
Small Induction Recursion

P. Hancock⇤, C. McBride⇤, N. Ghani⇤, L. Malatesta⇤, T. Altenkirch†

†University of Nottingham ⇤University of Strathclyde

Abstract. There are several di↵erent approaches to the theory of data types.
At the simplest level, polynomials and containers give a theory of data types as
free standing entities. At a second level of complexity, dependent polynomials
and indexed containers handle more sophisticated data types in which the data
have an associated indices which can be used to store important computational
information. The crucial and salient feature of dependent polynomials and in-
dexed containers is that the index types are defined in advance of the data. At
the most sophisticated level, induction-recursion allows us to define data and
indices simultaneously.

This work investigates the relationship between the theory of small inductive
recursive definitions and the theory of dependent polynomials and indexed
containers. Our central result is that the expressiveness of small inductive
recursive definitions is exactly the same as that of dependent polynomials and
indexed containers. A second contribution of this paper is the definition of
morphisms of small inductive recursive definitions. This allows us to extend our
main result to an equivalence between the category of small inductive recursive
definitions and the category of dependent polynomials/indexed containers. We
comment on both the theoretical and practical ramifications of this result.

1 Introduction

One of the most important concepts in computer science is the notion of an inductive
definition. It is di�cult to trace back its origin since this concept permeates the history
of proof theory and a large part of theoretical computer science In recent years, the
desire to explore, understand, and extend the concept of an inductive definition has
led di↵erent researchers to di↵erent but (extensionally) equivalent notions. The theory
of containers [1], and polynomial functors [18,12] are some of the outcomes of this
research These theories give a comprehensive account of those data types such as Nat
(the natural numbers), List a (lists containing data of a given type a), and Tree a

(trees containing, once more, data of a given type a) which are free-standing in that
their definition does not require the definition of other inter-related data types.

These theories are too simple to capture more sophisticated data types possessing
features such as: (i) variable binding as in the untyped and typed lambda calculus;
(ii) constraints as in red black trees; and (iii) extra information about data having
such types - e.g. vectors which record the lengths of lists. Therefore containers and
polynomials have been generalised to indexed containers [2] and dependent polynomials
[12,13] to capture not only free standing data types such as those mentioned above, but
also data types where the data are indexed by an index storing computationally relevant

information. Containers and (non-dependent) polynomials arise as specific instances of
these generalised notions where the type of indices is chosen to be a singleton type.

However, even dependent polynomials and indexed containers fail to cover all data types
of interest as they require the indices to be defined before the data. Induction-recursion
(IR), developed in the seminal works of Peter Dybjer and Anton Setzer [9,10,11], remedies
this deficiency. The key feature of an inductive-recursive definition is the simultaneous
inductive definition of a small type X of indices together with the recursive definition
of a function T : X ! D from X into a type D which may be large or small. Since X
and T can be defined at the same time, the indices need not be defined in advance of
the data. As we shall see later, universes (introduced by Martin-Löf in the early 70’s
[17]) are paradigm examples of inductive recursive definitions.

It is natural to ask what is the relationship between dependent polynomials and induction
recursion. Can we characterise those inductive-recursive definitions which correspond to
dependent polynomials? This paper makes the following concrete contributions: i) we
show that dependent polynomial and indexed containers correspond exactly to small
inductive-recursive definitions, where “smallness” refers to the size of the target-type
D; ii) we define morphisms of small inductive recursive definitions and use this notion
to show that the resulting category of small inductive-recursive definitions is equivalent
to the category of dependent polynomials and indexed containers; and iii) we extend
these results to cover small small indexed induction recursion.

These results have theoretical and practical importance. At the theoretical level, while
it has been conjectured that the power of induction recursion lies in the case where D
is large, no formal proof exists before this paper. Further, we contribute to the theory
of induction recursion by giving a notion of morphism between inductive recursive defi-
nitions in the same way that containers, indexed containers and dependent polynomials
have morphisms. Finally, dependent polynomials and indexed containers have a rich
algebraic structure so our work shows that structure can be transported to Small IR -
see the conclusion for details. Note that this structure is defined by universal properties
and hence its transportation would not be possible without the work in Section 5 on
morphisms. At a practical level, while systems such as Agda accept induction recursion,
some systems, eg Coq, do not. This work gives a simple way to add small induction
recursion to Coq by showing how to translate such definitions into indexed containers.
It also allows programmers to convert definitions between the two forms, according
to which works better for their own applications. To achieve this, and to make the
paper more accessible and non-hermetic, and to type check our translations, we have
implemented our translations in Agda and provide lots of Agda examples.

The paper is organised as follows: in Section 2 we set our notation, while Section 3
recalls indexed containers, dependent polynomials and induction recursion. In Section 4,
we show an equivalence between data types definable by small IR and those data types
definable using dependent polynomials and/or indexed containers. In Section 5 we
introduce the category of small inductive-recursive definitions and show it equivalent
to the category of dependent polynomials/indexed containers. In Section 6 we briefly
recall the theory of indexed inductive-recursive definitions, and extend the previous
equivalence to the case of indexed small induction recursion. We conclude in Section 7.

The sources and additional materials for this paper are available from http://personal.

cis.strath.ac.uk/

~

conor/pub/SmallIR.

http://personal.cis.strath.ac.uk/~conor/pub/SmallIR
http://personal.cis.strath.ac.uk/~conor/pub/SmallIR

2 Preliminaries and internal languages

We follow the standard approach of using extensional Martin-Löf type theory as the
internal language to formalise reasoning with the locally cartesian closed structure of
the category of sets — see [19,14] for details 1. Our notation follows Agda — indeed,
this paper is a literate Agda development. We write identity types as x ⌘ y and assume
uniqueness of identity proofs. We write ⌃T or (s :S)⇥T s and ⇧T or (s :S)! T s for
the dependent sum and dependent product in Martin-Löf type theory of T : S ! Set.
The elements of (s :S)⇥T s are pairs (s, t) where s : S and t : T s may be projected
by ⇡0 and ⇡1. The elements of (s :S)! T s are functions � x ! t x mapping each
element s : S to an element t s of T s.

Categorically, we think of an I -indexed type as a morphism f : X ! I with codomain
I . These are objects of the slice category Set/I . Morphisms in Set/I from object
f : X ! I to object f 0 : X 0 ! I are given by functions h : X ! X 0 such that
f = f 0 � h. Type theoretically, we can represent matters in more or less the same
way – that is, an object in a slice Set/I is a pair (X , f) of a set X (the domain), and a
function f : X ! I . However, another possibility is to model an I -indexed type by
a function F : I ! Set where F i represents the fibre of f above i , i.e. as (X , f)�1 i ,
defined as follows.

·�1 : Set/I ! (I ! Set)
(X , f)�1 i = (x :X)⇥ f x ⌘ i

9. : (I ! Set) ! Set/I
9.F = (⌃F ,⇡0)

We write 9.F for the inverse of this operator: that these are inverse (given uniqueness
of identity proofs) is at the heart of the well known equivalence between the categories
Set/I and I ! Set which, in a sense, underlies the equivalences we describe in this
paper.

Given a function k : I ! J , we can form three very important functors. The pullback
along k of an object f : X ! J of Set/J defines a reindexing functor �k : Set/J !
Set/I . �k has both a left adjoint and a right adjoint, respectively ⌃k,⇧k : Set/I !
Set/J . In the internal language, we define these for ·! Set, as follows:

�k : (J ! Set) ! (I ! Set)
�k F i = F (k i)

⌃k : (I ! Set) ! (J ! Set)
⌃k F j = (i :I)⇥ k i ⌘ j ⇥ F i
⇧k : (I ! Set) ! (J ! Set)
⇧k F j = (i :I)! k i ⌘ j ! F i

3 Three theories of data types

The foundation of our understanding of data types is initial algebra semantics. Thus,
formally our theories of data types are in fact theories of functors which have initial
algebras. In this section we recall the notions of dependent polynomials, indexed
containers and induction recursion, each of which define certain classes of functors and
hence data types.

1 The correspondence between lcccs and Martin Löf type theories is a↵ected by coherence
problems related to the interpretation of substitution. We refer to [7], [14] and more recently
[5] for di↵erent solutions to these problems.

Definition 1. The collection of dependent polynomials with input indices I and output
indices O is written Poly I O and consists of triples (r, t, q) where I r P !t S !q O.
A dependent polynomial functor is any functor isomorphic to some J(r , t , q)K

Poly

=
⌃q �⇧t ��r : Set/I ! Set/O, illustrated as follows:

Set/I Set/P Set/S Set/O .
�r ⇧t ⌃q

While the definition above is concise, some readers may prefer a more concrete pre-
sentation. So we turn to the representation of dependent polynomials in the internal
language. This leads us to the notion of an indexed container.

Definition 2. Indexed containers with input indices I and output indices O is written
IC I O and consists of triples (S, P, n) where S : O ! Set, P : (o :O)! S o ! Set

and n : (o :O)! (s :S o)! P o s ! I . Its extension is the functor

J·K
IC

: IC I O ! (I ! Set) ! (O ! Set)
J(S ,P ,n)K

IC

X o = (s :S o)⇥ (p :P o s)! X (n o s p)

Every dependent polynomial functor (r , t , q) gives rise to an indexed container (Ŝ, P̂ , n).

Ŝ o = (S , q)�1 o

P̂ o (s,) = (P , t)�1 s
n o (s,) (p,) = r p

We may readily check that

J(Ŝ, P̂ ,n)K
IC

F o = (sq : ((S , q)�1 o))⇥ (pq : ((P , t)�1 (⇡0 sq)))! F (r (⇡0 pq))
⇠= (s :S)⇥ (q s ⌘ o) ⇥ (p :P)! (t s ⌘ p) ! F (r p)

= (⌃q � ⇧t � �r) F o

confirming the equivalence between indexed containers and dependent polynomials.

Polynomials (resp. containers) arise as a special case of dependent polynomials (indexed
containers) by choosing I = O = 1. Notice the salient feature of both dependent
polynomials and indexed containers — that the input and output indices I and O are
fixed and must be defined in advance. This restriction means that neither dependent
polynomials nor indexed containers su�ce to define all the data types in which we
are interested. Paradigmatic undefinable data types are universes of types. These are
pairs (U, T) consisting of a set U , thought as a set of names or codes, and of a function
T : U ! Set, thought as a “decoding function” which assigns a set T u to every element
u of U . For example, consider a universe containing the type of natural numbers N and
closed under ⌃-types. Such a universe will be the least solution of the

U = 1 + (u :U)⇥ T u ! U
T (inl ?) = N
T (inr (u, f)) = (x :T u)⇥ T (f x)

Note how, in this example, the set of codes U must be defined simultaneously with the
decoding function T - something not possible with dependent polynomials or indexed
containers which require that U be defined before T . Dybjer and Setzer developed
the theory of induction recursion to cover exactly such inductive definitions where

the indices and the data must be defined simultaneously. The first presentation of
induction-recursion [8] was as an external schema. In later presentations, inductive
recursive definitions are given via a type of codes IR I O . 2

Definition 3. Let I,O be types. The type of IR I O-codes has the following constructors

data IR (I O : Set) : Set1 where

◆ : (o : O) ! IR I O
� : (S : Set) (K : S ! IR I O) ! IR I O
� : (P : Set) (K : (P ! I) ! IR I O) ! IR I O

In general I and O may be large types such as Set or Set ! Set etc. Above, we encode
small induction recursion (small IR) we mean the cases where I and O are sets.

Dybjer and Setzer prove that every IR code defines a functor. In the case of small
IR, this functorial semantics can be given in terms of slice categories. Before giving
this semantics, we note that slice categories have set indexed coproducts. That is,
given a set A, and an A-indexed collection of objects fa : Xa ! I of Set/I , the
cotuple [fa]a:A :

`
a:A Xa ! I is the coproduct of the objects fa in Set/I . We use

ina : Xa !
`

a:A Xa for the a-th injection. In the internal language, the coproduct of
an A-indexed family Xa : I ! Set is the function mapping i to (a :A)⇥Xa i . We use
these coproducts to give a definition of the functor denoted by an IR code more compact
than - but of course equivalent to - that originally provided by Dybjer and Setzer.

Definition 4. Let I,O be sets, � : IR I O. The action of the functor J�K : Set/I !
Set/O on an object f : X ! I of Set/I is defined by recursion on � as follows

– if � = ◆ o for some o : O

J◆ oK (f : X ! I) = (� .o) : 1! O

– if � = � S K for some S : Set, K : S ! IR I O

J� S K K (f : X ! I) =
`

s:S JK sK f

– if � = � P K for some P : Set, K : (P ! I) ! IR I O

J� P K K (f : X ! I) =
`

x:A!X JK(f � x)K f

An IR functor is any functor isomorphic to one of the form J�K for some � : IR I O.

We can give the above construction in type theory, using the direct translation of slices,
closed under dependent sum, yielding an interpretation in the style of Dybjer and
Setzer:

J·K
DS

: IR I O ! Set/I ! Set/O
J◆ oK

DS

(X , f) = (1,� ! o)

2 Dybjer and Setzer treated only the case where I and O are the same. Our mild generalization
allows the construction of partial fixed points.

J� S K K
DS

(X , f) = (s :S)⇥ JK sK
DS

(X , f)
J� P K K

DS

(X , f) = (x :P ! X)⇥ JK (f � x)K
DS

(X , f)

For any � : IR I I , we can construct of an inductive datatype simultaneously with its
recursive decoder as the initial algebra, ((µ �, decode �), in), of J�K

DS

.

data µ (� : IR I I) : Set where

in : dom (J�K
DS

(µ �, decode �)) ! µ �

decode : (� : IR I I) ! µ � ! I
decode � (in t) = fun (J�K

DS

(µ �, decode �)) t

As an example, we show that all containers can be defined by induction recursion:

Example 1 (containers and W-types). Given a simple container (S, P), where S : Set

and P : S ! Set, we can represent it by an IR 1 1 code as follows:

cont : (S : Set) ! (P : S ! Set) ! IR 1 1

cont S P = (� S � s ! � (P s) � p ! ◆ ?)

We note that dom Jcont S PK
DS

(X ,) = (s : S) ⇥ (P s ! X) ⇥ 1 and that
µ (cont S P) thus amounts to Martin-Löf’s well-ordering type W S P . As a corollary of
our main result we shall see that IR 1 1 codes describe exactly the category of containers
and their morphisms.

Example 2 (A Language of Sums and Products). If Fin : N ! Set maps n to a set
with n elements, we can implement finitary summation and product with types:

sum prod : (n :N)! (Fin n ! N) ! N

Next we can encode a datatype of numerical expressions closed under constants, sums
and products, where each expression decodes to its numerical value — we need to know
these values to compute the correct domains for the sums and the products.

data Tag : Set where fin

0
sum

0
prod

0 : Tag

lang : IR N N
lang = � Tag � {fin0 ! � N � n ! ◆ n

; sum0 ! � 1 � n ! � (Fin (n ?)) � f ! ◆ (sum (n ?) f)
; prod0 ! � 1 � n ! � (Fin (n ?)) � f ! ◆ (prod (n ?) f)}

example : µ lang

example = in (sum0, (� ! in (fin0, 5 , ?)), (� n ! in (fin0,n, ?)), ?)

The example expression denotes
P

n<5 n, and indeed, decode lang example = 10 .

Having introduced dependent polynomials, indexed containers and small induction
recursion, we can now turn to the main focus of the paper, namely showing that they
define the same class of functors and hence define the same class of data types. The
key to the construction is observing that we may just as well interpret IR I O with our
I ! Set presentation of slices.

J·K
IR

: IR I O ! (I ! Set) ! (O ! Set)
J◆ o0K

IR

F o = o0 ⌘ o
J� S K K

IR

F o = (s :S)⇥ (JK sK
IR

F o)
J� P K K

IR

F o = (if :P ! ⌃F)⇥ (JK (⇡0 � if)K
IR

F o)

The correspondence up to trivial isomorphism between J·K
IR

and J·K
DS

is readily observed
by considering F here to be an arbitrary (X , f)�1.

4 From Poly to Small IR and back

We divide this section into two: (i) we first show how to translate dependent polynomials,
and hence indexed containers, into IR codes; and (ii) we then show how every small
IR code can be translated into a dependent polynomial. Crucially, we show that these
translations preserve the functorial semantics of dependent polynomials and IR codes.

From Poly to Small IR: We have already seen (example 1) that the extension of
a container is an IR functor. We now extend this result to indexed containers and
dependent polynomials.

Lemma 1. Every dependent polynomial functor is an IR functor.

It is enough to show that, for every dependent polynomial (r, t, q) : Poly I O , there is an
IR I O-code, whose interpretation is isomorphic to the dependent polynomial functor
J(r, t, q)K

Poly

. Our candidate for this IR-code is given and interpreted as follows

J� S � s ! � ((P , t)�1 s) � i ! � (i ⌘ r � ⇡0) � ! ◆ (q s)K
IR

F o =
(s :S)⇥ (if : ((P , t)�1 s ! ⌃F))⇥ (⇡0 � if ⌘ r � ⇡0) ⇥ (q s ⌘ o)

which is readily seen to be isomorphic to ⌃q (⇧t (�r F)) o

(s :S)⇥ (q s ⌘ o) ⇥ (p :P)! (t p ⌘ s) ! F (r p)

as the former e↵ectively constrains the function if to choose r p as the index of its F ,
for each position (p,) : (P , t)�1 s.

From Small IR to Poly: The essence of our embedding of IR I O into Poly I O consists
of showing how three constructors for IR I O-codes can be interpreted in Poly I O .

Definition 5. To each code � : IR I O we use structural recursion on � to define a
dependent polynomial I t� P� !r� S� !q� O:

– if � is ◆ o, then we define S � = 1, P � = 0, r � =!I , t � =!1, and q � ? = o. As a
diagram, this is as follows. I ! 0!! 1!o O:

– if � is � S K then the diagram is as follows.

I
`

s:S P (K s)
`

s:S S (K s) O
`

s:S t (K s)[r (K s)]s:S [q (K s)]s:S

Here (and in the next clause) we use
`

s:S m s to abbreviate the cotuple [ins �m s]s:S.
– if � is � P K, the diagram is as follows.

`
i:P!I (P ⇥ S (K i)) + P (K i)

`
i:P!I S (K i)

I O

`
i:P!I [⇡0, t (K i)]

[[i � ⇡0, r (K i)]]i:P!I [q (K i)]i:P!I

Note that in the last clause, it is crucial that we are dealing with small IR so that I
is a set, hence P ! I is a set and hence the coproducts used are also small.

We can now state the result concerning the second half of our isomorphism.

Lemma 2. Every small IR functor is a dependent polynomial functor.

To prove the lemma we define a function � : IR I O ! Poly I O by recursion on the
structure of IR codes and then we prove by induction that the functorial semantics is
preserved. Details of the proof can be found in the online Appendix.

5 Equivalence between Small IR and Poly

We now extend our previous results to cover not just functors but also natural transfor-
mations. We will do this by (i) recalling the notion of morphism between dependent
polynomials/indexed containers; (ii) introducing morphisms of IR codes, showing that
the interpretation function, J K

IR

: IR I O ! [Set/I , Set/O] can be extended to a
functor which is full and faithful; and (iii) finally we prove the equivalence between the
two resulting categories IR I O and Poly I O . Note that our definition of morphisms for
IR codes also covers the cases where I and O are large.

The categories Poly I O and IC I O: Dependent polynomials/indexed containers
with fixed input and output index sets, I and O , form a category. In this section
we recall the definition of the morphisms between dependent polynomials and their
interpretation as natural transformations. We conclude by stating some properties of
the categories of dependent polynomials/indexed containers which allows us to recast
in elementary terms the dependent polynomials introduced in definition 5.

Definition 6. A morphism between dependent polynomials (r, t, q) and (r0, t0, q0) is
given by a diagram of the form (where the bottom square is a pullback of u and t0).

P S

I P 0 ⇥S0 S S O

P 0 S0

t

r q

t0

r0 q0

w

v

idS

u

h

From now on, Poly I O will indicate the category of dependent polynomials with fixed
input and output index sets I , O and their morphisms. In a similar manner we can
define morphism between indexed containers.

Definition 7. A morphism between (S ,P ,n) and (S 0,P 0,n 0) consists of

– a function u : (o : O) ! S o ! S 0 o;
– a function f : (o : O) ! S o ! P 0 o (u o s) ! P o s;

such that for every o : O, s : S o and p0 : P o (u o s) we have n o s (f o s p0) =
n 0 o (u o s) p0.

We will indicate with IC I O the category of indexed containers and their morphisms.
The main result concerning these morphisms is the following (Theorem 2.12 in [13]).
We state the result for dependent polynomials but clearly an analogue result holds also
for indexed containers.

Theorem 1 ([13] Theorem 2.12). Given dependent polynomials (r, t, q) and (r0, t0, q0),
every natural transformation J(r, t, q)K ! J(r0, t0, q0)K is represented in an essentially
unique way by a commuting diagram as in definition 6.

This theorem ensures that the assignment to each dependent polynomial of its extension
is a functor, and moreover this functor is full and faithful. In the following we indicate
with PolyFun I O the full subcategory of [Set/I , Set/O] whose objects are dependent
polynomial functors and whose morphisms are natural transformation between them3.

Corollary 1 (Representation). For any pair of sets I,O the functor

J K : Poly I O ! PolyFun(I ,O)

is an equivalence of categories.

Dependent polynomials and indexed containers have several interesting closure proper-
ties. Here we only need closure under set-indexed coproducts and binary product. Note
that we had to define morphisms before introducing these closure properties to ensure
that they have the required categorical universal properties. The sum of a K-indexed
family of dependent polynomials {Qk = (rk, tk, qk) | k : K}, for an arbitrary set K, is
the dependent polynomial

`
k:K Qk given by the following diagram

I
`

k:K Pk
`

k:K Sk O
[rk]k:K

`
k:K tk [qk]k:K

where
`

k:K tk = [ink � tk]k:K . Note that the dependent polynomial associated to
� S K : IR I O is of exactly this form. The product of two dependent polynomial (r, t, q)
and (r0, t0, q0) is the evident dependent polynomial

I (P 0 ⇥O S) + (P ⇥O S0) S ⇥O S0 O.

3 The original result for polynomial functors (Theorem 2.12 in [13]) is stated in terms of strong
natural transformations. We can avoid mention of strength since natural transformations
between functors on slices of Set are automatically strong.

We can now describe the dependent polynomial associated to a code � P K : IR I O
as the sum of products of a family of dependent polynomials. We start with a family
of dependent polynomials {(r (K i), t (K i), q (K i) | i : P ! I }. For each element of
this family we take the product of it with the dependent polynomial

I P ⇥O O O
i � ⇡0 ⇡1 idO

and then we take the sum of these products over the set P ! I .

The category of Small IR codes: We know how to define small IR codes and interpret
them as functors between slices of Set. In this section we introduce morphisms between
small IR I O-codes. Our definition will ensure that every such morphism gives rise to
a natural transformation between the corresponding IR functors – and vice versa. We
start this section developing the appropriate categorical description of the semantics
of IR constructors. The constructor ◆ simply represents constant functors while the
constructor � takes coproducts of functors. The following lemma tells us more about
the semantics of �.

Lemma 3. Given an object k : X ! I , there is a natural isomorphism

J� P K K k ⇠=
`

i:P!I Hom
Set/I (i, k)⌦ JK iK

IR

k

Here ⌦ indicates the tensor product. Given a set X and i : Y ! I , the object X ⌦ i
is nothing but the copower

`
x:X i, i.e the X-fold coproduct of the object i.

Proof. We have a natural isomorphism

J� P K K k =
`

x:P!XJK(k � x)K
IR

k
⇠=

`
i:P!I

`
x:P!X(i ⌘ k � x)⌦ JK iK

IR

k.

Then observe that
`

x:P!X(i ⌘ k � x) ⇠= Hom
Set/I (i, k).

Thanks to this lemma, we are able to characterise the semantics of �-codes through a
well-known universal construction in category theory: the left Kan extension.

If i : X ! I is an object in Set/I we use (+ i), in the following lemma, to indicate
the functor

(+i) : Set/I �! Set/I
k 7�! [i, k].

Theorem 2. There is a natural isomorphism

J� P F K ⇠=
`

i:P!I Lan(+i)JF iK

Our definition of IR I O-morphisms is based on this isomorphism. First, we recall the
universal property characterising the left Kan extension LanGF : B! C of a functor
F : A! C along G : A! B; for every functor H : B! C there is a bijection

Nat(LanGF,H) ⇠= Nat(F,H �G)

natural in H. We also need to check that IR I O-functors are closed by precomposition
with functors of the form (+i). Fortunately, this can be easily checked by structural
induction on codes. We just state the result.

Lemma 4. Given � : IR I O, and a function i : P ! I there exists �i : IR I O-code
such that

J�K
IR

� (+i) = J�iK
IR

We can now define IR morphisms by structural induction on codes as follows.

Definition 8. Let �, �0 : IR I O we define the homset IR(�, �0) as follows.

Morphisms from ◆-codes:

1A. IR(◆ o, ◆ o0) = o ⌘ o0

1B. IR(◆ o,� S K) =
`

s:S IR(◆ o,K s)
1C. IR(◆ o, � P K) =

`
e:P!; IR(◆ o,K (! � g))

Morphisms from �-codes:

2. IR(� S K , �) =
Q

s:S IR(K s, �)

Morphisms from �-codes:

3. IR(� P K , �) =
Q

i:P!I IR(K i , �i)

The following theorem shows we have the right notion of morphism for IR codes.

Theorem 3. The interpretation J K
IR

of IR I O-codes can be extended to morphisms:
we can associate to each IR I O-morphism f : � ! �0 a natural transformation
JfK

IR

: J�K
IR

! J�0K
IR

. Moreover the following assignment is full and faithful.

J K
IR

: IR I O ! [Set/I , Set/O]

The theorem is proved by induction on the structure of IR morphisms. Full and faithful-
ness allows us to reflect functor composition to the composition of small IR codes and
hence we have the following important result.

Corollary 2. IR I O-codes and their morphisms define a category.

An equivalence: In the previous sections we have seen how to represent IR I O-codes
as dependent polynomials in Poly I O and vice versa. To sum up:

– We saw how to define a function : Poly I O ! IR I O such that J K
IC

⇠= J K
IR

�
– We saw how to define a function � : IR I O ! Poly I O such that J K

IR

⇠= J K
IC

� �.

We sum up these results in the following corollary.

Corollary 3. For every � : IR I O and, for every (r, t, q) : Poly I O

1) J � � (�)K
IR

⇠= J�K
IR

,
2) J� � (r, t, q)K

Poly

⇠= J(r, t, q)K
Poly

These isomorphisms deal just with objects of the two categories IR I O and Poly I O .
But what can we say about morphisms? As we show in the next theorem the equivalence
of these two categories is an immediate consequence of the previous results combined
with full and faithfulness of the respective interpretation functions:

Theorem 4. The two categories IR I O and Poly I O are equivalent.

It is immediate to show full and faithfulness of � (or, equivalently of):

IR I O(�, �0) ⇠= Nat(J�K
IR

, J�0K
IR

) (corollary 2)
⇠= Nat(J�(�)K

Poly

, J�(�0)K
Poly

) (lemma 2)
⇠= Poly I O(�(�),�(�0)) (corollary 1)

Now, since we have already showed that each dependent polynomial, (r, t, q) is isomorphic
to �(�) for some � : IR I O (namely � = (r, t, q)), this is enough to conclude the stated
equivalence (see theorem 1, par. 4, ch. IV in [16]). Here is a commutative diagram which
represents the statement of theorem 4:

IR I O Poly I O

[Set/I , Set/O]

�

J K

IR

J K
Poly

6 Small indexed Induction Recursion

The theory of induction recursion has been extended by Dybjer and Setzer in [11] in order
to capture more sophisticated inductive-recursive definitions. As indexed container and
dependent polynomials generalise polynomials and containers respectively, the theory of
indexed induction-recursion (IIR) generalises the theory inductive-recursive definitions
in order to capture, not only ordinary inductive-recursive definition, but also families
of inductive-recursive definitions which admit extra indexing. IR then appears as the
fragment of IIR given by those definitions indexed over a singleton.

We will briefly recall the axiomatic presentation of IIR which closely follows that of IR.
We then show how the theory of small indexed inductive-recursive definitions (small IIR)
can be reduced to small IR. This simple fact will automatically transfer the results of the
previous sections to small IIR, allowing to conclude a generalisation of the equivalence
stated in theorem 4. We now give the coding for small IIR.

data IIR (D : I ! Set) (E : J ! Set) : Set1 where

◆ : (je : ⌃E) ! IIR D E
� : (S : Set) (K : S ! IIR D E) ! IIR D E
� : (P : Set) (i : P ! I) (K : ((p : P) ! D (i p)) ! IIR D E) ! IIR D E

Note that � carries an extra argument i , selecting the index for each position in P . One
way to interpret these codes is by translation to the codes for IR ⌃D ⌃E , as follows:

b·c : IIR D E ! IR ⌃D ⌃E
b◆ jec = ◆ je

b� S K c = � S � s ! bK sc
b� P i K c = � P � iD ! � (i ⌘ (⇡0 � iD)) � q ! bK (⇡1 � iD)c

In the � case, the generated IR code yields a ⌃D for each position in P , so we constrain
its first component to coincide with the index required by the i in the IIR code. Given
this embedding, we can endow small IIR with the categorical machinery developed for
small IR. We therefore can straightforwardly define a category of IIR D E -codes and
their morphisms. Theorem 4 in Section 5 immediately give us the following corollary.
Corollary 4. The category IIR D E and the category Poly ⌃D ⌃E are equivalent.
We can also follow Dybjer and Setzer by giving a direct interpretation of an IIR code as
a functor between families of slice categories.

J·K
IIR

: IIR D E ! ((i : I) ! Set/(D i)) ! ((j : J) ! Set/(E j))
J◆ (j 0, e)K

IIR

G j = ((j 0 ⌘ j),� q ! · q e)
J� S K K

IIR

G j = (s :S)⇥ (JK sK
IIR

G j)
J� P i K K

IIR

G j = (ig : (p : P) ! dom (G (i p)))⇥ (JK (� p ! fun (G (i p)) (ig p))K
IIR

G j)

We note that keeping I and D small ensures the following:

(i : I) ! Set/(D i) ⇠= (i : I) ! D i ! Set

⇠= ⌃D ! Set

⇠= Set/⌃D

Consider G i = (9.(F � (i ,))) for some F : ⌃D ! Set to see that J�K
IIR

G
corresponds to Jb�cK

IR

F , up to bureaucratic isomorphism.

Once again, we construct simultaneously an indexed family of data types µ � i and
their decoders decode i as the initial algebra for J�K

IIR

.

µd : (� : IIR D D) ! (i : I) ! Set/(D i)
µd � i = (µ � i , decode � i)
data µ (� : IIR D D) (i : I) : Set where

in : dom (J�K
IIR

(µd �) i) ! µ � i
decode : (� : IIR D D) ! (i : I) ! µ � i ! D i
decode � i (in t) = fun (J�K

IIR

(µd �) i) t

The corresponding fixpoint of Jb�cK
IR

gives the inductive family indexed by pairs in ⌃D .

Example 3. The Bove-Capretta method, applied to call-by-value computation Bove
and Capretta [4] make use of indexed induction-recursion to model the domains of
partial function. A partial function d : (i : I) * D i has a domain given a code
� : IIR D D . If h : µ � i gives evidence that the domain is inhabited at argument i ,
then decode � i h is sure to compute the result.

Let us take a concrete example. One might define a type of �-terms and seek to give a
call-by-value evaluator for them, as follows.

data Tm : Set where

var : N ! Tm

app : Tm ! Tm ! Tm

lam : Tm ! Tm

cbv : Tm * Tm

cbv (var x) = var x
cbv (lam t) = lam t
cbv (app f s) with cbv f
... | lam t = cbv (subst0 (cbv s) t)
... | f 0 = app f (cbv s)

where, say, we adopt a de Bruijn indexing convention and define subst0 s t to substitute

s for variable 0 in t . Of course, cbv is not everywhere defined. When it is defined? It
is hard to define the domain inductively, because the app f s case will require that
subst0 (cbv s) t is in the domain whenever f is in the domain and evaluates to lam t .
We need to define the domain simultaneously with evaluation — a job for IR.

It will prove convenient to define the special case of � when P = 1.

�
1

: (i : I) ! (K : D i ! IIR D E) ! IIR D E
�
1

i K = � 1 (� ! i) � d ! K (d ?)

In the code for a domain predicate, a recursive call at i gives rise to a �
1

i K code,
where K explains how to carry on if the call returns. Let us give the domain of cbv.

cbvD : IIR {Tm} {Tm} (� ! Tm) (� ! Tm)
cbvD = � Tm �
{(var x) ! ◆ (var x , var x)
; (lam t) ! ◆ (lam t , lam t)
; (app f s) ! �

1

f � {(lam t) ! �
1

s � s 0 ! �
1

(subst0 s 0 t) � t 0 ! ◆ (app f s, t 0)
; f 0 ! �

1

s � s 0 ! ◆ (app f s, app f 0 s 0)
} }

Note the way the application case makes key use of the delivered values in subsequent
recursive calls, and in every case, the final ◆ delivers an input-output pair. The type
µ cbvD t thus contains the evidence that cbv t terminates without presupposing a
particular value — decoding that evidence will yield t ’s value. The equivalence we have
demonstrated in this paper ensures that the corresponding inductive family indexed
over Tm ⇥ Tm is exactly the big-step evaluation relation for cbv.

7 Conclusion and further work

Despite its evident potential, the theory of induction recursion has not become as widely
understood and used as it should be. In this paper we seek to broaden appreciation of
their work by comparing it with better-known theories of data types based on dependent
polynomials, and more practically with indexed containers. In the case of small IR, these
three analyses coincide. We can now pick up the fruits of our central result (theorem 4).

Initial Algebras. When interpreting codes in IR I I we get endofunctors on Set/I .
Theorem 4 ensures that initial algebras for these functors always exist, since they are
initial algebras for dependent polynomial endofunctors. Altenkirch and Morris have [2]
given parametrized initial algebras of indexed containers of type IC (I + O) O : as a
result of this work, the same construction carries over into IR (I + O) O functors. We
also now know that functors definable by Small IR also have final coalgebras - these are
just the final coalgebras for dependent polynomial functors/indexed containers. They
have recently investigated by Capretta with the name of Wander types.

Closure properties. The axiomatization of small IR and its semantics provides a new
(but equivalent) grammar to work with the categories Poly and IC. It is known that
these categories have very rich closure properties such as sums, products, composition,
as well as linear and di↵erential structure. Clearly we can transport these properties
along the equivalence of theorem 4.

Compositions. A di�cult open question in the theory of induction-recursion is whether
the Dybjer-Setzer functors are closed under composition: given codes � : IR I J and

�0 : IR J O is it always possible to find a code ⇠ in IR I O such that J�0K � J�K ⇠= J⇠K ?
Theorem 4 ensures that we can transport composition in Poly or IC to obtain closure
under composition of small IR functors.

Further work. We have proved that Poly I O , IC I O and IR I O are equivalent
categories which define the same class of functors. It is easy to generalize this result to
a biequivalence of bicategories. Since it is possible to define reindexing of IR codes and
IR functors, in future work we would like to explore this extra-structure of small IR and
compare it with the double category of Poly. Abstracting from the category of sets we
also aim to investigate to which extent this result applies to arbitrary LCCCs.

References

1. Abbott M., Altenkirch T., Ghani N. Containers. Constructing Strictly Positive Types. Vol.
342, pp 3-27, TCS, 2005.

2. Altenkirch T., Morris P. Indexed containers, Procs. of the 24th Annual IEEE Symposium
on Logic in Computer Science (LICS 2009), IEEE Computer Society, 2009.

3. Aczel P. An introduction to inductive definition in J. Barwise editor, Handbook of mathe-
matical logic pages 739-782, North-Holland, Amsterdam, 1977.

4. Bove, A., Capretta, V. Nested General Recursion and Partiality in Type Theory. In Procs.
TPHOLs 2001, Springer LNCS 2152, pages 121-135, 2001.

5. Clairambault P., Dybjer P. The Biequivalence of Locally Cartesian Closed Category and
Martin Löf Type Theories, arXiv:1112.3456v1 [cs.LO] 15 Dec 2011.

6. Coquand T., Dybjer P. Inductive Definitions and Type Theory an Introduction in Procs.
FSTTCS 1994, LNCS 880, pages 60-76, 1994.

7. Curien P.-L. Substitution up to isomorphism, Fundamenta Informaticae, vol. 19, issue 1-2,
pages 51-86, 1993

8. Dybjer P., A general formulation of simultaneous inductive-recursive definitions in type
theory, Journal of Symbolic Logic, vol. 65, Nr. 2, pages 525-549, 2000.

9. Dybjer P., Setzer A. A Finite Axiomatization of Inductive Recursive Definitions in Procs.
TLCA 1999, LNCS 1581, pages 129-146, 1999.

10. Dybjer P., Setzer A. Induction-recursion and initial algebras, Annales of Pure and Applied
Logic, vol. 124, pages 1-47, 2003.

11. Dybjer P., Setzer A. Indexed Induction-Recursion, Journal of Logic and Algebraic Pro-
gramming, vol. 66, issue 1, pages 1-49, January 2006.

12. Gambino N., Hyland M. Wellfounded trees and dependent polynomial functors in Procs.
Types for proofs and programs 2004, LNCS 3085, pages 210-225, 2004.

13. Gambino N., Kock J. Polynomial functors and polynomial monads arXiv:0906.4931v2
[math.CT] 6 Mar 2010;

14. Hofmann M., On the interpretation of type theory in locally cartesian closed categories, in
Computer Science Logic ’94, LNCS 933, pages 427-441, Springer, 1995.

15. Kock J. Notes on Polynomial functors available at http://www.mat.uab.es/
~

kock/cat/

polynomial.html;
16. Mac Lane S. Categories for the working mathematician, Second Edition, Springer-Verlag,

New York, Berlin, Heidelberg, 1998;
17. Martin-Löf P. An intuitionistic theory of types: Predicative part. In Logic Colloquium ’73,

pages 73-118, North-Holland, Amsterdam, 1973
18. Moerdijk I., Palmgren E. Wellfounded trees in categories Annals of pure and Applied

Logic, vol. 104, pages 189-218, 2000.
19. Seely R. A. G. Locally cartesian closed categories and type theory, Math. Proc. Cambridge

Philos. Soc., issue 95, pages 33-48, 1984.

http://www.mat.uab.es/~kock/cat/polynomial.html
http://www.mat.uab.es/~kock/cat/polynomial.html

A Proofs of section 4

An Agda proof of lemma 1. There are still some glitches in the type-setting. A more
traditional handwave proof follows, that may be more digestable.

thecode : {O S P I : Set} !
(q : S ! O) ! (t : P ! S) ! (r : P ! I) ! IR I O

thecode {O } {S } {P } {I } q t r = � S (� s !
let Ps = (P , t)�1 s in

� Ps (� i !
� ((a : Ps) ! i a ⌘ r (⇡0 a)) (� !
◆ (q s))))

iso : (I : Set) ! (O : Set) ! Set

iso I O = (f :I ! O)⇥ (g :O ! I)⇥ ((i :I)! g (f i) ⌘ i) ⇥ ((o :O)! f (g o) ⌘ o)

transport : {I : Set} ! {F : I ! Set} ! {i i 0 : I } ! F i ! i ⌘ i 0 ! F i 0

transport fi refl = fi

postulate ext : forall {S : Set} {T : S ! Set} (f g : (x : S) ! T x) !
((x : S) ! f x ⌘ g x) ! f ⌘ g

dpright : forall {S : Set} {T : S ! Set} {s : S } {t t 0 : T s } ! t ⌘ t 0 !
== {(s :S)⇥ T s } (s, t) (s, t 0)

dpright refl = refl

PIrr : Set ! Set

PIrr X = forall (x y : X) ! x ⌘ y

uip : forall {X } {x y : X } ! PIrr (x ⌘ y)
uip refl refl = refl

SgPIrr : forall {S T } ! PIrr S ! ((s : S) ! PIrr (T s)) ! PIrr ((· :S)⇥ ·)
SgPIrr si ti (s, t) (s 0, t 0) with si s s 0

SgPIrr si ti (s, t) (.s, t 0) | refl with ti s t t 0

SgPIrr si ti (s, t) (.s, .t) | refl | refl = refl

PiPIrr : forall {S T } ! ((s : S) ! PIrr (T s)) ! PIrr ((· :S)! ·)
PiPIrr ti f g = ext f g (� x ! ti x (f x) (g x))

pi1Irr : forall {S T } ! ((s : S) ! PIrr (T s)) ! {s s 0 : S } ! (s ⌘ s 0) !
{t : T s } {t 0 : T s 0} ! == {(· :S)⇥ ·} (s, t) (s 0, t 0)

pi1Irr ti refl = dpright (ti)

transl : forall {S T s } {x : (· : ·)⇥ · S T } (q : ⇡0 x ⌘ s) !
(s, transport {F = T } (⇡1 x) q) ⌘ x

transl refl = refl

theclaim : {O S P I : Set} !
(q : S ! O) ! (t : P ! S) ! (r : P ! I) !
(F : I ! Set) ! (o : O) !
let lhs = Jthecode q t rK

IR

F o
rhs = ⌃q (⇧t (�r F)) o

in iso lhs rhs
theclaim {O } {S } {P } {I } q t r
F o = let l2r : Jthecode q t rK

IR

F o ! ⌃q (⇧t (�r F)) o
l2r x = let s : S

s = ⇡0 x
Ps : Set

Ps = (P , t)�1 s
thing = ⇡1 x
if : Ps ! (i :I)⇥ F i
if = ⇡0 thing
fun0 : Ps ! I
fun0 x = ⇡0 (if x)
fun1 : (pe :Ps)! F (fun0 pe)
fun1 x = ⇡1 (if x)
otherthing : ((pe : Ps) ! fun0 pe ⌘ r (⇡0 pe)) ⇥ (q s ⌘ o)
otherthing = ⇡1 thing
ue : (pe : Ps) ! fun0 pe ⌘ r (⇡0 pe)
ue = ⇡0 otherthing
secondbit : q s ⌘ o
secondbit = ⇡1 otherthing
thirdbit : (p : P) ! t p ⌘ s ! F (r p)
thirdbit p etps = let pe = (p, etps)

in transport {I } {F } -- {fun0 pe } {r p}
(fun1 pe) (ue pe)

in (s, (secondbit , thirdbit))
r2l : ⌃q (⇧t (�r F)) o ! Jthecode q t rK

IR

F o
r2l y = let s : S

s = ⇡0 y
thing : (q s ⌘ o) ⇥ ((p : P) ! t p ⌘ s ! F (r p))
thing = ⇡1 y
qs : q s ⌘ o
qs = ⇡0 thing
tofrp : (p : P) ! t p ⌘ s ! F (r p)
tofrp = ⇡1 thing
Ps = (P , t)�1 s
pif : Ps ! ((i :I)⇥ F i)
pif pe = (r (⇡0 pe), tofrp (⇡0 pe) (⇡1 pe))
paf : (pe : Ps) ! ⇡0 (pif pe) ⌘ r (⇡0 pe)
paf = refl

in (s, (pif , (paf , qs)))
in l2r , (r2l , ((� {(s, (pif , (paf , qs))) !
dpright (pi1Irr (� ! SgPIrr (PiPIrr (� ! uip)) (� ! uip))
(ext (� x ! transl (paf x))))}),

(� ! refl)))

Proof (Proof of Lemma 1). We will show that a dependent polynomial (r, t, q): Poly I O ,
has the same functorial semantics as the IR-code

� S � s !
let Ps = (P , t)�1 s in

� Ps � i !

� ((a : Ps) ! i a ⌘ r (⇡0 a)) � !
◆ (q s)

We use the definitions of Ŝ, P̂ and n in section 3 to convert the dependent polynomial
(r, t, q) into its representation as an indexed container (Ŝ, P̂ , n) in the internal language.
So Ŝ : O ! Set, P̂ : (o : O) ! Ŝ o ! Set and n : (o : O) ! Ŝ o ! P̂ o s ! I .

We can now prove that the interpretation of (a slight variant of!) this code corresponds
to the extension of the indexed container. So, given F : I ! Set

J� O � o ! � (Ŝ o) � s ! � (P̂ o s) � i ! � (i ⌘ n o s) � ! ◆ oKIR F o0

=
X

o : O.
X

s : Ŝ o. J� (P̂ o s) � i ! � (i ⌘ n o s) � ! ◆ oKIR F o0

=
X

o : O.
X

s : Ŝ o.
X

i : P̂ o s! I. (
Y

p : P̂ o s. F (i p))⇥ J� (i ⌘ n o s) � ! ◆ oKIR F o0

=
X

o : O.
X

s : Ŝ o.
X

i : P̂ o s! I. (
Y

p : P̂ o s. F (i p))⇥ (i ⌘ n o s)⇥ o ⌘ o0

=
X

s : Ŝ o0.
X

i : P̂ o0 s! I. (
Y

p : P̂ o0 s. F (i p))⇥ (i ⌘ n o0 s)

=
X

s : Ŝ o0.
Y

p : P̂ o0 s. F (n o0 s p)

The last line is exactly JŜ, P̂ , nK
IC

F o0. Thus the dependent polynomial (r, t, q) and the
IR code given above have equivalent functorial semantics in the internal language. They
thus have the same functorial semantics.

Proof (Proof of Lemma 2). We prove the lemma by constructing a function � : IR I O !
Poly I O by structural recursion on its argument. We will then prove that for every
� : IR I O

J�KIR = J�(�)K
Poly

. (1)

Let � : IR I O we define �(�) as follow:

1. if � is ◆ o for some o : O then

�(�) = (r◆ o , t◆ o , q◆ o)

2. if � is � S K for some S : Set, f : S ! IR I O then

�(�) = (r� S h , t� S h , q� S h)

where h = � �K : S ! Poly I O
3. if � is � P K for some P : Set, K : (P ! I) ! IR I O then

�(�) = (r� P H , t� P H , q� P H)

where H = � �K : (P ! I) ! Poly I O .

We can now prove that (1) holds. As before we will use the internal language and we
will associate to k : X ! I in Set/I the Set-valued function F = (X , k)�1 : I ! Set.
Moreover, for every dependent polynomial (r� , t� , q�) representing an IR code we define
by recursion on the structure of the code its representation as an indexed container
(Ŝ� , P̂ � , n�).

1. if � is ◆ o : IR I O (r◆ o , t◆ o , q◆ o) the corresponding indexed container (Ŝ◆ o , P̂ ◆ o , n◆ o)
we can compute the fibre at o0 : O of J�(◆ o)K

Poly

k as follows

J�(◆ o)K
IC

F o0

= J(Ŝ◆ o , P̂ ◆ o , n◆ o)K
IC

F o0

=
X

s : Ŝ◆ o o0.
Y

p : P̂ ◆ o s. F (n◆ oo0 s p)

=
X

m : (o0 ⌘ o).
Y

p : ;. F (n◆ oo0 s p)

⇠= (o0 ⌘ o)

= J◆ oKIR F o0

2. if � is � S K : IR I O we can compute the fibre at o : O of J�(� S K)K
Poly

k as
follows

J�(� S K)K
IC

F o

= J(Ŝ� S K , P̂� S K , n� S K)K
IC

F o

=
X

s0 : Ŝ� S K o.
Y

p0 : P̂� S K o s0. F (n� S K o s0 p0)

=
X

s : S.
X

s0 : ŜK s o.
Y

p0 : P̂K s o s0. F (nK so s0 p0)

⇠=
X

s : S. J(ŜK s , P̂K s , nK s)K
IC

F o

=
X

s : S. J�(K s)K
IC

F o (inductive hypothesis)

=
X

s : S.JK sKIR F o

= J� S K KIR F o

3. if � is � P K : IR I O we can compute the fibre at o : O of J�(� P K)K
Poly

k as
follows

J�(� P K)K
IC

F o

= J(Ŝ� P K , P̂ � P K , n� P K)K
IC

F, o

=
X

s0 : Ŝ� P K o.
Y

p0 : P̂ � P K o s0. F (n� P K o s0 p0)

=
X

i : P ! I.
X

s0 : ŜK i o.
Y

p : (P + P̂K i o s0). F [i, (nK i o s0)] p0

(universal property of coproduct)

⇠=
X

i : P ! I.
X

s0 : ŜK i o. (
Y

p : P. F (i p))⇥ (
Y

p0 : P̂K i s. F (nK i o s0 p0))

⇠=
X

i : P ! I. (
Y

p : P. F (i p))⇥ (
X

s0 : ŜK i o.
Y

p0 : P̂K i s0. F (nH g o s0 p0))

=
X

i : P ! I. (
Y

p : P. F (i p))⇥ J(ŜK i , P̂K i , nK i)K
IC

F o (definition of H)

=
X

i : P ! I.(
Y

p : P. F (i p))⇥ J�(K i)K
IC

F o (inductive hypothesis)

=
X

i : P ! I. (
Y

p : P. F (i p))⇥ JK iKIR F o

= J� P K KIR F o

B Proofs of Section 5

Proof (Proof of Theorem 2).

J�AF KIR (k : X ! I)

(lemma 3)

⇠=
a

g:A!I

JF gK k ⌦HomSet/I(g, k)

(every functor is its own left Kan extension along the identity functor)

⇠=
a

g:A!I

✓
LanIdSet/I

JF gK
◆
⌦HomSet/I(g, k)

(compute Lan with coend and tensor product)

⇠=
a

g:A!I

✓Z l:Set/I

JF gK l ⌦HomSet/I(l, k)

◆
⌦HomSet/I(g, k)

(tensor distributes over colimits)

⇠=
a

g:A!I

Z l:Set/I ✓
JF gK l ⌦HomSet/I(l, k)⌦HomSet/I(g, k)

◆

(tensor between sets is product)

⇠=
a

g:A!I

Z l:Set/I ✓
JF gK l ⌦HomSet/I(l, k)⇥HomSet/I(g, k)

◆

(universal property of coproduct)

⇠=
a

g:A!I

Z l:Set/I ✓
JF gK l ⌦HomSet/I(g + l, k)

◆

(definition of (+g))

⇠=
a

g:A!I

Z l:Set/I ✓
JF gK l ⌦HomSet/I((+g) l, k)

◆

definition of Lan with coend and tensor product

⇠=
a

g:A!I

✓
Lan(+g)JF gK

◆
k

Proof (Proof of Theorem 3). We first prove by induction on the structure of IR mor-
phisms that the assignment of natural transformations to IR morphisms is injective and
surjective. This enable us to define a category of IR I O-codes.

1.A Since J◆ oK is the constant functor with value � .o : 1! O, a natural transformation

⌘ : J◆ oK ·! J◆ o0K consists of a morphism in Set/O

1 1

O

id1

o o0

Such a morphism exists if and only if o ⌘ o0

1.B Given g : k ! k0 in Set/I , a naturality square for ⌘ : J◆ oK ·! J�AfK is a commuting
diagram in Set/O of the form

`
a:AJfaKk

� .o

`
a:AJfaKk0

⌘k

⌘k0

J�AfKg

Now observe that every component ⌘k is uniquely determined by ⌘k = J�AfK!k � ⌘!
where ! : ; ! I is the initial object in Set/I and !k :!! k is the unique morphism
from the initial object into k. Therefore ⌘! define for some a : A, a morphism
⌘a! : J◆ oK! ! JfaK!. This morphism gives, for all k : Set/I , a morphism ⌘ak :
J◆ oKk ! JfaKk, natural in k, defined by ⌘ak = JfaK!k � ⌘a! , and therefore a natural

transformation ⌘a : J◆ oK ·! JfaK.
1.C Given two objects k : X ! I, k0 : Y ! I in Set/I and a morphism g : k ! k0

(k = k0 � g), a naturality square for ⌘ : J◆ oK ·! J�AF K is a commuting diagram in
Set/O of the form

`
g:A!XJF (k � g)Kk

� .o

`
f :A!Y JF (k0 � f)Kk0

⌘k

⌘k0

J�AfKg

Reasoning as above we have, for every k in Set/I , ⌘k = J�AF K!k � ⌘!. Therefore ⌘!
define a morphism ⌘g! : J◆ oK!! JF (! � g)K! for some g : A! ;. For every k in Set/I

we define the component at k of ⌘g : J◆ oK ·! JF (! � g)K to be JF (! � g)K!k � ⌘g! .

2.

Nat(J�AfKJ�K)

= Nat(
a

a:A

Jf(a)K, J�K)

⇠=
Y

a:A

Nat(Jf(a)K, J�K) (inductive hypothesis)

⇠=
Y

a:A

IR(f(a), �)

⇠= IR(�Af, �)

3.

Nat(J�AF KJ�K)
⇠= Nat(

a

g:A!I

Lan+gJF gK, J�K)

⇠=
Y

g:A!I

Nat(JF gK, J�K � (+g))

⇠=
Y

g:A!I

Nat(JF gK, J�gK) (inductive hypothesis)

⇠=
Y

g:A!I

IR(F g, �g)

= IR(�AF, �)

Proof (Proof of Corollary 2). Theorem 3 already established a full and faithful assign-
ment of natural transformation to IR morphisms. This guarantees that we can define
identity and composition, making IR I O a category.

	Small Induction Recursion
	P. Hancock*, C. McBride*, N. Ghani*, L. Malatesta*, T. Altenkirch
	Bibliography

