A Finitary Subsystem of the Polymorphic
A-calculus

Thorsten Altenkirch! and Thierry Coquand?

! txa@cs.nott.ac.uk

School of Computer Science and Information Technology
University of Nottingham, UK
2 coquand@cs.chalmers.se
Department of Computing Science
Chalmers University of Technology, Sweden

Abstract. We give a finitary normalisation proof for the restriction of
system F' where we quantify only over first-order type. As an applica-
tion, the functions representable in this fragment are exactly the ones
provably total in Peano Arithmetic. This is inspired by the reduction of
IT{-comprehension to inductive definitions presented in [Buch2] and this
complements a result of [Leiv]. The argument uses a finitary model of a
fragment of the system AF> considered in [Kriv,Leiv].

1 The polymorphic A-calculus

We let D be the set of all untyped, maybe open, A-terms, with S-conversion as
equality. We let ¢,, be the lambda term AzAf f™ z. We consider the following
types

T == ao|T->T|Ta)T
where in the quantification, 7' has to be built using only a and — . We use
T,U,V to denote over types.

We use the notation Ty — Ty — T3 for T} — (Ty — T3) and similarly
TN >To— ... T, for Ty =» (T = (... > T))-

Let us give some examples to illustrate the restriction on quantification. We
can have T' = (ITa)[a — a] or (ITa)[a = (@ = &) — o] or even (ITa)[((a —
a) = a) — a] but a type such as (ITa)[[(II8)[a — B]] = o] is not allowed.

We have the following typing rules

- :Tel
Trz.T “°°€
x:THt:U I'ru:V—-T TI'kto:V
I'tXet:T—>U I'ruwv:T
'tt:(ITa)T I'+t:T

T'Ft:T(U) T'Ft: ()T

where I is a type context, i.e. an assignment of types to a finite set of variables,
and in the last rule, @ does not appear free in any type of I'. We write T'(U) for

a substitution where the variable which is substituted for is obvious form the
context.

We let N be the type (ITa)[a = (@ = a) — a]. We have F ¢, : N for each
n. The goal of this note is to provide a finitary proof of the following result.

Theorem 1. IfFt: N — N then for each n there exists m such thatt c, x f =
f™ x for x, f variables.

This result can be seen as a special case of the normalisation property. We
concentrate on this simplified case to illustrate the principle of our argument.
From a proof theoretical view point this special case is as hard as the normali-
sation property.

This result follows from [Leiv] if in the formation of (ITa)T we restrict T' to
be of rank < 2. We extend this to cover types such as

(Ho)[((a = @) = a) = q]

One non finitary proof of this result is the following. Each type is interpreted
by a subset of D. We define [T], C D where p is a function assigning subsets of
D to type variables.

[T ->U],={veD|(Vte[T],) vte[U],}

[e], = pla)

[(Ha)T]] = ﬂ [[T]]p,a:X

XCD

We prove then, by induction on derivations

Lemma 1. If 21 : Th,...,2n : T bt : T and u; € [T3] then t(uq,...,uy) € [T]
Corollary 1. If-t¢: N thent € [N]

Lemma 2. If u € [N] then there exists m such that u z f = f™ z for z, f
variables.

Proof. Consider the subset S = {t| (Im) t = f™ x}. Wehavexz € Sand fte€ S
if t € S. Hence the result.

We can now prove the theorem. If ¢ : N — N we have then -t ¢, : N
because F ¢, : N. But this implies, by the two lemmas that there exist m such
that ¢t ¢, x f = f™ z. Let us write m = ¢(n). We say then that the function ¢
is represented by the term ¢.

2 Second-Order Functional Arithmetic

The proof above is not finitary, because of the use of intersection over all subsets,
which requires, a priori, IT}-comprehension.

In some cases however, we can replace IT}-comprehension by arithmetical
comprehension. For instance, if T is @ = (o = a) — « then we have

ﬂ [Tla=x ={t€D | (En)NVu,veD)tuv=v"u}
XCD

Indeed, if ¢ belongs to all [T],=x then we can take z,y variables not free in
t and take X to be the set of all terms of the form y™ x. We have thent z y € X
and hence t ¢ y = y™ x for some n. Since z, y does not occur free in ¢ this implies
t uv=v"ufor all u,v € D. Conversely if we have t u v = v™ w for all u,v € D
then it is direct to check that we have t € [T],=x for all X C D.

More generally if T is of rank < 2 then we can directly define [(ITa)T] by
using arithmetical comprehension only. But this does not seem to extend simply
to the general case.

To analyze the proof in general, we first translate it in the language of second-
order logic over D. We introduce the following logic AFs2: we have two sorts,
subsets and terms. We use X,Y,... for variables over subsets and z,y,... for
variables over terms. The terms are elements of D. The formulae are

Ax=teX|A->A| (Vo)A | (VX)A

In forming (VX)A, the formula A should be a first-order formula having at most
X as a subset variable.

A model of AF, consists in an implicative algebra (H,—,A,1)! and a valu-
ation function [A], € H where v assigns a function D — H to each predicate
variable. We write as usual (v, X = f) for the update of v. The valuation function
should be such that [(Vz)A], is the greatest lower bound of all [A(d)], for d € D
and [(VX)A], is the greatest lower bound of all [A], x—y) for f € D — H. No-
tice, that we don’t require H to be complete. Furthermore, we should have

|[A1 — A2]]u = |[A1]]u s |[A2]]u
and
[t € X], = v(X)(t).

To each type T we can associate a formula Cr(z) with one term variable
z, by taking Cp = z € X,, Cr—v = (V)[Cr(y) = Cu(z y)] and Cgayr =
(VX4)Cr(z). To each context I' = xy : Ty,...,x, : T, we associate the set of
formulae Cr = Cr, (%1),...,Cr, (x,) and we have

Lemma 3. If I' b t : T then Aaccr[A] < [Cr(t)] in any model of AFs. In
particular if -t : T we have [Cr(t)] = 1.

Next we are going to build a model of AF; in a finitary way.

! That is (H, A, 1) is a meet semilattice and we have t Ay < z iff 2 <y — 2.

3 A Finitary Model

We consider now only first-order formulae
Aux=teX|A->A| (Vo)A

We define a first-order logic AF; on these formulae. We let L, M, . .. denote finite
sets of formulae, and we write L, M for LU M and L, A for LU {A}. We have
the rules

Ira “#eb
LbFA LA FA LA - A,
IFA Ah=Ael) —0
LA+ A L+ A
Ira (wdiel) oag

In the last rule, z should not occur free in L.

We write L < M iff L+ A for all A in M. It can be proved in a finitary way
that this defines a poset, which we call Sy. We use this poset to give a finitary
Kripke model of AFs,.

The subsets are interpreted as functions D — Down(Sp) where Down(Sp) is
the set of downward closed subsets of Sy. If A is a first-order formula we let [A]
be {L € Sy | L+ A}, and if L is a finite set of formulae A4, ..., A, we let [L] be
[A1]N...N[A4,]. If X is a variable we let Fx : D — Down(Sp) be the function
Fx(t) = [X t]. An assignment v associates functions D — Down(Sp) to subset
variables. To any first order formula A we assign [A], € Down(S):

[t € Xl =v(X)®) [(V2)A], = Nuep[A(w)].
[A1 = As], ={L € So | (YM € [A1],)L, M € [A2].}
We let [A1,...,A,] to be [A1] N...N[4,].
Lemma 4. If L+ A in AFy we have [L], C [4]..
Proof. Since AF; is intuitionistic, its derivations are valid in any Kripke model.

Lemma 5. If A is a first-order formula then [A], = [4] if v(X) = Fx for X
free in A. Also, [L], =[L] if v(X) = Fx for X free in L.

Proof. By induction on A. This follows from the equalities
[A1 — A2] = {L € Sy | (VM S [Al])L,M S [Ag]}
and [(Va) 4] = Nuen[A(w))-

Lemma 6. If A is a first-order formula with at most X as a subset variable
then
ﬂ [A]]X:F S DOWII(S())

FeD—Down(So)

can be finitary described as the set of all L € Sy such that L+ A(Z) for Z not
free in L.

Proof. If L + A(Z) for Z not free in L then we have [L], C [A(Z)], for any
interpretation by lemma 4. If we take v(Z) = F and v(Y) = Fy for Y # Z we
get [L] = [L] and hence [L] C [A(Z)]z=F so that L € [A]x=r for all F.

Conversely, if L € [A]x=r for all F, then in particular L € [A]x=r, and so
L e [A(Z)]thatis L+ A(Z) for Z not freein L, since [A]x=r, = [A(Z)]z=r, =
[A(Z)] by lemma 5.

By finitary, we mean here that the functions we consider in D — Down(Sp)
if looked as relations on D x Sy, are only formed by using arithmetical compre-
hension.

Using lemma 6 we can build in a finitary way a model of AFs by taking
H = Down(Sp) and

1=5), XAY=XNY, Xo5Y={LeS |MecX L MeY}

By lemma 3 we have that, if - « : U then 1 = [Cy(u)]. In particular, if
Ft:N — N then 1=[Cn(tc,)], and so 1 = F(t ¢, = f) if we have 1 = F(z)
and F'(u) C F(f u) for all u. In particular we can take

Fu)= |J{LeSo|u=f"a}

meN

and we have 1 = F(t ¢, x f) which implies ¢t ¢, z f = f™ z for some m.

4 An Application

We work now in SASy: second order arithmetic with arithmetical comprehension.
It is known that this system is conservative over Peano Arithmetic [Troe]. It is
possible to represent D and the poset Sy in SASy. The argument above however
cannot be formalised as it is in SASy because of the lemma 4 which requires the
definition of semantics of formulae.

We consider a fixed derivation of a typing judgement of the form k¢ : N — N.
In this derivation occurs only a finite set of quantified types T1,...,T, and we
consider the set SF of subformulae of Cr, (t1),-..,Cr, (t,). We let then S; be
the subposet of Sy which consists only of finite sets of such subformulae.

Given any poset defined in SASy we can define [A], for A € SF in SAS,,
see [Troe], p. 37.

Lemma 7. If M + A with A € SF, M C SF then [M], C [A]. and this is
provable in SAS,.

We consider then the model H = Down(S;) and
1=5;, XAY=XnY, X>Y={LeS |MeX—>LMeY}

for all X, Y C D.

Corollary 2. If A is a first-order formula in SF with at most X as a subset
variable then
() [Alx=r € H
FeD—H
can be finitary described as the set of all L € Sy such that L+ A(Z) for Z not
free in L, and this is provable in SASy.

Theorem 2. If ¢ is represented by a term then ¢ is provably total in Peano
Arithmetic.

Proof. Suppose that ¢ is represented by a term ¢. We have a derivation of F ¢ :
N — N. The previous results allow us to transform this derivation to a proof in
SAS that [Cn](t ¢pn) holds for all n.

It follows from [Glad] that we can represent all functions provably total in
Peano Arithmetic, using only the quantified type N = (IIa)[a = (o = a) = a].
Indeed, [Glad] shows that we can program the predecessor function, and indeed
all primitive recursive functions, using only iteration. If follows from this that
all functions of Goédel’s system T' can be programmed using only iteration. A
more direct way of seeing this is that in Gédel’s system 7', it is possible to encode
pairing of integers using the type N -+ N — N, and it is standard how to reduce
primitive recursion to iteration and pairing.

Theorem 3. The set of representable functions is exactly the set of functions
provably total in Peano Arithmetic.

5 Discussion and further work

In an email to the second author, W. Buchholz suggests a simplification of the
construction here, which avoids the detour through the logic AF,. He also sug-
gests to show a more general result, i.e. that every term typable in the fragment
described here f-reduces to a normal form. Although we agree that his proof is
very elegant, we believe that our presentation explains better how the standard
infinitary construction can be turned into a finitary one in this special case. We
hope to expand on the connections between the two approaches in further work.

We are also interested to extend the construction presented here to full I}
comprehension. This would amount to showing a normalisation result for the
fragment of System F where all II-types are closed using only iterated inductive
definitions. For instance, the introduction of a type such as

(Ta)la = (N = a) = a) = q]

will correspond to the use of a generalised inductive definition and the normali-
sation will require 1D;. We hope that this work sheds some light on the question
at which point a predicative? normalisation proof of System F breaks down.

2 In the sense of Martin-Léf’s Type Theory.

Acknowledgments

We would like to thank W. Buchholz for his comments on this paper and for
suggesting an alternative construction. We would also like to point out that this
paper has been inspired by [Buchl,Buch?2] and to thank the anonymous referees
for helpful comments on the paper.

References

[Buchl] W. Buchholz. The wyyi-rule. In Iterated Inductive Definitions and Subsys-
tems of Analysis: Recent Proof-Theoretical Studies, volume 897 of Lecture Notes in
Mathematics, pages 188-233. 1981.

[Buch2] W. Buchholz and K. Schiitte. Proof theory of impredicative subsystems of
analysis. Studies in Proof Theory. Monographs, 2. Bibliopolis, Naples, 1988.

[Glad] M.D. Gladstone. A reduction of the recursion scheme. J. Symbolic Logic 32
1967 505-508.

[Kriv] J.L. Krivine. Lambda-calcul. Types et modéles. Masson, Paris, 1990.

[Leiv] D. Leivant. Peano’s Lambda Calculus: The Functional Abstraction Implicit in
Arithmetic to be published in the Church Memorial Volume.

[Troe] A. Troelstra. Metamathematical Investigations of Intuitionistic Arithmetic and
Analysis. Lecture Notes in Mathematics 344, 1973.

