the current context, the term to be compiled, and the expected type (if known,
hence the use of thielaybg of the term. It returns either an error orGomp
object. The function is defined using pattern matching over the type of terms,
Tm, so there is a separate function for each of the twelve term forms given by the
grammar for QML, given by recursion over the term syntax. We begin by looking
at how the variable rule is compiled, as it is the first rule — and is very simple.

compileTm_ T (Var x) mTy=

doo «— (elookup X7)
let |o| = sizeo
greturn mTy(Comp{uCon= (SNil:<x),ty = o,
fgc =FQC{a=|o|,h=0,b=0],g=0,
@=idulo[}})

To compile a variable, we first look up the type of the variabile the context

I, and call ito. The Envlookup function,elookup would return an Error type

if the variable did not exist. The size of the type is then calculated, and this in-
formation is used to generate tR@C morphism. The context used in compiling
this term is simply the variable, heno€on(usedCortext) only containx. The

type of the computation is the type of the varialitleand theFQC is the identity
morphism of the appropriate sizgreturnis a small extension of the usuaturn
function that confirms the type correctness of the returned computation, or else
gives an informative error.

1.5.1 Context Sharing

Several of the more complicated circuit diagrams make use of a B@IEt mor-

phism labelledpc.
reA r
Hra A

This morphism is used in the compilation of several terms, and allows the inter-
pretation of the operatad on contexts. It makes use &§, which shares a single
gbit using a simple controlled-not operation [1]. We define ghenorphism as

Cra € FQC [@ A] ([I'] ® [A]) by induction over the definition df @ A. If a
variablex : ¢ appears in both contexts we must dgec FQC® [o] ([o] ® [o])
which generalised; by applying it in parallel to all gbits. All the other cases can
be dealt with by applying monoidal isomorphisms. The implementation works
by taking the contextl” ® A, and the two lists of the variables required by the
operations; one of which requiridgas its context, and the oth&r From this we

can calculate which variables need to be shared and the appropriate permutations
to output aFQC with the appropriate behaviour. The fitE{ gbits contair”, the
remaining|A| containA, and the list of variables in these two contexts (for verifi-
cation purposes). This is arguably the most complicated function in the compiler.

1.5.2 CompilingLet

The QML Let statement is the standard construction, and has the usual interpre-
tation. Letis, however, interesting, as it demonstrates some of the subtleties of
context handling in QML. Thé&etrule and diagram are given as:

r-2t:o

Ax:oFPu:T

e let

FTRAF*Plet X=t in u:T

re
Hra 1
Ht Gt
Hu t Gy

The function begins with a recursive call to compute the subteand then
extracts some data:

compileTm @ (LetxtutTy mTy=

dotc «— compileTm d ttTy
let nt =uCont
o =tytc
tF = fgctc

Next, we extend the contektwith the typed variable: . We call the extended
contextl™’, and this is the context that will be passed to functions within the scope
of the Let statement. This is achieved by calling the auxiliary functstEny
which simply adds the paiix, o) to the context environmeiit

letl" = extEnV™ (x,0)
The compilation of the subterm over which our new variable has sagpeEgn
now be performed. This is done in the usual way; but passirag the context.

uc — compileTm &’ umTy
let nu = uCon ¢

T =tyw

uF = fgqc ¥

We must now verify the subteromndid indeed use the new variabdeThis is done
by checking that the name gfappears in the list of variables used by the subterm,
nu=uCon &. Ifitis there then it is removed to give us!, which gives us the list
of variables in the context that are used the subterm (givinglufrom I ® A, in
the diagram). Ik does not appear inuthen anError is returned and propagated
by the Error monad. This is done by the simple auxiliary funcfiadrm (find
and remove):
nu « findrm xo nu

Using the used context lists from the two subterms we can now calapdate
using the function described before. From the diagram, the sizei©equal to
atF, and the size o in the diagram is given bg ¢ — atF:

let (ngd,cF) = @ T ntnd
|4 =ad —atf
greturn mTy(ComguCon= ngd ty =T,

Finally, we compute th&QC morphism using this data, withfollowing the
construction in the diagram exactly, which is returned affeturn verifies the
inferred and expected types match:

faqc=FQC{a=ac,h=hc +htf +hw b=bw,g=gtF +gF,
0= 0O [® [idu (htF +hiF)],
swapN(atF) |A| (atF + |A]+htF +h o),
® [idu|A], ot idu (h)],
® [idu (awF),swapN(htF) (hF) (htF +huF)],
& [ouF,idu (gt7)],
® [idu (b iF), swapN(g WF) (9tF) (g F +gtF)]]}})

Note how the construction gffollows the construction of the circuit diagram,
with each line representing a column of the diagram. The computatio€arfis
simply the shared context, and the type follows from the computation FQ@
constructors, h, b, andg are easily calculated.

The implementation of the diagram ferintroduction, also denoted u (and

akin to pairing), is very similar. We simply compile the two subterms, generate
the appropriate context for each usipg, and then construct thEQC object
following the circuit diagram given in [1].

1.5.3 CompilingInl (®)

A third interesting example is the compilation of injections, which shows some
of the complications implementing the diagrammatic form of the compilation;
specifically, care is required to ensure that the subcomputations are ‘plumbed’
correctly into the rest of the computation. The rule and compilation diagram for
constructingnl s are given as:

r-?s:o)
—————— +tintrog T
M2inls:o®T ()
Hs oLt
Hi—s Q
Q@ Gs

The rule tells us that from a terapf some types we can computénl s:o®T.
The returned type cannot be inferred from the input as we know nothing about
For this reason, in order to compilel, the compileTmfunction must be passed
the expected return typesTywhich should belustc @ 1. Inr, Case andCasé
also need this information for the same reason.

These first few lines of the definition fdnl take the type input and split it
into its component types using the simple functiortPlusMaybeThese are then
extracted from the Maybe monad usingMaybeTyto give the expected return
type of the computed left injection.

compileTm @ (Inls) mTy=

do (¢?,7%) < unPlusMaybe mTy
o — unMaybeTy?
1 — unMaybeTy”
We next compile the subtergby callingcompileTrmagain, and passing’ as the
expected type of the subterm.

S — compileTm & sa”
letc =tys
g =fqcs

There is no restriction that the sizesméndt must be equal, so if the types are of
different sizes we have to pad the smaller one to make them the same size, using
the padding operatagp.

maxs! = max(sized’) (sizer')

> = maxs!) —(sizeo)

pF =@ (bs)d
Next we confirm that the inferred type for the subcomputation was indeed the type
returned. If they match, then the computation is constructed, directly following
the circuit diagram:

if 0 # o’ then Error (“Inl type mismatch: " +H...)
elsegreturn mTy(Comg uCon=uCon €,ty=09T,
fgc=FQC{a =as,h=58+1,b=maxsV+1,g=g¥,
0 =0 [Q[9s,idud,unof,
® [idu(bg),swapN(gtF)d(gs +0+1)],
& [@p~,swapN(g§) 1 (1+9g5)]]}})

1.5.4 CompilingCase& Casé€

In QML there are two versions of the traditional case construct. The Geste
measures a gbit of the data over which we branch to determine which branch has
to be returned. By measuring, it collapses part of the quantum state, and causes
entangled states to decohere. The sec@ad¢, is an example of thguantum
control available in QML. It does not measure the result of executing the con-
ditional statement, but produces a superposition of results which corresponds to
the superposition of data it analyses. It is the source of quantum parallelism; in-
tuitively both branches are run in parallel. However, there is a price to pay: we
have to provide evidence that both branches are observably different, i.e. orthog-
onal. Only then are we able to translate our quantum case analysis into quantum
circuits.

The rules and circuits for compilinGaseandCas€ are:

MFc:odt
A x:oFt:p
Ay:Thu: .
y P @ —elim
F®Atl case cof {inlX=-t|inry=-u}:p
ron
Hr A p
P | o,
He G
Hi—u ¥ | Gc¢
r-2c:oot
A x:oF%t:p
A y:tHou:p tlu .
Y P @© —elim®
F®@AF%case® cof {inlx=t|inry=u}:p
s— p

| G

Note both of these circuits make use of the context sharing morpiism
defined earlier.

Looking at compilingCasefirst, the function begins by computing t®mp
object for the conditional terrar, from which the subtypes (vianPlug, context
required and=QC morphism are extracted:

compileTm @& (Case € (x,t) (y,u)) mTy=

docc «— compileTm & cT Nothing
(0,7) — unPlus(ty &)
let nc =uConé¢
cF =fgcc

Note that the type passed when compilgigs Nothing This is because we can-
not infer the type from the information given, and therefore restricts what terms
conditional statements can be composed of. Next, two extended contexts are cre-
ated,I™° for the subternt, andl™ for u. These are then used in the compilation
of the subterms$ andu:

Mo = extEnv (x,0)

Mt =extEnv (y,1)

tc — compileTm &*° tmTy

uc «— compileTm d¥TumTy
Similar to the implementation of tHeet construct, we now ensure the added vari-
ables were used and remove them from the appropriate list (or else fail). The types
andFQC objects are then extracted:

nt — findrm xo (uCon ¥)

nu « findrm yt (uCon &)
let pt =tytc

pY =tyw

tF = fgctc

uF =fqgcf

We can now compute the context sharing usjpgto give usl" andA from the
diagram and then compute thgu]F morphism. This is again done by an auxil-
iary function,condOp which creates aRQC object using the&Condoperator on
tF anduF, appropriately padded so they are the same size, and plumbed correctly.
Some useful mnemonics are then created to help in the definitipn of

(_,CF) =@ T ncnt

[tluF = condOp @ tF True

|| =ad
A =aC +hC —|I|
arity = |I|+|A|+hc +h]tju]F

We now begin to prepare tH@omp but first must ensure that thendu make
use of the same variables from the original confexttherwise there is a context
error, and thapt andp" also agree:
if nt=£ nuthen Error "Context error"
else ifpt # pY then Error "Type error”
elsegreturn mTy(Compg uCon= nc-+-< nt,ty = p,
Finally, the construction of thEQC can begin. The values @f h, b, andg can

be read from the diagram, and again the morphism is constructed using permuta-
tions and the subcomputations generated above, to match the construction of the
diagram:
fgc=FQC{a=aCF, h= hCF +hc +hltuF,
b=b[tlu~,g= gltjuF +gc,
9= 0O [® [0CF,idu (h & +ht/uF)],
swapN|l| |A| arity,
® [idu Al @cF,idu (h[t[ulF)],
® [idu (|A[+b),
swapN(g &) (h [t|u]F) (g & +h t]u]F)],
® [@[t|ufF idu (g)]} })
As the diagram fo€asé€ is very similar to that foCase so is the compilation
function. Only the differences are discussed:
compileTm & (Casé€ cT (x,t) (y,u) o) mTy=

doce «— compileTm & cT Nothing
(0,7) — unPlus(ty c¢)
let nc =uCone¢
cF =fqceE
Mo = extEnv (x,0)
Mt =extEnV (y,1)

The next step in the implementation@éseis to compile the two subtermsand

u, which are passed to tloendOpto give [t|u]F. However, note that in this case,

from the diagram, we waritf |g]F, wheref andg are computations based 6n

andu, but modified using the orthogonality judgement. This is carried out by the

orthcompfunction, see section 1.5.5. If this function fails, then we know that the

termst andu were not orthogonal. The compilation then proceeds &aise
(fc,g¢,p) < orthcomp qt,0,%) (u,T,MN¥*) mTy o

nf «— findrm xo (uCon)
ng «— findrmyt (uCon &)
let fS =ty fc

¢° =y

fF = fgc fc

g =face

(_,CF) = @ T ncnf
[flg]F = condOp § fF False

|| =ac

A =aC +hC ||

arity = |I|+]Al+hd& +h[f|g|F
orth = orth2unitary £g5o0

Now we must compile the orthogonality judgment morphism. This is done using
the auxiliary functiororth2unitary, which takes the type dfandg, and the judg-
mento. This function simply computes the circultifitary) for the orthogonality
judgment, and is explained in section 1.5.5.

if nf £ ngthen Error "Context error"

else if fS # gSthen Error "Type error"
else iforthcheck t u a= False
then Error "Orthogonality Failure”
elsegreturn mTy(Comp uCon= nc+-< nf, ty = p,
The computation of th&QC morphism continues in the exact same way as be-
fore, but for the addition of the exti@th construct, as in the final column of the
diagram:
fgc=FQC{a=aC*, h=hCF+hd +h[f|g]F,
b=bl[flgF.g=gc,
0= 0O [® [¢CF,idu(hc +h[f|gF)],
swapN|T| |4 arity,
® [idu |A],@cF idu (h [f]g]7)],
® | idu (|4] +b &),
swapN(g &) (h[f|glF) (g & +h[f|g]F)],
® [@[f|glF,idu (g)],
® [orth,idu (g &)]]}})

1.5.5 CompilingOrth (L)

Here we briefly introduce the type of orthogonality judgmef@gh, and discuss
how theorth2unitaryfunction and theerthcompfunction, used irCasé, behave
for some examples of therth type. TheOrth type is defined as:
dataOrth=Olnlr | Olnrl

| OInl Orth | Olnr Orth

| OPairl | OPairr

| OSup Orth Orth C, C) (C,C)
which matches the seven rules given in [1].

The idea ot L uis that there exists a boolean observation which tells the two
terms apart in every environment. GivEr-t,u: p, the interpretatiorft L u] =
(Siuw@®iu), where@ 1y € S 1y ® Q —ounitary [P] is defined by induction over the
derivation.

Olnlr & Olnrl

—— Olnlr —— Olnrl
inlt L inru inrt 1L inlu

Givenl F°t:oandl F° u: T, we defineS=ocuUTt and@ is simply the
identity in the first case but negates the gbit in the second.

s — s ——
P P
2 } Qz }
This can be defined by the functienth2unitaryas:
orth2unitarye Ty— Ty— Orth — Unitary

orth2unitary t u (Olnlr) = ® [idu (max(size) (size y),idu 1]
orth2unitary t u (OInrl) = [idu (max(size } (size y),Not]
For both of these rulegy is simply given byg:

r out
@
Htu

while @y is given byq,, in the same way. This is also straightforward:
orthcompe Code— (Tm Ty,Con) — (Tm Ty, Con)
— Maybe Ty— Orth — Error (CompCompTy)
orthcomp qInl't,0,1*%) (Inr u,T,MN¥") MTy(Olnlr) =
do f¢ « compileTm d¢*° t (Justo)
g¢ < compileTm ¢¥' u (Justt)
t¢ « compileTm d¢* (Inl't) mTy
return(fc,gc,ty t¢)
Olnr is identical. Note that the function also returns the type of the full subterm,
for use byCasé@. The simplest way of doing this (though least efficient) is to
compute the full subterm as well, and just extract the type.

Olnl Orth

tLlu
Olnl

inlt 1l inlu dinrt 1l inru
Consider the first ruleQInl, only: We setS=S,;1t1in1u=S1u® @, t0
derive @in tin u € (S1u® Q) ® Q@ —ounitary [OUT] @ Q@ from @1y € S 1y ®
Q —ounitary [0] We just swap two gbits. The other case proceeds analogously.

Siu

S o Giu
SO
P
: }
The code for creating this using theth2unitaryfunction is simply:
orth2unitary t u(OInl o) = O [® [idu maxt¥ swapN1 3t (3t 4 2)],
® [idu (maxt¥ 4344, Perm[1,0]],
® [idu maxt¥ swapN1 3ty (3t 4 2)],
® [orth2unitary t u gidu (3Y +1)],
® [0 (e (maxt) 1) 504),idu 1]
where maxt¥ = max(size) (size y
3w —abs((size) — (size V)
orth2unitary t u(OlInr o) = orth2unitary t u(OlInl 0)

Calculatinggs andqq is more involved, agy, , andqg, ,. must also be cal-
culated. In the case where we hawe | inl, @ is given by:

r — Siu
H A
fiig —1

@ ———mmm @
Hy ———— Hiu

Note the outputS |, ® Q ® Hi_y, includesS. @ can be constructed in the
same way, substituting, , for @, . Inthe case where we hawer | inr, the
construction ofpr (andqy) is identical, except for a negation on the final wire —
the control gbit. The code farthcomp which calculates these trivial circuits, is
not shown here.

OPairl
tLlu

(t,v) L (uw) (vt) L (wu)

OPairl

Considering only the first rule above, giver+-°t,u: o andl F° v,w: 1. We

setS= Sty (uw) = SLu®T, to derive@ v 1 (uw) € SLu®T® Q& —ounitary [o®T]
from @y € S1u® Q —ounitary [0] requires simple rewiring.

{ Siu
S Gy

This is computed by:
orth2unitaryo 1 OPairl = © [[idu |0'|,
swapN|T| 1 (|| +1)],
& [orth2unitarya’ T (Olnrl),
idu (7]
where |d’| =size §
[T'] =sizet
OK (d’,1') = unPairt
To calculatep; in this instance, we make use@fandg,, to constructp ® @,
which is an application of the - introduction rule, and can therefore be cal-
culated simply by a call teompileTm(t ® v). @ is constructed analogously,
replacingq with @, and @, with @,. For the case where the second rule is ap-
plied, the same constructions are used, but withdv (u andw for @) swapped
appropriately.

1.6 CONCLUSION

Our present work exploits the functional paradigm in two ways: first we have
designed a high level quantum programming language — QML — using con-

cepts from conventional functional programming [1]; and then in the present pa-
per we have used Haskell for a prototypical, high level implementation of QML.
In related work [8] use Haskell to explore the semantic foundation of QML by
implementing Super operators using the arrows [3].

ACKNOWLEDGEMENTS

Thanks are extended by the authors to Conor McBride, Peter Selinger, Amr Sabry,
Juliana Vizzotto, Graham Hutton, and Janine Swarbrick.

REFERENCES

[1] T. Altenkirch and J. Grattage. A functional quantum programming language. quant-
ph/0409065, November 2004.

[2] M. Hirvensalo. Quantum ComputatingSpringer-Verlag NewYork, Inc., 2001.

[3] J. Hughes. Generalising monads to arrosience of Computer Programmir8y:67—
111, May 2000.

[4] M. Nielsen and I. ChuangQuantum Computation and Quantum Informatiddam-
bridge University Press, Cambridge, 2000.

[5] P. Selinger. Towards a quantum programming languddathematical Structures in
Computer Scienc004.

[6] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical
control. accepted for TLCAO5, 2005.

[7] A. van Tonder. A lambda calculus for quantum computation. quant-ph/0307150, 2003.
to appear in SIAM Journal of Computing.

[8] J. K. Vizzotto, T.Altenkirch, and A. Sabry. Structuring quantum effects: Superopera-
tors as arrows. submitted for publication, 2004.

[9] P. Zuliani. Quantum ProgrammingPhD thesis, Oxford University, 2001.

