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1 Introduction

We will outline a strong normalization argument for the Calculus of Construc-
tions (CC) which is obtained by modifying a realizability interpretation (the
D-set or w-set model ! ). By doing so we pursue two goals:

e We want to illustrate how semantics can be used to prove properties of
syntaz.

e We present a simple and extensible SN proof for CC. An example of such
an extension is a system with inductive types and large eliminations.

This presentation corresponds to a part of the author’s PhD thesis [Alt93a], a
preliminary version has been presented in [Alt93b]. In my thesis I present a more
general soundness result for a class of models for CC — CC-structures — from
which the strong normalization argument can be derived as an instance. Here
we shall restrict ourselves to the reasoning needed for the strong normalization
proof.

The proof that every term typable in the calculus of constructions is strongly
normalizing is known to be notoriously difficult. The original proof in Coquand’s
PhD thesis [Coq85] contained a bug which was fixed in [CG90] by using a Kripke-
style interpretation of contexts. Although this solves the original problem the
proof remains quite intricate due to the use of typed terms and contexts. Another
construction is due to Geuvers and Nederhof (see [Geu93], p. 168), who define
a forgetful, reduction-preserving map from CC to F“. Thereby, they reduce the
problem to strong normalization for F*, which can be shown using the usual
Girard-Tait method. The main problem with this construction is that it is not
all clear, how this argument can be extended to a system with large eliminations
(e.g. see [Wer92]), this is a system which allows the definition of a dependent
type by primitive recursion. As an example consider the recursive definition of

1See [Ehr89, Str89, Stra1].



a type T : Nat — Set:

TO) = A
Tn+1) = Tn—Tn

where A : Set is arbitrary. The problem is to find a non-dependent type which
approximates T'. The obvious choice seems to be a recursive type which solves
the equation A = A — A but such a calculus would not be strongly normalizing.

Our construction avoids the use of Kripke-structures and can be understood
as a generalization of the concept of saturated sets to dependent types. Moreover
it is straightforward to extend it to inductive types with large eliminations and
allows to interpret types like 7. We shall not treat this here but refer to [A1t93a],
pp- 76.

The paper is organized as follows: We start by introducing a judgement pre-
sentation of CC and define some basic notations. The presentation of the model
construction is divided in two parts: First we present A-sets and note that these
do not give rise to a sound interpretation. Then we solve this problem by intro-
ducing saturated A-sets and show soundness. As a corollary we obtain strong
normalization for the stripped terms. We then show how strong normalization
for typed terms and decidability of equality can be derived by simple syntactic
reasoning.

2 The judgement presentation of CC

CC is often presented in the equality-as-conversion style [CH88, Bar92), i.e. the
equality is just the untyped g-conversion between preterms. When we are inter-
ested in a semantical analysis of the system it seems easier to use the equality-as-
judgement presentation, as it is usual for Martin-L6f’s Type Theory. The reason
is that it is not clear how untyped conversion can be interpreted semantically.
Not surprisingly this presentation is used in [Str91] who studies the categorical
semantics of CC.

We will also follow [Str91] in that we use a very explicit notation: we differ-
entiate between operations on Set (often called Prop) and types; we annotate
applications and A-abstractions with types and in one place we go even further
and also annotate the codomain of a A-abstraction. Essentially our terms are a
linear notation for derivations where the applications of the conversion rule are
omitted. The more implicit notation can be justified (e.g. see [Str91, Alt93a)),
but semantically it seems to be more appropriate to consider the explicit pre-
sentation as the fundamental one.

We introduce precontexts Cn, pretypes Ty, preterms Tm and constructions
Co 2 by the following grammar - the set of natural numbers (i, j, k € w) is used
for variables, since we use de-Bruijn-indices.

Cn(I) == e|To

2In the following definition we introduce the sets together with a naming convention.



Ty(o,7) == Io.7|Set | E(M)
Tm(M,N) == i|Ao(M)7 | app” " (M,N) | Vo.M
Co(C,D) == Ty|Tm

In our use of de-Bruijn-indices * we follow [Bar84], pp.577 with the minor
difference that we start counting with 0. We denote substitution for the free
variable with index i by M[N]?,o[N]* and all the variables with a greater index
are decreased by one. We also require the operation of weakening M1, oti
which increases the indices of all free variables greater or equal ¢ by one. If
i = 0 we omit it. The precise definition of these operations can be found in
[Alt93a],p. 24.

Given a sequence of terms N = Np_1,N,_5...,Ny * we can define a notion
of parallel substitution as a derived notion:

n—1 times n—2 times
—N— —N—
MI[N] = M[N0+...+][N1+...+] oo [Np—]

and analogously for o[N]. If the indices of all free variables in M are less than
n then
Mn-1n-2,...,0] = M.

We define the following judgements: F I' (context validity), I' - o (type
validity), ' F M : o (typing), I' F 0 ~ 7 (type equality) and T'F M ~ N : o
(equality). The derivable judgements are given as the least relations closed
under the following rules — we have omitted the obvious congruence rules to
save space.

Fe (EmPTY)
FT 'kto
—_— (ComPR)
FT.o
Iot
—otT (P1)
'kTo.r
T
(SET)
I'F Set
' A: Set
0 (EL)
T + El(A)
Fiok A:Set
(ALL-ELIM)

T F El(Vo.4) ~ o.El(A)

3We believe that de-Bruijn-indices are the best way to make the notion of bound variables
precise. We can often omit side conditions and reason about A-terms in a purely algebraic fash-
ion. Moreover, this notation reflects our semantic intuition that variables denote projections
out of a context. However, when presenting syntax we may used named variables, meaning
the obvious translation into a de-Bruijn-term.

4We write these sequences backwards since contexts are also written backwards.



I'FM:o T'Fo~T1

(conv)
'EM:r
Ik
7 (VAR-0)
Fok0:0"
'kti:o Tkr
(VAR-S)
Trki+1l:0t
FobFM:7
(LAM)
T'FXo(M) : Tlo.T
I'FM:Ilor 'FN:o
(APP)
'+ app®” (M, N) : 7[N]
ok A: Set
S (ALL)
'k Vo.A : Set
TobM:T '-N:o
(BETA-EQ)

T'F app®” (Ac(M)",N) ~ M[N]: 7[N]
We can easily establish a number of rather trivial properties of this presen-

tation such that all judgements are consistent with weakening and substitution
- see [Alt93a] for details.

3 Saturated A-sets and strong normalization

3.1 A-sets

In the following section we define an interpretation of CC which resembles the
w-set semantics. The main difference is that we use A-terms instead of w (i.e.
indices of recursive functions). Another novelty is that we present this inter-
pretation in elementary terms avoiding the use of categories - although the con-
struction is clearly motivated by the categorical semantics of CC.

Definition 1 Assuming some encoding of pairing (x,y) and projections 1, T2
we have the usual set-theoretic counterparts of the basic type-theoretic operations
(assume A is a set and {B,}aca a family of sets indexed by A):

Ya€e AB, = {(a,b)|a€ Abe B,}
Tla€ A.B, = {fCZXa€ A.B,|VocaIten,(a,b) € [}

We consider application f(x) as a partial operation which is defined if there is
an (z,y) € f and then f(x) = y. We denote set-theoretic A\-abstraction by —,
i.e.
z € A Elz] = {(z, E[z]) | z € A}.
Given a set X we denote the set of finite sequences over X by X*. The empty

sequence is denoted by € and given a sequence T € X* and y € X we denote the
extended sequence by ¥y € X*.



Definition 2 We use A to denote the set of untyped \ terms enriched by a
special binder YM. To every preterm M we assign o stripping |M| € A by
deleting all types.

>C A XA is the usual one-step B-reduction extended by a &-rule for V. SN C A
is the set of strongly normalizing (w.r.t. >) A-terms.

We are ready to define A-sets which are used to interpret types and A*-sets
for interpreting contexts.

Definition 3 (A-sets)
A A-set X is a pair (X,IFx) with X is a set and IFxC A x X s.t.

Vmefai@\i H‘X Z.

We denote the class of A-sets by £ and for any A-set X € £ we use X and
IFx to denote its components.
£* is defined analogously by replacing A by A*, i.e. sequences of A-terms.

We introduce operations on A- and A*-sets corresponding to the context and
type forming operations. Additionally we define sections which given T' + o
correspond to {M |I'+ M : o} in the syntax.

Definition 4 Assume G € £*, {Y, € £} X €L, {Z; € £}, .x and let:

vEG?

1y = ({e},Ax{e})

e £

2]1\(6;7 {Y’Y}»ye@) = (E»ye@Y’YJ {(MN7 (77 y)) | M ”_G Y AN ”_Y_y y})
e £

SGCt(G: {Y’Y}qeé) = {f € H’yeﬁv’y | ImeaM “'Sect(G,{Y.,}ﬂ,) f}
e £

where ”_Sect(G’,{Y.,}.,)z {(M, f) |L€6vﬁ€1\*]\7 “_G Y= M[N] “_Y-, f(’Y)}

MA(X{Ze},cx) = ({f €, cxZe | ImeaM Irny(x,(2.1.) 1 IFnax,(z.1.))

e £

where ”_HA(Xy{Zm}a:): {(M, f) | VEEYVNEAM lFx z - MN ”‘Zm f(.’L')}

Note that the only difference between Sect and Il is that the first one uses
substitution and the second application. Indeed they are identified in the w-set
semantics.

We have not yet given an interpretation for Set and El, which is the main
problem in finding an interpretation for CC. As in the usual w-set semantics
we will use the set of partial equivalence relations which is equivalent ® to the
subclass of modest A sets.

5The properties we show can be used to establish an equivalence of categories. We do not
make this precise because we do not introduce PERs and A-sets as categories.



Definition 5 We call X € £ modest, iff

v, yevaeAM FxzAMIFxy—>z=uy,

We write 9 for the subclass of modest A-sets.

A straightforward but important property of modest A-sets is that they are
closed under Il :

Lemma 1 Assume X € £ and {Y, € M}, € X then
A (X, {Y}z) €M

Proof: Simple. |
We define the set of PERs together with translation operators to and from
modest A-sets:

Definition 6
PER(A) = {R C A x A | R is symmetric and transitive}

For any R € PER(A) we define the set of equivalence classes A/R € P(A)
in the usual way.
Assume R € PER(A) and X € I

EL(R) = (A/R,€)
€ M
EL™'(X) = {(M,N)|3,.xMIFxz ANI-x z}
€ PER(A)

It is easy to see that we have EL™'(EL(R)) = R but the converse fails.

Indeed the operation
O(X) = EL(EL™'(X))

assigns to any modest A-set X a canonical representation where z € X is re-
placed by the set of its realizers. This is reflected by the fact that we have:

Ix(xeX) = {M|Mlx z}
€ 0O(X)

with the following properties:
Lemma 2 Let X be a modest A-set

1. 9x is a bijection.



Proof: The preservation of realizers is quite easy to check and implies the first
property since X is modest. [ |

We will use © to normalize modest sets and hence reflect type equality by
equality of sets. To simplify notation we introduce © and 9 as an extension of
© and ¥ which are just identities on non-modest sets.

The following defines a partial interpretation of the syntax in terms of A-sets.
We use = for Kleene-equality and € to denote a partial version of €: if both
sides are defined then the relation € holds.

Definition 7
We define partial interpretation functions [FT] € £*, {[TF o]y € 2}7
and {[T F M]]'y},y

€IFr]
by induction over the structure of the syntaz:

Sy
[Fe] = 1%
[FT.o] = S[FTL[TCF o])

[TF o]y = (:)(HA([[F Foly, {[T.c F 7](v,2)}2))

[T+ Set]ly = (PER(A),A x PER(A))
[TFEA)]y = EL(TF Aly)
[T Hily = m(mi()
ﬂl‘ F )\a(M)T]]y >~ "9[FI-HJ.T]|'7($ € |[1‘ = a]] — [F.a = M]](% z))
[T+ app” (M, N)]y = iy 0, ([T F ML )(IT - NTv)

1

[T+ V. Aly EL™'(IIY([T F o]y, {EL([T.0 F A](7,2))}2))

This interpretation is not sound, where by soundness we mean the following
properties:
FT

[F T] is defined.
ko Y€ m
[T F o]y is defined.

'M:o
[T+ M] € Sect([F T, [T F o])

ThFo~1 ~e[-I]
[CFoly=[TF7]y

'rM~N:o v e[FT]
" [TCFM]y=[TF Ny

We will see in the next section how we can obtain soundness by a small
modification. To motivate this it is instructive to see where soundness for the



interpretation above fails. Indeed, the above interpretation is not closed under
(Lam).

For simplicity assume we have ¢ - M : 7 from which we can derive o I
Ao(M)™ : o.7. Now as a hypothesis we assume

[o F M] € Sect([+ o], [e F 7]).

From the definition of Sect it follows that there is an M’ € A s.t. forall N Ik,
we have that M'[N] ko1, [0 - M]e.
Can we conclude that

[e - Ao(M)™ : o.7] € Sect([+ o], [o.7])?

By expanding the definition of the interpretation this goal can be reduced to
showing:
[o + M] e TA([F o], [o F 7])

Le. we have to find a realizer M" s.t. for any N Ik,  we have that
M”N ||'|[J|_T]| |IO’ F M]](l")

An obvious guess would be M" = AM'. However, since we have not identified
B-equal terms we cannot reason that M''N = M'[N] and indeed there is no
reason to assume that an appropriate realizer exists at all.

This failure also suggests an obvious way to repair the problem: identify
B-equal terms, i.e. use A/ =g instead of A. Actually, it is not even necessary
to identify all B-equal terms, it is sufficient to use weak B-equality, the equality
generated by combinatory logic. This construction brings us very close to w-sets
or its generalization to arbitrary Partially Combinatory Algebras D-sets. ©

However, we would hope to obtain a system which only contains strongly
normalizing realizers and even weak (-equality is not closed under strong nor-
malization. Hyland and Ong [HO93] propose to overcome this problem by using
a generalization of PCAs (conditional PCAs) which can be used to define a par-
tial congruence which identifies only strongly normalizing terms. Here we will
go another way and generalize the notion of saturated sets, which are used in
the strong normalization arguments of simply typed A-calculus or System F.

3.2 Saturated A-sets

In this section we identify the subclass of saturated A-sets which has the following
properties:

e All realizers are strongly normalizing.

e II-types are closed under saturated A-sets.

8The D-set semantics differs only in two ways from the one proposed above: one uses a
partial combinatory algebra which is a slight generalization of a combinatory algebra and the
substitution machinery which we just imported from the untyped A calculus is encoded by
combinators.



e The set of realizers for a certain element are closed under certain [-
expansions, s.t. (LAM) is sound.

By modifying the interpretation of Set we can obtain an interpretation which
interprets every type by a saturated A-set. By establishing also that every in-
terpretation of a term is realized by its stripping we obtain strong normalization
as a simple corollary.

We introduce the notion of weak head-reduction, which means that only a
head-redex not inside a A-abstraction is reduced. This can be defined inductively
by the following rules:

M >yha M’

OAM)N >ypa M[N] — "7
MN >gha M'N

Certainly we have that >ynqCD>.
Void C SN is the set of strongly normalizing weak-head normal forms which
are not A-abstractions. This set can be inductively defined as: 7

1. i € Void.
, MeVoid NesN
MN € Void
M € SN
VM € Void

We need the following properties of SN:

Lemma 3
; M,N,M[N] € SN
" (AM)N €SN
p M' >ong M MN € SN
M'N € SN

Proof: See [Alt93a], pp.69. |
These properties can be shown by noetherian induction, i.e. induction over
the longest reduction of a strongly normalizing term. For the second proposition
it is useful to establish as a lemma, that weak-head reductions can be always
postponed.
It is interesting to note that these are precisely the same properties which
are needed to show strong normalization in the simply typed case.

"Yet another alternative is to say that void terms have the form ¢Mj ... M, with M; € SN.
However, our presentation has the advantage that it is easier to generalize to inductive types
(see [Alt93a], p. 87).



Definition 8 We call a A-set X saturated — X € & — iff the following con-
ditions hold:

SAT1 Every realizer is strongly normalizing.

Yurirxo M € SN

SAT2 There is a Lx € X which is realized by every void term.

SAT3 The set of realizers for a certain element x is closed under weak head
expansion inside SN:

VarkxzVarresn(M' Bynha M) = (M Ibx z)

This can be extended to L£*-sets by the following inductive definition:
1. 1, € G*.
Geo” {X,e6}
(G {X ), c5) €67

Note that for any saturated A-set (X, IFx) the set of realizers { M | 3
8

zeYMn-xz}
is saturated in the conventional sense

15 and X, restrict to operations on saturated A-sets by definition but it
remains to show that this is also true for IIx:

Lemma 4 Assume X € 6, {Y, € 6}, % then IIA(X,{Y;}.) € 6.
Proof:

SAT1 Assume M Iy, (x,1v,},) f, certainly 0 lFx Lx (SAT2 for X). Now we
know that MO by, — f(Llx), therefore M0 € SN (SAT1 for Y;), which
implies M € SN.

SAT2 Assume M € Void, now for every N IFx x we have that MN € Void
(SAT1 for X and definition of Void) and therefore M N Iy, Ly, . This
implies M Irm, (x,{v,}.) T+ Ly,, so we just set L, (x {v,},) =T~ Lv,-

SAT3 Assume M kg, (x {v.}.) f> M' € SN and M' >yng M. For any N IFx z
we have that M N IFy, f(z). By (APP-L) M'N >ynq MN and by lemma
3 (2.)) M'N € SN. Using SAT3 for Y, we have that M'N Ity f(z).
Therefore we have established that M’ I, (x tv,1.) f-

|
The essential idea of saturated A-sets is that we can prove closure under the
A-introduction rule.

8E.g. see [Bar92].



Lemma 5 Let G € 6*,{X, € 6} then

2650125 € Gses a1y

M Fsect(a(G (X, 1) Zs}s) |
AM FSect(G{TIA(Xy {Z(y 00 }a)}) ¥ € G (2 € Xy 0> f(7, 7))

Proof: Assume any «y € @,1\7 kG v,z € X, N IFx, . We would like to show
that
(AM)[N]N Ik g, ., f(7,2).

Now (AM)[N]N = (AM[NO])N >yha M[NN] and
M[NN] kg, ., f(v,2)

follows from the premise.

To apply (SAT3) we have to verify that N, M [1\7 N, M [N 0] € SN. The first
two are immediate by (SAT1) and for the last one we need that 0 IFx, L (SAT2)
and by premise .

M[NO] bz, , f(v,1)

and therefore M[N0] € SN (SAT1). |
We will now modify the interpretation simply by changing the interpretation

of Set.

Definition 9 We define a new interpretation [ I']', {[T F U]]I'Y}'ygm’

{[T + M]]I’Y}VGW by the same rules as before but modifying [T F Set]:

[Tk Set]y = (PER'(A),SN x PER/(A))

where
PER'(A) = {R € PER(A) | EL(R) € &}.

Before we can prove the general soundness theorem, we need a technical
result, i.e. that weakening and substitution are interpreted properly.

Lemma 6 (Soundness of weakening and substitution) For any~ € [ I']’

and z € [T F 7]y we have

[CFo]y = [Cobot]~e
[CFM]'y = [[1+MTye
[C.7 ko] y([TF N]'y) = [TFo[N]y
[C.r = M'([CFNDy) = [CFMN]'y
Proof: See [Alt93a], section 3.2. |

It should be noted that only a generalization of the proposition to arbitrary
weakenings and substitutions can be shown by induction over the syntax.



Theorem 1 (Soundness)

FT
1 ——
[-I] € &*

2

Fko ye 17

[CFo]'ves

'FM:o

(a)

[T+ M]' € Sect([-T],[TF o]")

'FM:o

(b)

'to~r

|M| Fsec(qry ooy [T F M’

vye[-TT

[T+ 0]]"7 =Tk T]]I’)/

5

TFM~N:0 ~ye[-IT

[T+ M]'y=[TF N]'~y

Proof: (Sketch) The result can be obtained by a straightforward induction over
the structure of derivations. All the congruence rules and (CoNV) follow directly
from the fact that we interpret syntactic equality by semantic (i.e. set-theoretic)

equality.

1. Immediate from the definition of &*.

2. For (P1) we need Lemma 4 and observe that © preserves saturatedness.
(EL) follows from the definition of PER'(A) and (SET) is straightforward

as well.

3. (VAR-0),(VAR-S) require soundness of weakening, (APP) is straightforward
but uses soundness of substitution. (LAM) follows directly from Lemma 5.

4. The only interesting case is (ALL-ELIM):

[T F El(Vo.A)]'y

EL(EL™ (I ([T F o]"y, {EL(IT-0 - A]'(7, 2))}2)))

O(IA([T F o'y, {EL([T .0 - A]'(7,2))}.))
[Mac.E1(A)]'y

Note that we implicitly use Lemma 1

5. (BETA-EQ) requires soundness of substitution.

The theorem has strong normalization as a corollary:



Corollary 1 (Strong normalization) IfI'+ M : o then |M| € SN.

Proof: Let n by the length of I".Using (SAT2) we know that

-

n—l,n—2,...0|}-|IF]|: J_,J_J_ZJ_
by Theorem 1, (3b) we know
|M| = [M|[n—1,n—=2,...0] IFppy 7 [TFM]'L

and therefore M € SN by SAT1. |

4 Decidability

We have only established strong normalization for the stripped terms. It is not
immediate that this implies strong normalization for typed terms and decidabil-
ity of equality. The main problem with typed terms is that we have to allow
reductions inside the type annotations to reflect the congruence rules.

It would be possible to redo the model construction using typed terms in-
stead. However, it seems that the presentation of the interpretation would get
quite overloaded with a lot of trivial syntactic reasoning. Here we go another
way and show how this result can be derived from strong normalization for the
stripped terms by a simple syntactic argument.

In the following text we assume a notion of reduction on types and terms
>1C Cn x Cn which is just the natural extension of untyped (3 reduction to
constructions. We also use SN; to denote the set of strongly normalizing con-
structions wrt. >;. The [ stands for loose in contrast it to tight reduction >
where only redexes with agreeing types can be reduced (see below).

We define a type-preserving map blow which blows up terms such that every
reduction in a typed term can be mirrored by a reduction in a stripped term:

Definition 10 Let

1 = Vz:Setx
M(o,N) = appw:Set.cr"' O\ : Set(M+w)”+m,N)

We now define blow € Cn — Cn:

blow(Ilo.7) = blow(c)(Set, blow(7))
blow(Set) = L
blow(El(4)) = blow(A)
blow(i) = i
blow(app” " (M,N)) = app” " (blow(M),blow(N))(7[N],blow(c))(r[N],blow(T))
blow(Ac(M)") = Aa(blow(M))” (o.7,blow(c))(Ilo.T, blow (7))
blow(Vo.A) = Vo.blow(A)(Set,blow(o))



We have the following properties:
Lemma 7
I'kFo
B T+ blow(o) : Set
I'tM:o
“ T F blow(M) : o

3. If C >1 D then |blow(C)| t>;7 [blow(D)|.
From this it should be obvious how to derive the following (using Corollary 1):
Lemma 8
I'kFo
17, —
o € SN;
'FM:o
- M e SN

In the conversion presentation the previous result would suffice to establish
decidability because conversion is just defined as the transitive symmetric closure
of I>. In our presentation the reasoning is a bit more intricate, because we would
have to establish a subject reduction property, which is a non-trivial property of
the system.

To avoid this we define another notion of reduction — tight reduction:

app” T (Ac(M)",N) >y M[N] (BETA-RED)

For > the subject reduction property can be easily established. We can also
show the weak Church Rosser property and it is easy to see that [>¢ is strongly
normalizing for derivable terms and types because >{Cp>).

5 Discussion

It should be noted that our strong normalization argument (i.e. Corollary 1)
can be extended to 7-reduction without any problems — this relies on the fact
that Lemma 3 also holds for n-reduction. Alas, this does not entail decidability
for CC pn-equality — this is the CC extended by the rule:

't M:Ilo.r
'+ )\a(app"+"'+1(M+,O))T ~ M : o1

(ETA-EQ)

The problem is that we need strengthening:
Tobk Mt 7t
'EM:r



to derive subject reduction for tight reduction. However, it is not clear to me
how to prove strengthening (I conjecture that this is not derivable by simple
syntactic reasoning). °

The essential problem in extending our strong normalization argument to a
system with inductive types which allows the definition of Sets by recursion is to
extend the usual realizability interpretation since the extension to saturated A-
sets follows the same lines. This corresponds to showing that initial T-algebras
exist in D-set for a general class of functors on modest sets. Although this
proposition seems to be folklore we could not find a satisfying presentation.
In [Alt93a] we show how the D-set and the saturated A-set semantics can be
extended to a non-algebraic inductive type with large eliminations. We claim
that the same argument works for a general class of inductive definitions.
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