
Generic Programming for Dependent Types
Constructing Strictly Positive Families

Peter Morris Thorsten Altenkirch
University of Nottingham, UK
{pwm,txa}@cs.nott.ac.uk

Abstract
We begin by revisiting the idea of using a universe of types to
write generic programs in a dependently typed setting by con-
structing a universe for Strictly Positive Types (SPTs). Here we
extend this construction to cover dependent types, i.e. Strictly Pos-
itive Families (SPFs), thereby fixing a gap left open in previous
work. Using the approach presented here we are able to represent
all of Epigram’s datatypes within Epigram including the universe
of datatypes itself.

Keywords Data type generic programming, dependently typed
programming, Epigram

1. Introduction
In a dependently typed language like Epigram [8, 7, 3] generic pro-
gramming is normal programing. This is achieved by defining a
universe [6, 10] consisting of a type of names U : ? and a fam-
ily of elements El : U → ? indexed by type names. We have
exploited this opportunity in [9] by defining the universe of regu-
lar tree types and developing generic programs and proofs for this
universe. However, there is an obvious asymmetry in our previous
definitions where we exploit the power of dependent types to en-
code a universe of non-dependent types. In the present paper we
show how to correct this imbalance and construct universes of de-
pendent types. We define the universe of strictly positive families,
which contains codes for all datatypes definable within Epigram,
including the definition of this universe itself. We also consider a
smaller universe of regular families, which is the dependent coun-
terpart of the universe of regular tree types. This smaller universe
which excludes infinitely branching trees is interesting because it
allows more programs including a generic program to decide equal-
ity.

In related work, [5] presents an alternative approach to defining
a universe of indexed strictly positive definitions. This has been the
base for generic programming within the AGDA system [4].

1.1 Programming in Epigram
Epigram is an dependently typed functional language with an in-
teractive environment for developing programs with the aid of the
type checker.

[copyright notice will appear here]

All Epigram programs (currently) are total to ensure that type
checking is decidable. We ensure this by only allowing structural
recursion. Programs are presented as decision trees, representing
the structure of the analysis of the problem being solved. Each node
is presented with the information available as a pattern on the left
hand side, right hand sides can either be:

⇒ t the function returns t , an expression of the appropriate
type, constructed over the pattern variables on the left;

⇐ e the function’s analysis is refined by e , an eliminator ex-
pression, or ‘gadget’, characterizing some scheme of case anal-
ysis or recursion, giving rise to a bunch of sub nodes with more
informative left-hand sides;

|| w the sub nodes’ left-hand sides are to be extended with the
value of w , some intermediate computation, in an extra column:
this may then be analysed in addition to the function’s original
arguments.

In this paper we will need only two ‘by’ gadgets, rec which
constructs the structural recursive calls available to the program-
mer, and case which applies the appropriate derived case analysis
principle and introduces a set of more informative patterns in the
sub-nodes. We will use the convention that we suppress the use of
case when its presence is inferable from the presence of construc-
tors in the patterns. We will always be explicit about which input
we are being structurally recursive on.

Epigram’s data types are presented by declaring their formation
rules and constructors in natural deduction style as are the types of
functions. In these rules arguments whose types are inferable can
be omitted for brevity.

As a warm up to Epigram’s syntax we’ll start with a simple
datatype, the natural numbers and define addition:

data
Nat : ?

where
0 : Nat

n : Nat
1+ n : ?

let m,n : Nat
plus m n : Nat

plus m n ⇐ rec m
plus 0 n ⇒ n
plus (1+ m) n ⇒ 1+ (plus m n)

We can then define types which are dependent on the natural
numbers, the finite types and vectors (lists of a given length), we
can then define safe projection from using the finite types to ensure
there are only as many indexes as elements in the array.

1 2006/6/14

data n : Nat
Fin n : ?

where
0 : Fin (1+ n)

i : Fin n
1+ i : Fin (1+ n)

data A : ? n : Nat
Vec n A : ?

where
ε : Vec 0 A

a : A as : Vec n A
a::as : Vec (1+ n) A

let as : Vec n A i : Fin n
proj as i : A

proj as i ⇐ rec i
proj (a::as) 0 ⇒ a
proj (a::as) (1+ i) ⇒ proj as i

Notice that the nil case doesn’t appear since Fin 0 is uninhab-
ited.

We will be returning to each of the above datatypes to encode
them into our universe, along with another nice example of Epi-
gram, the scoped lambda terms:

data n : Nat
Lam n : ?

where i : Fin n
var i : Lam n

t : Lam (1+ n)
abs t : Lam n

f , a : Lam n
app f a : Lam n

2. Strictly Positive Types
Strictly positive types can be constructed using polynomial expres-
sions (0, 1, +,×), initial algebras (µ) and exponentiation by a con-
stant K → −. Examples are natural numbers Nat = µX.1 + X ,
lists List A = µX.1 + A ×X , rose trees RT A = µY.List (A ×
Y) = µY.µX.1 + A × Y × X and ordinal notations Ord =
µX.1 + X + Nat → X . The first three examples, which don’t use
exponentiation are regular tree types which are a proper subset of
strictly positive types.

Strictly positive types with n free type variables are represented
by the Epigram type SPT n , see figure 1. We use de Bruijn vari-
ables, where ‘Z’ stands for the last variable with index 0 and previ-
ous variables can be accessed using weakening ‘wk’ . Note that the
fix-point constructor ‘µ’ reduces the number of free variables by 1
because the last variable has been bound. We introduce the type of
nested type substitutions, or telescopes, of length n , Tel n . Given a
type T : SPT n and a matching telescope ~T : Tel we define the
type of elements El ~T T as an inductive family.

We can now encode the examples mentioned above (Nat, List,
RT, Ord):

let ‘Nat’ : SPT 0

‘Nat’ ⇒ ‘µ’ (‘1’ ‘+’ ‘Z’)

let ‘List’ : SPT 1

‘List’ ⇒ ‘µ’ (‘1’ ‘+’ ((‘wk’ ‘Z’) ‘×’ ‘Z’)

let ‘RT’ : SPT 1

‘RT’ ⇒ ‘µ’ ((‘wk’ ‘Z’) ‘+’ (‘µ’ ((‘wk’ ‘Z’) ‘×’ ‘Z’)))

let ‘Ord’ : SPT 0

‘Ord’ ⇒ ‘µ’ (‘1’ ‘+’ (‘Z’ ‘+’ (Nat ‘→’ ‘Z’))

In the system we can build ‘constructors’ which construct ele-
ments of the interpretation of a code, for example with ‘Nat’:

let ‘0’ : El ε ‘Nat’
‘0’ ⇒ in (inl void)

let ‘1+’ : El ε ‘Nat’ → El ε ‘Nat’
‘1+’ ⇒ (λn ⇒ in (inr (top n)))

2.1 Generic Map
As our first example of a generic program we shall present generic
map. We shall define this by first considering morphisms between
telescopes. Our base case is going to be the identity morphism be-
tween a telescope and itself, and we can obviously extend a mor-
phism with a function. To ensure our map is structurally recursive
(and total) we also need to be able to go under local bindings with-
out extending the, morphism φ by the non structural recursive call
gMap φ. So we add a third constructor to morphisms mMap
which we will use to denote an extension under a binder.

data
~S , ~T : Tel n

Morph ~S ~T : ?
where

mId : Morph ~S ~S

φ : Morph ~S ~T f : El ~S S → El ~T T

mFun φ f : Morph (~S ::S) (~T ::T)

φ : Morph ~S ~T

mMap φ : Morph (~S ::T) (~T ::T)

Most of the definition for gMap is structural, we extend uni-
formly under ‘µ’ and when we see a mMap extension at the top
variable we reconstruct the (now obviously structural) call we’d
expect.

let φ : Morph ~S ~T x : El ~S T

gMap φ x : El ~T T

gMap φ x ⇐ rec x
gMap mId (top x) ⇒ top x
gMap (mFun φ f) (top x) ⇒ top (f x)
gMap (mMap φ) (top x) ⇒ top (gMap φ x)
gMap mId (pop x) ⇒ pop x
gMap (mFun φ f) (pop x) ⇒ pop (gMap φ x)
gMap (mMap φ) (pop x) ⇒ pop (gMap φ x)
gMap φ void ⇒ void
gMap φ (inl x) ⇒ inl (gMap φ x)
gMap φ (inr x) ⇒ inr (gMap φ x)
gMap φ (pair x y)

⇒ pair (gMap φ x) (gMap φ y)
gMap φ (fun f)

⇒ fun (λk ⇒ gMap φ (f k))
gMap φ (in x)

⇒ in (gMap (mMap φ) x)

In our work on the regular tree types [9], we present a number
of other algorithms in this style for the regular tree types, including
a decidable equality. Types in this universe do not have such an
equality, there is no such function for the ordinals for instance.
It is clear that the larger the universe of types the fewer generic
operations we may define. In a system of generic programming it
is conceivable that we would need a number of successively large
universes to cope with this trade off.

2 2006/6/14

data n : Nat
SPT n : ?

where

‘Z’ : SPT (1+ n)
T : SPT n

‘wk’ T : SPT (1+ n) ‘0’ : SPT n ‘1’ : SPT n

S ,T : SPT n
S ‘+’ T : SPT n

S ,T : SPT n
S ‘×’ T : SPT n

K : ? T : SPT n
K ‘→’ T : SPT n

F : SPT (1+ n)
‘µ’ F : SPT n

data n : Nat
Tel n : ? ε : Tel 0

~T : Tel n T : SPT n
~T ::T : Tel (1+ n)

data
~T : Tel n T : SPT n

El ~T T : ?
where

e : El ~T T
top e : El (~T ::T) ‘Z’

e : El ~T T
pop e : El (~T ::S) (‘wk’ T) void : El ~T ‘1’

f : K → El ~T T

fun f : El ~T (K ‘→’ T)

s : El ~T S
inl s : El ~T (S ‘+’ T)

t : El ~T T
inr t : El ~T (S ‘+’ T)

s : El ~T S t : El ~T T
pair s t : El ~T (S ‘×’ T)

e : El (~T ::‘µ’ F) F

in : El ~T (‘µ’ F)

Figure 1. The SPT Universe

3. Strictly Positive Families
There is an obvious imbalance in the above construction, we use
the dependent types of Epigram to model a class of simple types
for generic programming. If this technique is ever to prove useful
then it has to be able to include as much of the power of the host
language’s type system as possible.

We have been using strictly positive families (presented in Epi-
gram’s natural deduction style) throughout this paper, but to illus-
trate the universe below we will return to the examples from the
introduction, the finite types Fin, vectors Vec and scoped lambda
terms Lam.

To tell this story we consider the positive ways to build a family
of types in O → ?, for the moment we’ll call these codes Fam. We
call O the output index type. In all of the above examples O ≡ Nat,
though it can be any type. The simplest such families are constant
and ignore the indexing information, we have two such types,
‘0’ and ‘1’ which are have zero or one elements (respectively)
at all indices. We introduce the codes for this universe, and the
interpretation J− K : Fam O → O → ? simultaneously.

‘0’, ‘1’ : Fam O void : J‘1’Ko

Clearly another possibility is to to substitute for the given index,
that is given a O → ? and a function in O ′ → O we can create a
new family in O ′ → ?. Categorically this relates to a pullback, and
we will refer to it as re-indexing of a family.

f : O ′ → O T : Fam O
‘∆’O f T : Fam O ′

v : JT K(f o)
δ v : J‘∆’O f T Ko

It is interesting now to consider what we can do to construct
values if we have a function on output types that goes the other
way. Given a Fam O and a function O → O ′ we must construct
values at a given index o′ : O ′, to do this we consider only the
values o : O for which f o = o′ but do we consider all such
values, or just pick one? The first option gives us dependent sum,
the second dependent product:

f : O → O ′ T : Fam O
‘Σ’O f T , ‘Π’O f T : Fam O ′

v : ∃o : O ⇒ (f o = o′)× JT Ko
σv : J‘Σ’O f T Ko′

~v : ∀o : O ⇒ (f o = o′) → JT Ko
π~v : J‘Π’O f T Ko′

Categorically, ‘Σ’ and ‘Π’ are respectively the left and right
adjoints of ‘∆’.

Although we called these sum and product there is only one
type involved, in fact all of our constructs are linear in this way. ‘Σ’
and ‘Π’ work only on the index level so we must be able to pick
between types based on the index we are given. There are a number
of possibilities her but it seems sensible to restrict ourselves to finite
collections of types so, using Fin:

f : ∀t : Fin n ⇒ Fam O
‘Tag’f : Fam (O ×Fin n)

v : Jf tKo
tagtv : J‘Tag’f K(o; t)

Finally we add type variables and the fixed point constructor.
Our input types will now be dependent so we have to index our
codes not only by the input index type but the set of input index
types, Fam above becomes:

data
~I : Vec ? n O : ?

SPF ~I O : ?

For the interpretation we follow the SPT construction and in-
troduce telescopes as closing substitutions, this time with indexing
information:

data
~I : Vec ? n
dTel ~I : ?

where

ε : dTel ε
~T : dTel ~I T : SPF ~I I

~T ::T : dTel (~I ::I)

and our interpretation now has this type:

3 2006/6/14

data T : SPF ~I O ~T : dTel ~I o : O
JT K~T o : ?

the introduction rules for the codes given above can be uni-
formly modified to thread the context unchanged. The variable
rules are as follows:

‘Z’ : SPF (~I ::O) O

v : JT K~T o

top v : J‘Z’K(~T ::T) o

T : SPT ~I O
‘wk’ T : SPF (~I ::I) O

v : JT K~T o

pop T : J‘wk’ T K(~T ::S) o

Finally the fixed point construct:

T : SPF (~I ::O) O

‘µ’ T : SPF ~I O

v : JT K(~T ::(‘µ’ T)) o

in v : J‘µ’ T K~T o

The whole construction is given in figure 2.
We can now encode our examples into this universe, as an ab-

breviation we will first define disjoint union, Cartesian product and
non-dependent arrow in a form similar to the SPT construction:

let A,B : SPF ~I O

A ‘+’ B ,A ‘×’ B : SPF ~I O

A ‘+’ B ⇒ ‘Σ’fst
„

‘Tag’
„

0 ⇒ A
1 ⇒ B

««
let a : JAK~T o

inl a : JA ‘+’ BK~T o

inl~T oa ⇒ σ(o;0) (tag a)

let b : JBK~T o

inr b : JA ‘+’ BK~T o

inr~T ob ⇒ σ(o;1) (tag b)

A ‘×’ B ⇒ ‘Π’fst
„

‘Tag’
„

0 ⇒ A
1 ⇒ B

««
let a : JAK~T o b : JBK~T o

pair a b : JA ‘×’ BK~T o

pair a b ⇒ π

„
(o; 0) refl ⇒ tag a
(o; 1) refl ⇒ tag b

«

let K : ? T : SPF ~I O
K ‘→’ T : SPF ~I O

K ‘→’ T ⇒ ‘Π’(O ×K)fst (‘∆’fst T)

let ~v : K → JT K~T T

fun ~v : JK ‘→’ T K~T o

fun ~v ⇒ π (δ ~v)

Notice how the ‘Tag’ interacts with the ‘Σ’ and ‘Π’. These
auxiliary constructions allow us to construct codes in a sums of
products style as before, except with added indexing information,
for instance:

let ‘Fin’ : SPF [] Nat

‘Fin’ ⇒ ‘µ’ ((‘Σ’1+ ‘1’) ‘+’ (‘Σ’1+ ‘Z’))

Remember that both constructors for Fin target non zero num-
bers, the ‘Σ’1+ construct ensures this, it forces us to choose an
index n ′ that satisfies n = 1+ n ′ for the output index n since the
equality type is uninhabited if n = 0 then so is the interpretation
of this code.

In the ‘Vec’ example we assume that the element type is fully
applied, and so is indexed only by the unit type. When we refer to
its type variable, we use delta to force the index to (). In the nil case
we use ‘Σ’ to ensure that the index is 0.

let ‘Vec’ : SPF [1] Nat

‘Vec’ ⇒

‘µ’
„

(‘Σ’ (const 0) ‘1’) ‘+’
(‘Σ’ 1+ (‘∆’(const ()) (‘wk’ ‘Z’)) ‘×’ ‘Z’)

«
As before we can create ‘constructors’ for these types to reflect

the conventional ones. For instance for ‘list’:

let ‘ε’ : J‘Vec’K[A] 0

‘ε’ ⇒ in (inl (σ void))

let a : JAK[] () as : J‘Vec’K[A] n
(a‘::’as) : J‘Vec’K[A] (1+ n)

(a‘::’as) ⇒ in (inr (pair (δ a) as))

As promised, we can also define the well scoped lambda terms:

let ‘Lam’ : SPF [] Nat

‘Lam’ ⇒
‘µ’ ((‘wk’ ‘Fin’) ‘+’ ((‘Z’ ‘×’ ‘Z’) ‘+’ (‘∆’1+ ‘Z’)))

3.1 Embedding SPT into SPF

It is clear that the SPT universe represents a subset of the the types
in SPF indeed we have overloaded the names (‘Z’, ‘+’ , . . ., ‘µ’)
to suggest the relation. Will will now be more explicit about this.

We first give a function that transforms SPT codes into SPF
codes, since SPFs have to be indexed by some type, we have no
choice but to index the embedded codes by the unit type:

let n : Nat a : A
vec a n : Vec A n

vec a n ⇐ rec n
vec a 0 ⇒ ε
vec a (1+ n) ⇒ a::(vec a n)

let T : SPT n
embspt T : SPF (vec 1 n) 1

embspt T ⇐ rec T
embspt ‘Z’ ⇒ ‘Z’
embspt (‘wk’ T) ⇒ ‘wk’ (embspt T)
embspt ‘0’ ⇒ ‘0’
embspt ‘1’ ⇒ ‘1’
embspt (S ‘+’ T) ⇒ (embspt S) ‘+’ (embspt T)
embspt (S ‘×’ T) ⇒ (embspt S) ‘×’ (embspt T)
embspt (K ‘→’ T) ⇒ K ‘→’ (embspt T)
embspt (‘µ’ F) ⇒ ‘µ’ (embspt F)

We map this embedding across the telescope:

let
~T : Tel n

embtel ~T : dTel (vec 1 n)

embteln ~T ⇐ rec n
embtel0 ε ⇒ ε

embtel(1+ n) (~T ::T) ⇒ (embtel ~T)::(embspt T)

4 2006/6/14

data
~I : Vec ? n O : ?

SPF ~I O : ?
where

‘Z’ : SPF (~I ::O) O
T : SPF ~I O

‘wk’ T : SPF (~I ::I) O

f : ∀t : Fin n ⇒ SPF ~I O

‘Tag’ f : SPF ~I (O ×Fin n) ‘0’, ‘1’ : SPF ~I O

T : SPF (~I ::O) O

‘µ’ T : SPF ~I O

f : O → O ′ T : SPF ~I O

‘Σ’O f T : SPF ~I O ′
f : O ′ → O T : SPF ~I O

‘∆’O f T : SPF ~I O ′
f : O → O ′ T : SPF ~I O

‘Π’O f T : SPF ~I O ′

data
~I : Vec ? n
dTel ~I : ?

where
ε : dTel ε

~T : dTel ~I T : SPF ~I I
(~T ::T) : dTel(~I ::I)

data T : SPF ~I O ~T : dTel ~I o : O
JT K~T o : ?

where v : JT K~T o

top v : J‘Z’K(~T ::T) o

v : JT K~T o

pop v : J‘wk’ T K(~T ::S) o

v : Jf tK~T o

tagt v : J‘Tag’f K~T (o; t) void : J‘1’K~T o

v : JT K(~T ::(‘µ’ T)) o

in v : J‘µ’ T K~T o

v : JT K~T o

σo v : J‘Σ’f T K~T (f o)

v : JT K~T (f o)

δ v : J‘∆’f T K~T o

~v : ∀o : O p : (f o) = o′ ⇒ JT K~T o

π~v : J‘Π’f T K~T o′

Figure 2. The SPF Universe

Finally we embed elements in the simpler universe as elements
of the embedded code interpreted by the embedding of the tele-
scope:

let x : El ~T T
embel T : Jembspt T K(embtel ~T) ()

embel T ⇐ rec T
embel (top t) ⇒ top (embel t)
embel (pop t) ⇒ top (embel t)
embel void ⇒ void
embel (inl t) ⇒ inl (embel t)
embel (inr t) ⇒ inr (embel t)
embel (pair s t) ⇒ pair (embel s) (embel t)
embel (fun f) ⇒ fun (λk ⇒ embel (f k))
embel (in t) ⇒ in (embel t)

4. Generic Map
To construct the generic map operation is a simple extension of
the SPT map, indeed the morphisms are almost identical we only
generalise to say that the functions must operate at any output index
as we cannot before-hand anticipate which will turn up.

data
~S , ~T : dTel ~I

Morph ~S ~T : ?
where

mId : Morph ~S ~S

φ : Morph ~S ~T f : ∀i : I ⇒ JSK~S i → JT K~T i

mFun φ f : Morph (~S ::S) (~T ::T)

φ : Morph ~S ~T

mMap φ : Morph (~S ::T) (~T ::T)

The function itself is structural except at the variables where we
do exactly as before:

let φ : Morph ~S ~T x : JT K~S o

gMap φ x : JT K~T o

gMap φ x ⇐ rec x
gMap mId (top x) ⇒ top x
gMap (mFun φ f) (top x) ⇒ top (f x)
gMap (mMap φ) (top x) ⇒ top (gMap φ x)
gMap mId (pop x) ⇒ pop x
gMap (mFun φ f) (pop x) ⇒ pop (gMap φ x)
gMap (mMap φ) (pop x) ⇒ pop (gMap φ x)
gMap φ (tag x) ⇒ tag (gMap φ x)
gMap φ void ⇒ void
gMap φ (in x)

⇒ in (gMap (mMap φ) x)
gMap φ (σo x) ⇒ σo (gMap φ x)
gMap φ (δ x) ⇒ δ (gMap φ x)
gMap φ (π ~x)

⇒ π (λo p ⇒ gMap φ (~x o p))

As we mentioned earlier the class of strictly positive types
does not support all of the generic programs we might like to
write in this way. The solution with SPTs is to loose the ‘→’
constructor and we arrive at the regular tee types from our previous
work. We can play a similar trick here, although the source of
the infinities that cause the trouble, ‘Π’, is rather more integral to
the construction (giving us our ‘×’ , for example) so, instead of
removing it, we restrict it’s power to finite domains. We introduce
the regular families (RF), whose construction is identical to the
above except we replace the ‘Π’ rules with:

n : Nat T : RF ~I (O ×Fin n)

‘Π<ω’n T : RF ~I O

~v : ∀i : Fin n ⇒ JT K~T (o; i)

π<ω~v : J‘Π<ω’n T K~T o

5 2006/6/14

This restriction is one that is easy to bear, only the construction
of ‘→’ and ‘Ord’ need the infinite pi in the examples given above
and there is an obvious embedding of the finite into the infinite:

‘Π<ω’n T : RF ~I O 7→ ‘Π’(O × Fin n) fst T : SPF ~I O

π<ω~v : J‘Π<ω’n T K~T o 7→
π(λ(o; i); refl ⇒ ~v i) : J‘Π’(O × Fin n) fst T K ~T o

In the RF universe it is possible to define a generic equality
which is structurally recursive on the data.

let bs : Fin n → Bool
alln bs : Bool

alln bs ⇐ rec n
all0 bs ⇒ true
all(1+ n) bs ⇒ (bs 0)∧(all (bs . 1+))

let T : RF ~I O a : JT K ~T ob b : JT K ~T ob
gEq a b : Bool

gEq a b ⇐ rec a
gEq (top a) (top b) ⇒ gEq a b
gEq (pop a) (pop b) ⇒ gEq a b
gEq (tagta a) (tagtb b) ta==tb

yes (refl t) ⇒ gEq a b
no ⇒ false

gEq void void ⇒ true
gEq (σoa a) (σob b) ⇒ gEq a b
gEq (δ a) (δ b) ⇒ gEq a b

gEq (π<ω~a) (π<ω~b)

⇒ ∧(∀i : Fin n ⇒ gEq ~a ~b)
gEq (in a) (in b) ⇒ gEq a b

Notice that we can decide the equality of values in a purely
syntactic manner, in fact this test equates values at different output
indexes as long as the syntax is the same (so for instance 0 :
Fin n = 0 : Fin (1+ n)). In practice it would be better to restrict
ourselves only to comparing things for equality at the same index.

5. Conclusions and Further Work
We have here closed the gap left open in our previous work [9] and
show how to construct a universe which captures strictly positive
families, i.e. all of Epigram’s datatypes. This includes the universe
itself, since SPF, dTel, J − K are strictly positive families and can
be laboriously encoded as instances of SPF — for reasons of
space, and sanity, we refrain from spelling out the details here. One
may wonder whether such a circular construction is necessarily
paradoxically, as in Girard’s paradox which rules out a type of all
types in a consistent theory. However, closer inspection shows that
this is not the case but that the universe construction raises the level
of the predicative hierarchy of types ?n : ?n+1, which is ignored
in the current implementation of Epigram.

We have only touched the potential of the universe presented
here. E.g. instead of generic simply typed programs like gMap
or gEq we should consider their dependently typed counterparts,
which integrate generic proofs and programs. In the case of generic
map this involves defining the modality � which, in logic (and here,
if we appeal to the Curry-Howard isomorphism), lifts a predicate
P : A → ? over a collection F : A ⇒ ? which holds iff P holds
for every A position in an x : F A. For instance �List:

data P : A → ? as : List A
�List P as : ?

where

ε : �List P A ε
p : P a ps : �List P as

p::ps : �List P (a::as)

Given a dependent function f : ∀x : A ⇒ B a , mapList f
then has the type ∀as : List A ⇒ �ListB as . It turns out that we
can write a function � that calculates a code for this modality for
any SPF, meaning that dependent map is also a generic program.
In the case of generic equality between RFs we can not only give a
function into Bool but give a function that returns the evidence of
equality or inequality between the arguments much as we’ve done
for the regular tree types.

In joint, so far unpublished work with Ghani, Hancock and
McBride [2] we have shown how to extend the notion of container
types [1] to cover strictly positive families, arriving at a semantic
interpretation of our universe which gives an alternative access to
generic programming with and for dependent types.

We plan to implement a reflection principle based on the uni-
verse construction presented here in the forthcoming new release
of Epigram, thus giving the Epigram programmer full access to all
datatypes definable in Epigram.

References
[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers - constructing

strictly positive types. Theoretical Computer Science, 342:3–27,
September 2005. Applied Semantics: Selected Topics.

[2] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris.
Indexed containers. Manuscript, available online, February 2006.

[3] T. Altenkirch, C. McBride, and J. McKinna. Why dependent types
matter. Manuscript, available online, April 2005.

[4] M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs
and proofs in dependent type theory. Nordic Journal of Computing,
10:265–269, 2003.

[5] P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle,
P. Schroeder-Heister, and R. F. Stärk, editors, Proof Theory in
Computer Science, volume 2183 of Lecture Notes in Computer
Science, pages 93–113. Springer, 2001.

[6] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.

[7] C. McBride. Epigram, 2004. http://www.e-pig.org/.

[8] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1), 2004.

[9] P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree
types. In C. P.-M. Jean-Christophe Filliatre and B. Werner, editors,
Types for Proofs and Programs (TYPES 2004), Lecture Notes in
Computer Science, 2006.

[10] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf’s Type Theory: an introduction. Oxford University Press, 1990.

6 2006/6/14

