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Abstract

We describe a complete formalization of a strong normalization proof
for the Curry style presentation of System F in LEGO. The underlying type
theory is the Calculus of Constructions enriched by inductive types. The
proof follows Girard et al [GLT89], i.e. we use the notion of candidates of
reducibility, but we make essential use of general inductive types to simplify
the presentation. We discuss extensions and variations of the proof: the
extraction of a normalization function, the use of saturated sets instead of
candidates, and the extension to a Church Style presentation. We conclude
with some general observations about Computer Aided Formal Reasoning.

1 Introduction

I am going to describe a complete formalization of a strong normalization proof
for System F in LEGO [LLP92]. The proof! uses the tactics provided by the LEGO
system. However, in the end we can extract a typed A-term which represents
the proof. The proof is complete, i.e. there are no non-logical axioms used.?
This implies in particular that the proof is intuitionistic. As a consequence of
this we can extract a normalization function together with its verification from
the proof.

Normalization proofs are quite a fashionable subject for formal proofs. Ste-
fano Berardi worked on a strong normalization proof for System F in the Pure
Constructions also using LEGO [Ber91]. Catarina Coquand [Coq92a] did a nor-
malization proof for simply typed A calculus using ALF [Mag92].

When doing this research I have been supported by a STEMENS studentship. This research
was also partially supported by the ESPRIT BRA on Logical Frameworks and a SERC grant.
This is a revision of the LFCS report ECS-LF(S-92-230 “Brewing Strong Normalization
Proofs with LEGO”.
1The complete proof text can be obtained by anonymous ftp from ftp.dcs.ed.uk or by
email request. The directory is pub/alti; the file is snorm.tar.Z.
2To show the fourth Peano axiom Ve an+1 # 0 and its variants we need large eliminations.
They have been investigated by Benjamin Werner recently [Wer92].



One reason why strong normalization proofs are interesting candidates for
formalization is that they are fairly intricate and that they require a complete
formalization and understanding of the calculus involved. Another reason is that
everybody who works in the area of Type Theory or formal proofs knows them
and studies them anyway.

2 Using LEGO

LEGO is a proof development system based on Type Theory which has been
implemented by Randy Pollack. A good introduction to the use of LEGO can
be found in [Hof92], where LEGO is used for program verification.

2.1 The Type Theory

The standard Type Theory used in LEGO is the Extended Calculus of Construc-
tions (ECC) [Luo90]. However, here we do not exploit the extensions introduced
by Luo: universes and strong X-types — we only require one predicative universe
over the Pure Calculus of Constructions. We also diverge from Luo’s proposal
to use the predicative universes (Type) for computations, instead using the im-
predicative universe Prop for both: logic and computations . This is expressed
by the definition Set=Prop. This means that philosophically we follow Martin-
Lof’s 1dentification of propositions and types but we differ in that we accept
impredicative quantification.

Many formal proofs in the Calculus of Constructions use the so called im-
predicative encodings of inductive types (e.g. see [Alt90]). These encodings have
a number of disadvantages, in particular we have to assume an induction axiom
to prove anything about them. This induction axiom is not interpreted compu-
tationally and destroys the computational interpretation of propositions because
we now have non-canonical elements in every type. To overcome this problem
we introduce inductive types explicitly and introduce elimination constants a la
Martin-Lof together with typed reduction rules (e.g. [NPS90]). Our approach
to inductive types is similar to the one chosen in Coq [D191] and is based on

[CP8Y].

2.2 The Logic

The basic logical connectives (/\,\/,not and Ex) are defined using an impred-
icative encoding. However, instead of Leibniz Equality we define propositional
equality EQ as an inductive type in the same way as in Martin-Lof Type Theory.

Theoretically, it would have been better to use inductive types for all logical
connectives, because they come with stronger elimination rules and it seems a bit
of a waste to introduce impredicativity just to encode basic logical connectives.
However, the current Refine tactic of LEGO is tuned for the impredicative
encodings.



Usual notation | LEGO notation | Remarks
\p: A M [x:A1M or If [x|AIM is used the argument is in-
U [x|AIM ferred when the function is applied.

{x:A}B or {x|A}B is used for the typing of

Hz:AB
{x|A}M [x|A]M.

MN MN or M|N is used to supply an implicit ar-
MIN gument.

Figure 1: Syntax of terms in LEGO

2.3 Inductive types

So far inductive types have not been implemented in the LEGO system but we
can use typed rewriting rules to realize them. In the proof I use my own syntax
for mu types and definitions by primitive recursion which is put as a comment
into the proof. This is then expanded into LEGO code — T will explain this by
a simple example:

mu[Nat:Set] (zero:Nat,succ:Nat->Nat)

is the type of natural numbers. We translate this into LEGO by introducing the
type and the constructor as constants. We also add an elimination constant:

$[RecNat : {P:Nat->Type}
(P zero)->({n:Nat}(P n)->(P (succ n)))
-> {n:Nat}P nl;

We declare typed rewriting rules which correspond to primitive recursion on
natural numbers. These definitions extend LEGOQO’s definitional equality and
we can perform computations with them. They also have the effect that no
non-canonical elements are introduced because every occurrence of RecNat is
eventually eliminated.

If we want to define a function over natural numbers, we declare it first in
an ML-like fashion:

add : Nat->Nat->Nat
rec add zero n = n
| add (succ m) n = succ (add m n)

which can be (mechanically) translated into the following LEGO code using the
recursor (here we use a derived non-dependent recursor RecNatN? to simplify the

typing):
[RecNatN[C|Type]l = RecNat ([_:Nat]C)];

3We adopt the convention that RN stands for the non-dependent version of recursor R.



[add = RecNatN ([n:Natln)
([m:Nat] [add_m:Nat—->Nat] [n:Nat]lsucc (add_m n))];

We can only define functions by primitive recursion in this way, but note that
we get more than the usual primitive recursive functions because we have higher
order functions.

It is interesting to consider inductive types with dependent constructors like
the type of vectors:

[A:Setlmul[Vec:Nat->Set] (v_nil:Vec zero,
v_cons:A->{n|Nat}(Vec n)->(Vec succ n))

or the family of finite sets:

mu[Fin:Nat->Set] (f_zero:{n:Nat}Fin (succ n),
f_succ:{n|Nat}(Fin n)->(Fin (succ n)))

Vectors resemble lists but differ in that the length of the sequence is part of its
type. Therefore we have Vec: Set->Nat->Set in contrast to List : Set->Set,
i.e. Vec A 3% is the type of sequences of type A of length 3. Finite sets are a
representation of subsets of natural numbers less than a certain number, i.e. Fin
n corresponds to {i | i < n}.

When we defined the elimination constant for Nat we allowed eliminations
over an arbitrary universe — we call these large eliminations. We can use them
to prove the fourth Peano axiom as in Martin-Lof Type Theory with universes.
However, it is interesting to observe that there is a purely computational use of
large eliminations: we can apply them to realize the following run-time-error-free
lookup function for vectors:®

v_nth : {n|Nat}(Fin n)->(Vec 4 n)->A

rec v_nth|(succ n) (f_zero n) (v_cons a _) = a
| v_nth|(succ n) (f_succ i) (v_cons 1) = v_nthln i 1

Using these error-free functions not only simplifies the verification of functions
using vectors; it also allows, in principle a more efficient compilation of code
involving dependent types.©

Another use of dependent inductive types is the definition of predicates as
the initial semantics of a set of Horn clauses. An example is the definition of the
predicate < (LE) for natural numbers:

mu[LE:Nat->Nat->Set] (
1le0:{n:Nat}LE zero n,
lel:{m,n|Nat}(LE m n)->(LE (succ m) (succ n)))

4The official LEGO syntax for this is Vec A (succ (succ (succ zero))).

5l.e. vnth (f_succ (f_zero 3)) : (Vec A 5)->A extracts the second element out of a
sequence of five.

8The idea to use dependent types to avoid run-time-errors was first proposed by Healfdene
Goguen to me.



3 A guided tour through the formal proof

In the following I am going to explain the formalized proof. For more detailed
information it may be worthwhile to obtain the complete LEGO code.

3.1 The untyped A-calculus

We define untyped A-terms (Tm) using de Bruijn indices [dB72] as the following
inductive type:

mu[Tm:Set] (var : Nat->Tm,
app : Tm—>Tm->Tm,
lam : Tm->Tm)

We define the operations weakening weak : Nat->Tm->Tm’ (introduction of
dummy variables) and substitution subst : Nat->Tm->Tm->Tm by primitive re-
cursion over the structure of terms.

The first parameter indicates the number of bound variables — weak0 and
substO are defined as abbreviations, i.e. substO0 M N substitutes the free vari-
able with index 0 in M by N.8

In the course of the proof we need a number of facts about weakening and
substitution. An example is the following proposition stating that under certain
conditions we can interchange substitution and weakening:

{1’,1:Nat}{M,N:Tm}(LE 1’ 1)
->(EQ (subst (succ 1) (weak 1’ M) N) (weak 1’ (subst 1 M N)))

Stating and proving this sort of lemma takes up a lot of time when doing the for-
malization whereas in the informal proof one would just appeal to some intuition
about substitution and bound variables.

We define the one-step reduction relation® by the following inductive type:

mu[Step: Tm->Tm->Set] (
beta : {M,N:Tm}Step (app (lam M) N) (substO M N),
app_1 : {M,M’ ,N:Tm}(Step M M’)->(Step (app M N) (app M’ N)),
app_r : {M,M’ ,N:Tm}(Step M M’)->(Step (app N M) (app N M’)),
xi : {M,N:Tm}(Step M M’)->(Step (lam M) (lam M’)) )

This amounts to translating the usual Horn clauses defining the reduction rela-
tion into the constructors for an inductive type.

"Huet [Hue92] calls the operation lift. T prefer the name weak because it corresponds to the
notion of weakening in the typed case.

8 Although we only use weak0 and subst0 in the following definition we really have to export
the general versions because we have to use them whenever we want to prove anything about
substitution or weakening in general (i.e. for terms containing A-abstractions).

9We are going to define Red (the reflexive, transitive closure of Step) later (section 4.1).
Note, however, that we never need it for the strong normalization proof.



3.2 Strong Normalization

One of the main technical contributions which simplify the formalization of the
proof is the definition of the predicate strongly normalizing by the following
inductive type:'°

mu [SN: Tm->Set] (
SNi : {M:Tm}({N:Tm}(Step M N)->(SN N))->(SN M))

In other words: we define SN as the set of elements for which Step is well founded.

More intuitively: SN holds for all normal forms because for them the premise
of SNi is vacuously true. Now we can also show that all terms which reduce in
one step to a normal form are SN and so on for an arbitrary number of steps. On
the other hand these are all the terms for which SN holds because SN is defined
inductively.

We will use the non-dependent version of the recursor '

RecSNN : {P:Tm->Type}
({M:Tm} ({N:Tm}(Step M N)->SN N)->({N:Tm}(Step M N)->P N)->P M)
->{M|Tm} (SN M)->P M];

to simulate induction over the length of the longest reduction of a strongly
normalizing term — in terms of [GLT8Y] this is induction over v(M). Observe
that we never have to formalize the concept of the length of a reduction or to
define the partial function v. 2 It is also interesting that the important property
that SN is closed under reduction shows up as the destructor for this type (SNd).

3.3 System F

The type expressions of System F have essentially the same structure as untyped
A-terms. However, in contrast to the definition of Tm we will use a dependent
type here, which makes the number of free variables explicit. This turns out to
be useful when we define the semantic interpretation of types later.'3

mu[Ty:Nat->Set] (t_var : {n|Nat}(Fin n)->(Ty n),
arr : {nINat}(Ty n)->(Ty n)->(Ty n),
pi : {n|Nat}(Ty (succ n))->(Ty n) )

Ty i represents type expressions with ¢ free variables.
When defining weakening and substitution for Ty we observe that the types
actually tell us how these operations behave on free variables:

107t is interesting to note that this inductive type is not algebraic or equivalently does not
correspond to a specification by a set of Horn formulas. However, the requirement of (strict)
positivity as stated in [CP89] is fulfilled.

1 This corresponds to the principle of Noetherian Induction [Hue80].

12Note that bounded and noetherian coincide for S-reduction because it is finitely branching
(Konig's lemma).

13We could have used a dependent type for Tm as well, but we never need to reason about
the number of free variables of an untyped term.



t_weak : {1:Nat}(Ty (add 1 n))->(Ty (succ (add 1 n)))
t_subst : {1:Nat}(Ty (add (succ 1) n))->(Ty n)->(Ty (add 1 n))

Although these functions are operationally equivalent to weak and subst we
have to put in more effort to implement them. We do this by deriving some
special recursors from the standard recursor.!*

We now define contexts and derivations as:

[Con[m:Nat] = Vec (Ty m)];

mu[Der:{m,n|Nat}(Con m n)->Tm->(Ty m)->Set](

Var : {m,n|Nat}{G:Con m n}{i:Fin n}
Der G (var (Fin2Nat i)) (v_nth i G)

App : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M,N|Tm}
(Der G M (arr s t))
-> (Der G N s)
-> (Der G (app M N) t)

Lam : {m,n|Nat}{G|Con m n}{s,t|Ty m}{M|Tm}
(Der (v_cons s G) M t)
-> (Der G (lam M) (arr s t))

Pi_e: {m,n|Nat}{G|Con m n}{s:Ty (succ m)}{t:Ty m}{M|Tm}
(Der G M (pi s))
-> (Der G M (t_subst0 s t))

Pi_i: {m,n|Nat}{G|Con m n}{s:Ty (succ m)}{M|Tm}
(Der (v_map t_weak0 G) M s)
-> (Der G M (pi s)) )

In the rule Var we use Fin because this rule is only applicable to integers smaller
than the length of the context. Here we have to coerce it to a natural number
first (Fin2Nat) because var requires Nat as an argument.

v_map t_weak0 G means that all the types in G are weakened — this is equiv-
alent to the usual side condition in the standard definition of II-introduction.
It is nice to observe how well the types of t_subst0 and t_weakO fit for the
definition of the rules.

3.4 Candidates

One of the essential insights about strong normalization proofs is that they
require another form of induction than proofs of other properties of typed A-
calculi like the subject reduction property or the Church-Rosser property. We
cannot show strong normalization just by induction over type derivations or by
induction over the length of a reduction. We have to apply another principle
which may best be described as an induction over the meaning of types.

14Tt seems that we could save a lot of effort here by using Thierry Coquand’s idea of con-
sidering definitions by pattern matching as primitive [Coq92b].



We have to find a family of sets of terms,'® here called the Candidates of
Reducibility, such that we can show the following things:

1. Every Candidate only contains strongly normalizing terms.

2. For every operation on types we can define a semantic operation on sets of
terms such which is closed under candidates. Another way to express this
is to say that the Candidates constitute a logical predicate.

3. Candidates are sound, 1.e. every term which has a type is also in the
semantic interpretation of the type.

Putting these things together we will obtain that every typable term is
strongly normalizing.

In the definition of Candidates of Reducibility CR: (Tm—>Set)->Set we follow
[GLT89]:16

[neutr[M:Tm] = {M’:Tm}not (EQ (lam M’) M)];

[P:Tm->Set]

[CR1 = {M|Tm}(P M)->(SN M)]

[CR2 = {M|Tm}(P M)->{N:Tm}(Step M N)->(P N)]
[CR3 = {M|Tm}(neutr M)->

({N:Tm}(Step M N)->(P N))->(P M)]
[CR = CR1 /\ CR2 /\ CR3];
Discharge P;

We define neutr as the set of terms which are not generated by the constructor
for the arrow type — lam.'” CR1 places an upper bound on candidates: they
may only contain strongly normalizing terms. CR2 says that candidates have to
be closed under reduction and CR3 is essentially SNi restricted to neutral terms.

The essence of this definition lies in the possibility of proving the following
lemmas:

CR_var Candidates contain all variables
{P:Tm->Set}(CR P)->{i:Nat}P (var i);

We need this not only for the following lemmas, but also for the final
corollary when we want to deduce strong normalization from soundness
for non-empty contexts.

This is a trivial consequence of CR3 because variables are neutral terms in
normal form.

15The term set becomes a bit overloaded. Here we mean a set in the classical sense, i.e.
the extension of a predicate and not the universe Set. A set of terms corresponds to the type
Tm->Set.

16[p:Tm->Set] ...Discharge P; means that P is A-abstracted from all definitions in between.

171f we generalize this to systems with inductive types we have to include their constructors
as well.



CR_SN There is a candidate set
CR SN

The choice is arbitrary but the simplest seems to be SN. The proof is trivial:
just apply SNd for CR2 and SNi for CR3.

CR_ARR Candidates are closed under the semantic interpretation of arrow types.
{P,R:Tm->Set}(CR P)->(CR R)->(CR (ARR P R))
where
[ARR[P,R:Tm->Set] = [M:Tm]{N:Tm}(P N)->(R (app M N))I;

The proof of CR3 for ARR P R is actually quite hard and requires an in-
duction using RecSNN which corresponds to the reasoning using v(N) in

[GLTS9].

CR_PI Candidates are closed under the interpretation of Il-types

{F:(Tm->Set)->(Tm->Set )}
({P:Tm->Set}(CR P)->(CR (F P)))
-> (CR (PI F));

where

[PI[F: (Tm->Set)->(Tm->Set)] =
[M:Tm]{P:Tm->Set}(CR P)->(F P M)];

At this point we really need impredicativity for the proof. However, it is
interesting to observe how simple this lemma is technically: we do not ap-
ply any induction — we just have to show that CR is closed under arbitrary
non-empty intersections.

Lam Sound The rule of arrow introduction (Lam) is semantically sound for can-
didate sets.

{P,R:Tm->Set}(CR P)->(CR R)—>
{M:Tm}({N:Tm}(P N)->(R (substO M N)))
->(ARR P R (lam M));

Observe that we could not have proved this lemma for arbitrary subsets of
SN. The proof requires a nested induction using RecSNN which corresponds
to an induction over v(M) + v(N).



3.5 Proving strong normalization

We now have all the ingredients for the proof, we just have to put them together.

We proceed by defining an interpretation function. Types are interpreted
by functions from sequences of sets of terms to sets of terms, the length of the
sequence depending on the number of free type variables:!®

Int : {m[Nat}(Ty m)->(VEC (Tm->Set) m)->(Tm->Set)

[v:VEC (Tm->Set) ml]V_nth i v
[v:VEC (Tm->Set) mJARR (Int s v) (Int t v)
[v:VEC (Tm—>Set) m]

PI ([P:Tm->Set]lInt t (V_cons P v))

rec Int|m (t_var i)
| Intlm (arr s t)
| Intlm (pi t)

We can show by a simple induction that every interpretation of a type pre-
serves candidates (CR_Int) by exploiting CR_ARR and CR_PI .

We extend this to an interpretation of judgements, i.e. pairs of types and
contexts (Mod). The idea is that Mod G M T v holds iff by substituting all the
variables in M by terms of the corresponding interpretation of the types in G we

end up with an element of Int T v:'°

Mod : {m,n|Nat}(Con m n)->Tm->(Ty m)->(VEC (Tm->Set) m)->Set

rec Mod m zero empty MTv=Int TvH;M
| Mod m (succ n) (v_cons S G) MT v =
{N:Tm}(Int S v N)->(Mod G (substO M (rep_weakO N n)) T v)

We use Mod to state soundness (Int_Sound), i.e. that Der G M T implies
Mod G M T v if all free type variables are interpreted by candidates:

{m,n|Nat}{G|Con m n}{M|Tm}{T|Ty m}(Der G M T)->
{v:VEC (Tm->Set) m}({i:Fin m}CR (V_nth i v))
> (Mod G M T v);

The proof of soundness proceeds by induction over derivations. Essentially
we only have to apply Lam_sound to show that the rule Lam is sound. The
soundness of application App follows directly from the definition of ARR. To ver-
ify soundness for the rules which are particular to System F we do not need
additional properties of CR but we have to verify that t_weak and t_subst are
interpreted correctly with respect to Int. Again these intuitively simple lemmas
are quite hard to show formally.

To conclude strong normalization:

{m,n|Nat}{G|Con m n}{M|Tm}{T|Ty m}(Der G M T)->(SN M)

18We have to use another type of vectors (large vectors) VEC:Nat->Type (0) ->Type (0) instead
of Vec:Nat->Set->Set. Unfortunately, this sort of polymorphism cannot be expressed in the
current implementation of LEGO — i.e. we have to duplicate the definitions.

19rep_weako is the iterated application of weak0. It is necessary to apply weakening here
because we do not get parallel substitution by a repeated application of substO.



we have to put Int_sound and CR_Int together to show that every term is in the
interpretation of a candidate; and by definition candidates only contain strongly
normalizing terms. There are two technical complications: to show the theorem
for terms with free term variables we exploit CR_var; to show it for a derivation
with free type variables we have to supply a candidate — here we use CR_SN.
Note that the choice is arbitrary but that it is essential that CR is not empty.

4 Alternatives and extensions

Apart from the first section I have not yet formalized the following ideas, but 1
have checked them on paper.

4.1 Extracting a normalization function

The proof not only tells us that every typable term is strongly normalizing but
it is also possible to derive a function which computes the normal form. This
seems to be a case where it is actually more straightforward to give a proof that
every strongly normalizable term has a normal form than to program it directly.

To specify normalization we need a notion of reduction (Red) — which is just
the transitive reflexive closure of step:

mu[Red:Tm->Tm—>Set] (
r_refl : {M:Tm}(Red M M),
step : {Ml,MZ,M3|Tm}(Step M1 M2)->(Red M2 M3)->(Red M1 M3) )

and we define the predicate normal form:

[nf [M:Tm] = {M’:Tm}not (Step M M’)]

Now we want to show norm_lem:

{M:Tm} (SN M)->Ex[M’:Tm] (Red M M’)/\(nf M’)

which can be done using RecSNN — it turns out that we need decidability of
normal form as a lemma:

{M:Tm}(nf M)\/(Ex[M’:Tm]Step M M’)

Actually, this is even stronger, because it also gives us a choice of a reduct for
terms not in normal form (this is the point where we specify the strategy of
reduction).

If we use the strong sum to implement Ex, instead of the weak impredicative
encoding, we can use norm_lem to derive:

norm : {M:Tm} (SN M)->Tm
norm_ok : {M:Tm}{p:SN M}(Red M (norm M p)) /\ (nf (norm M p))



4.2 Saturated Sets

In many strong normalization proofs the notion of Saturated Sets is used instead
of Candidates of Reducibility (e.g. [Luo90], [B*91]). Tt is relatively easy to
change the proof to use saturated sets: all we have to do is to replace CR by SAT
and prove that it has the same properties as CR.

The definition of SAT used in the literature seems to be quite hard to formalize
in Type Theory. Therefore, we use an equivalent formulation, exploiting the
concept of weak head reduction:

mu[W_Hd_Step:Tm->Tm->Set] (
wh_beta : {M,N:Tm}W_Hd_Step (app (lam M) N) (substO M N),
wh_app_1 : {M,M’,N:Tm}(W_Hd_Step M M’)
->(W_Hd_Step (app M N) (app M’ N)) )

Now we can define SAT analogously to CR:

[P:Tm->Set]
[SAT1 = {M|Tm}(P M)->(SN M)]
[SAT2 = {M|Tm}(neutr M)->(SN M)
=>({N:Tm}(W_Hd_Step M N)->(P N))->(P M)]
[SAT = SAT1 /\ SAT2];
Discharge P;

Luo shows that CR P implies SAT P ([Luo90], page 95) and remarks that the
converse does not hold because saturated sets do not have to be closed under
reduction. An example is the set of all strongly normalizing terms whose weak
head normal form is neutral or equal to Az.II, which is saturated but not closed
under reduction.

If we want to show CR_ARR and Lam_sound formally we have to use RecSNN
in a manner similar to the original proof. Therefore using saturated sets does
not seem to simplify the proof.

4.3 Reduction for Church terms

We have only done the proofs for the Curry style systems — so one obvious
question is how hard it would be to extend this proof to the Church style pre-
sentation, i.e. to terms with explicit type information. In the case of simply
typed A-calculus this is straightforward because every reduction on a typed term
corresponds to one on its untyped counterpart and vice versa. However, this rea-
soning does not generalize to System F because here we have additional (second
order) reductions on typed terms.

This problem 1is usually solved by arguing that the second order reductions
are terminating anyway. Another way, maybe more amenable to formalization,
would be to extend the notion of untyped terms and reduction:

mu[Tm:Set] (...,
T_Lam : Tm->Tm,



T_App : Tm->Tm)

mu[Step: Tm->Tm->Set] (...,
Beta : {M:Tm}(Step (T_App (T_Lam M)) M) )

Note that T_Lam does not actually bind any term-variables but corresponds to
second order abstraction for typed terms; analogously T_App is used as a dummy
type application where the type is omitted.?°

It does not seem hard to extend the proof to this notion of untyped terms.
We have to extend the notion of neutrality, and the soundness of Pi_i, which
was trivial so far, has to be proved as an additional property of CR. The result for
Church terms now follows by observing that for the extended notion of untyped
terms reductions coincide with the typed terms.

5 Future work

My original motivation for doing this formalization was actually to understand
better how to extend the standard proofs to systems with inductive types, i.e. 1
was interested in checking whether a proof on paper was correct.

In [GLT89] strong normalization for System T is proved as an extension of
simply typed A-calculus. Here the type Nat is interpreted by SN. This seems
to be a rather arbitrary choice and one consequence is that one has to do an
additional induction to show that the elimination rule for Nat is sound.?! This
technique does not seem to generalize to non-algebraic types (at least one would
need induction over an ordinal greater than w). We avoid this problem by using
an impredicative trick on the level of semantics and apply this technique to the
System T enriched by a type of notations for countable ordinals (we call this
system T%). Here the usual structure of the proof is preserved, and the soundness
of the elimination rules is trivial. T hope that I can now use the insights gained
by doing this experiment to give strong normalisation proof for a system using

a general notion of inductive types like the one we used to formalize this proof.
22

6 Conclusions

The formalization of the proof in LEGO was done in a fairly short period of time
— two weeks from typing in the first definition until proving the last lemma.
This does not account for the time needed to understand the proof or how to
use LEGO properly.

20Tt may just be a curiosity, but this version of untyped terms corresponds to (a special case
of) partial terms. In [Pfe92] it is shown that type inference for partial terms is undecidable,
which is still open for the usual notion of untyped terms.

218ee [GLT&Y], p.49, case 4. of the proof.

22This should be compared with [Men88].



When doing the formalization, I discovered that the core part of the proof
(here proving the lemmas about CR) is fairly straightforward and only requires
a good understanding of the paper version. However, in completing the proof 1
observed that in certain places I had to invest much more work than expected,
e.g. proving lemmas about substitution and weakening. Although some may
consider this as a point against formal proofs, I believe it is actually useful to
check that basic definitions really reflect our intuitions about them. Many subtle
errors could have been avoided this way.

However, the fact that formalizing the proof after understanding it was not
so much of an additional effort seems to justify the believe that Computer Aided
Formal Reasoning may serve as a useful tool in mathematical research in future.
Using formal proofs simplifies the validation of results: we do not have do under-
stand a subtle proof to know that the result is true, we only have to check that
the formalization of the statement is correct. The process of checking whether
the proof term really validates the statement can be completely mechanized.
This sort of validation is not only relevant for mathematics but may prove to
have a role in the area of program verification.
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