
GENERIC PROGRAMMING
WITHIN
DEPENDENTLY TYPED PROGRAMMING

Thorsten Altenkirch

School of Computer Science and Information Technology, University of Nottingham
Wollaton Road, Nottingham, NG8 1BB, UK

txa@cs.nott.ac.uk

Conor McBride

Department of Computer Science, University of Durham
South Road, Durham, DH1 3LE, UK

C.T.McBride@durham.ac.uk

Abstract We show how higher kinded generic programming can be represented
faithfully within a dependently typed programming system. This devel-
opment has been implemented using the Oleg system.

The present work can be seen as evidence for our thesis that extensions
of type systems can be done by programming within a dependently typed
language, using data as codes for types.

1. Introduction

Generic programming [BJJM98, HP00, JJ97, JBM98] allows pro-
grammers to explain how a single algorithm can be instantiated for a
variety of datatypes, by computation over each datatype’s structure.
This can be viewed as a rationalization and generalization of Haskell’s
derive mechanism [PH+99]. For example, the representation of λ-terms
with de Bruijn variables as a nested datatype [BP99, AR99]

1

2

data Lam a = Var a | App (Lam a) (Lam a) | Lam (Lam (Maybe a))

can be given an equality function by hand

instance (Eq a) ⇒ Eq (Lam a) where

Var x == Var y = x == y

App t u == App t’ u’ = t == t’ && u == u’

Lam t == Lam u = t == u

_ == _ = False

but we can also instruct the compiler to derive it:

data Lam a = Var a | App (Lam a) (Lam a) | Lam (Lam (Maybe a))

deriving Eq

In contrast to the above, we may implement the fmap function witnessing
the fact that Lam is a functor

instance Functor Lam where

fmap f (Var x) = Var (f x)

fmap f (App t u) = App (fmap f t) (fmap f u)

fmap f (Lam t) = Lam (fmap (fmap f) t)

but the compiler does not know how to derive it, i.e. if we attempt

data Lam a = Var a | App (Lam a) (Lam a) | Lam (Lam (Maybe a))

deriving Functor

we get an error message

ERROR "lam.hs" (line 2): Cannot derive instances of class "Functor"

1.1. The Generic Haskell Approach

Generic Haskell [CHJ+01] overcomes this limitation by allowing the
programmer to define generic functions by recursion over the structure
of datatypes. For example, a generic equality function can be defined in
Generic Haskell: first we must give its type, which is indexed by a kind

type Eq {[*]} t = t → t → Bool

type Eq {[k → l]} t = forall u. Eq {[k]} u → Eq {[l]} (t u)

That is, == is a binary boolean operator at ground types, but at higher
kinds, it is a parametric operation, transforming an equality at the source

Generic Programming Within Dependently Typed Programming 3

kind to an equality at the target kind. As Hinze observed [Hin00], this
parametrization is systematic—we need only implement == itself by
recursion over ground types1:

(==) {| t :: k |} :: Eq {[k]} t

(==) {| Unit |} _ _ = True

(==) {| :+: |} eqA eqB (Inl a1) (Inl a2) = eqA a1 a2

(==) {| :+: |} eqA eqB (Inl a) (Inr b) = False

(==) {| :+: |} eqA eqB (Inr b) (Inl a) = False

(==) {| :+: |} eqA eqB (Inr b1) (Inr b2) = eqB b1 b2

(==) {| :*: |} eqA eqB (a1 :*: b1) (a2 :*: b2) = eqA a1 a2 && eqB b1 b2

(==) {| (→) |} eqA eqB _ _ =

error "(==) not defined for function types"

(==) {| Con c |} eqA (Con _ a1) (Con _ a2) = eqA a1 a2

...

The map function also fits this pattern: its ‘kind-indexed type’ takes
two parameters—the source and target of the function being mapped.

type Map {[*]} t1 t2 = t1 → t2

type Map {[k → l]} t1 t2 = forall u1 u2.

Map {[k]} u1 u2 → Map {[l]} (t1 u1) (t2 u2)

Which instances of Map {[k]} t1 t2 can actually be defined? We can-
not map a t1 to a t2 for any two type constructors. However, we can
map between different applications of the same type constructor, pro-
vided we can map between its arguments. The top-level ‘type-indexed
value’ is defined only along the diagonal, and this goes for type-indexed
values in general.

gmap {| t :: k |} :: Map {[k]} t t

gmap {| Unit |} = id

gmap {| :+: |} gmapA gmapB (Inl a) = Inl (gmapA a)

gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)

gmap {| :*: |} gmapA gmapB (a :*: b) = (gmapA a) :*: (gmapB b)

gmap {| (→) |} gmapA gmapB _

= error "gmap not defined for function types"

gmap {| Con c |} gmapA (Con d a) = Con d (gmapA a)

...

Generic Haskell is an extension of Haskell, currently implemented as
a preprocessor. In this paper we show that dependently typed pro-

1We omit the cases for labels and base types.

4

gramming can already express generic operations—we need only to im-
plement a library. Indeed, the reader may want to compare the Generic
Haskell code above with our own implementation of generic equality and
map (section 2.3).

1.2. Introducing Dependent Types

We are using an implementation of Type Theory as a dependently typed
programming language: McBride’s Oleg

2 system [McB99], although es-
sentially a proof checker, serves reluctantly as a rather spartan call-by-
value programming language. An alternative would have been to use
the prototype Cayenne compiler [Aug98], but Cayenne does not support
inductively defined families as primitive, so this would have introduced
an additional overhead. For the sake of readability, we take some nota-
tional liberties—overloading, infix and postfix operations, superscripting
and subscripting—but the full Oleg script, together with a document
explaining its correspondence with this paper, is available online [AM02].

In a dependently typed programming language, we may define families
of types which depend on values. One such is Fin : N → Type of finite
types indexed by their size:

data n : N
Fin n : Type

where
0n : Fin sn

i : Fin n
sn i : Fin sn

We say that Fin is an inductive family of datatypes indexed by N
[Dyb91]. The sn constructor embeds Finn as the ‘old’ elements of Finsn,
whilst 0 makes a ‘new’ element. Observe that both constructors target
a restricted section of the family—the types with at least one element.
Fin 0 is quite rightly uninhabited.

In our notation, we introduce all our global identifiers with their type
signatures either by datatype declarations (data . . . where) or recursive
definitions (let). The natural deduction presentation, although it may
seem unusual at first, does hide quite a lot of inferrable detail. The ‘flat’
types of the above identifiers, given in full, are

Fin : N → Type
0 : ∀n:N. Fin sn
s : ∀n:N. Fin n → Fin sn

2
Oleg is a rearrangement of Pollack’s Lego system [LP92], with primitive support for pro-

gramming.

Generic Programming Within Dependently Typed Programming 5

Functions may have return types which depend on their argument val-
ues: → is just syntactic sugar for the vacuous case of the quantifier
∀, which binds the argument for use in the return type. Arguments on
which there is nontrivial dependency can often be inferred from usage
by the typechecker, just as Hindley-Milner typecheckers infer instances
of polymorphic functions. Subscripting the binding in a ∀-type tells the
typechecker to infer the argument by default—we may also write it as a
subscript in an application if we wish to draw attention to it. In the nat-
ural deduction style, we can omit the subscripted ∀s, because we show
standard usage as well as enough information for types to be inferred.

We define recursive functions by dependent pattern matching, as intro-
duced in [Coq92]. For example, emb : ∀n:N. Fin n → Fin sn witnesses
the fact that there is a value preserving embedding from Finn to Fin sn.

let x : Fin n
emb x : Fin sn emb 0 7→ 0

emb (s x) 7→ s (emb x)

We can also exploit Fin to give a functional representation of vectors—
lists of fixed length. This is an alternative to the more common inductive
representation which follows the same pattern as the definition of lists.

let A : Type n : N
An : Type

An 7→ (Fin n)→ A

Given a : Asn , its head hd a : A is given by hd a 7→ a 0 and its tail
tl a : An by tl a 7→ a ◦ s. As we never construct vectors containing
types here, we may safely overload the type constructor as the operation
to construct a constant vector:

let a : A n : N
an : An an x 7→ a

We can lift application to vectors, as McBride does in his Haskell defi-
nition of n-ary zipWith [McB01b]:

let f : (A→ B)n a : An

f a : Bn f a x 7→ (f x) (a x)

These two definitions allow us to map a function f across a vector a
just by writing f n a . In fact, this reduces to the composition f ◦ a .

6

1.3. Dependent Types are Generic Types

Dependent type systems provide a natural setting for generic program-
ming because they provide a means for reflection. An example of this
is the construction of a simply typed universe3 by defining a a represen-
tation U : Type for simple types over a base type nat:

data
U : Type

where
nat : U

A,B : U
A⇒B : U

and a decoding function El : U → Type, which assigns a meaning to
each code.

let A : U
El A : Type

El nat 7→ N

El (A⇒B) 7→ (El A)→ (El B)

A program which is generic over such a universe can be given a type
which abstracts over all the codes in U and refers to the elements of
types decoded by El. These types exploit the dependent function space

∀A :U. . . .El A . . .

For example, every type in the above universe contains a ‘zero value’,
which can be defined as follows:

let zero : ∀A :U.El A zero nat 7→ 0
zero (A⇒B) 7→ λa :El A. zero B

The universe U above, containing all higher types over N, is rather large.
Hence, it has very few useful generic operations—operations which are
meaningful for every type with a code in U. In general, the more special-
ized the set of codes, the larger the library of useful generic operations.
If every operation made sense at every type, we would not need types in
the first place.

Indeed, we may consider the family Fin, introduced above, as a smaller
universe only containing finite types. Based on this view we may give an
alternative representation of the type of λ-terms which uses finite types
for the set of variables:

3This is a simplified version of Martin-Löf’s definition of a universe with codes for N and
dependent function spaces (∀-types). [ML84, NPS90]

Generic Programming Within Dependently Typed Programming 7

data n : N
Lam n : Type

where x : Fin n
var x : Lam n

f , a : Lam n
app f a : Lam n

t : Lam sn
lam t : Lam n

Lam n is the type of λ-terms with at most n free variables, embedded
from Fin n by the var constructor.

The advantage of using N to index Lam is that we have two natural
modes of computation for working with λ-terms: we may exploit the
structure not only of the terms themselves, but also of the datatype
used to index them. For example, we may write the operation which
closes a term by abstracting over the available free variables.

let t : Lam n
close n t : Lam 0

close 0 t 7→ t
close sn t 7→ close n (lam t)

This seems not possible in Haskell, not even in Generic Haskell because
the universe over which generic programs are defined is simply too large.

Another advantage of the dependently typed version is that it can be
easily generalized to a precise account of simply typed λ-terms over a
given signature, see [AR99].

1.4. Related Work

Much of this work has been influenced by the Generic Haskell project
[CHJ+01]. In the current version Generic Haskell is implemented as a
compiler front end—typechecking at this level is not yet realized.

The topic of this paper is clearly related to [PR98], where the authors
also use Type Theory to represent polytypic programs. However, they
do not actually introduce a universe but simply a library of operators
which work on functors and bifunctors of first order kind. This gives a
convenient way to construct map but is hardly extensible: the library
would have to be rewritten each time a new polytypic operation is added.
Exploiting a universe construction, we avoid this problem and present
a combinator to derive many polytypic programs. Our domain is also
more general in that we allow higher order kinds and mutual inductive
definitions with several parameters.

Recently, Benke [Ben02] presented preliminary results on an implemen-
tation of generic programming in AGDA, a dependently typed system

8

developed at Chalmers University, Göteborg. His goal is to codify
generic operations on dependent datatypes.

1.5. Overview

In the present paper we show how generic programming as implemented
in Generic Haskell can be coded within a dependently typed program-
ming language: we define a universe faithfully representing concrete
Haskell datatypes (sections 2.1,2.2), i.e. any Haskell datatype not in-
volving function spaces. This is just one possible choice: we could have
used positive, strictly positive or just finite types as introduced before.
We include datatypes of higher kinds and nested datatypes, generaliz-
ing the construction for regular types given in [McB01a]. We present a
generic recursion operator, fold, (section 2.3) which gives one way to de-
fine generic functions such as == or map for arbitrary kinds. In section
3 we present more details of our encoding and discuss our implemen-
tation of fold. Of course, generic operations which are not instances
of fold may still be defined directly. The library approach leaves the
constructed universe accessible to the programmer.

2. Generic programming in OLEG

In this section, we show how to use our implementation of generic pro-
gramming in Oleg. Our intention is to be as faithful to Generic Haskell
as we can. As a running example we employ the following Haskell
datatype declaration:

data Bush a = Nil | Cons a (Bush (Bush a))
data WBush = W (Bush WBush)

Bush is a nested datatype which exploits higher types; WBush uses Bush
(mutual dependency is also permitted). We chose this example, although
a little artificial, because it illustrates all the features present in our
encoding of datatypes. However, it is not completely pointless: Bush is a
representation of partial functions over binary trees and WBush represent
trees branching over a finite set of binary trees.

We will show how to represent this datatype internally, and how to
implement the generic functions == and map in our system.

Generic Programming Within Dependently Typed Programming 9

2.1. Encoding datatype declarations

First we introduce 2 as a representation of Haskell kinds:

data
2 : Type

where
? : 2

J ,K : 2
J⇒K : 2

WBush is a ground type hence its kind is ? : 2. Bush maps types to
types, hence its kind is ?⇒?.

Signatures Sig : Type are sequences of kinds. As we often need access
to the argument list of a kind, we shall identify Sig 7→ 2 and use an
alternative notation for the constructors:

ε 7→ ?
K ;Σ 7→ K⇒Σ

When using a kind K : 2 as a signature we write 〈K 〉 : Sig. This is
just the identity map 〈K 〉 7→ K in our implementation.

As an example we define the signature ∆W corresponding to the decla-
ration of Bush and WBush:

let
∆W : Sig

∆W 7→ ?⇒?; ? ;ε

We will use typed de Bruijn variables for our datatype declarations.
Given a signature Σ and a kind K we define the type of variables of that
kind as

data Σ : Sig K : 2
Var Σ K : Type

where
0 : Var (K ;Σ) K

v : Var Σ K
s v : Var (J ;Σ) K

We will now introduce the type Ty of polynomial type expressions rep-
resenting the right hand side of a datatype declaration. Ty is indexed by
two signatures ∆ for mutually defined datatypes and Λ for parameter
kinds. To access these signatures we use two different variable construc-
tors: D for recursive variables (like Bush) and V for parameters (like a
in the definition of Bush).

10

data ∆,Λ : Sig K : 2
Ty ∆ Λ K : Type

where v : Var ∆ K
D v : Ty ∆ Λ K

v : Var Λ K
V v : Ty ∆ Λ K

F : Ty ∆ Λ (J⇒K) X : Ty ∆ Λ J
F ·X : Ty ∆ Λ K

0 : Ty ∆ Λ ?
S ,T : Ty ∆ Λ ?
S+T : Ty ∆ Λ ?

1 : Ty ∆ Λ ?
S ,T : Ty ∆ Λ ?
S×T : Ty ∆ Λ ?

The right hand side of a datatype declaration in kind K is an element
of Ty ∆ 〈K 〉 ?. For example, we represent the right hand sides of Bush
and WBush as follows:

let
Bush : Ty ∆W 〈?⇒?〉 ?
Bush 7→ 1+(V 0)×(D 0)·(D 0)·(V 0)

let
WBush : Ty ∆W 〈?〉 ? WBush 7→ (D 0)·(D s0)

We define the meaning of a signature [[∆]] as the type of functions which
assign to each variable a datatype declaration of the appropriate type:

let ∆ : Sig
[[∆]] : Type

[[∆]] 7→ ∀K : 2.(Var ∆ K)→ Ty ∆ 〈K 〉 ?

We can now give the full representation of the Haskell declaration from
the beginning of this section:

let
δW : [[∆W]]

δW 0 7→ Bush
δW s0 7→ WBush

2.2. Constructing data

We shall now populate our datatypes with data. For the subsequent
discussion, assume as given an arbitrary declaration δ : [[∆]]. We abbre-
viate Ty∆ K 7→ Ty ∆ εK .

To define the interpretation of types, we introduce an iterated applica-
tion operator and substitution on type expressions. Both are parametrized
by an argument stack of closed types, represented via a function space,
as follows:

Generic Programming Within Dependently Typed Programming 11

let ∆ : Sig K : 2
Args ∆ K : Type

Args ∆ K 7→ ∀J :2. Var 〈K 〉 J → Ty∆ J

We only give the signatures of the application operator

let X : Ty∆ K ~Y : Args ∆ K
X @ ~Y : Ty∆ ?

and the substitution operator.

let X : Ty ∆ 〈J 〉K ~Y : Args ∆ J
X [~Y] : Ty∆ K

Their implementations can be found in section 3.

We are now able to define the interpretation of types [[T]]δ.

data T : Ty∆ ?
[[T]]δ : Type

where t : [[(δ v)[~X]]]δ
conv t : [[D v@~X]]δ

s : [[S]]δ
inl s : [[S+T]]δ

t : [[T]]δ
inr t : [[S+T]]δ

void : [[1]]δ
s : [[S]]δ t : [[T]]δ

pair s t : [[S×T]]δ

As an example we can derive the constructors for Bush and WBush.

let A : Ty∆W ?
Nil A : [[D 0·A]]δW

x : [[A]]δW b : [[D 0·(D 0·A)]]δW

Cons A x b : [[D 0·A]]δW

x : [[D 0·D s0]]δW

W x : [[D s0]]δW

Nil A 7→ con (inl void)
Cons A x b 7→ con (inr (pair x b))
W x 7→ con x

Of course, it is not enough to construct elements of the datatypes in our
universe. We must be able to compute with them too. Here, the power of

12

dependent pattern matching, as proposed by Thierry Coquand [Coq92],
delivers exactly what we need—although we have defined [[·]]δ for ar-
bitrary codes, we may define functions over particular instances of it
by pattern matching, supplying cases for only those constructors which
apply.

Using the previous definitions we can already implement generic func-
tions such as read, which constructs a typed representation out of un-
typed data (or returns an error value). However, in the next section we
will cover the more interesting case of generic recursion.

2.3. Using generic recursion

To define generic functions like == and map we introduce a generic
recursion operator fold. The design of fold is based on ideas due to
Hinze [Hin00] and implements the kind of polytypic recursion present in
Generic Haskell [CHJ+01].

To motivate fold’s type, let us first look at the types of == and map.

We may introduce ==’s type Eq by recursion on kinds:

let K : 2 X : Ty∆ K
EqK X : Type

Eq? S 7→ [[S]] → [[S]] → Bool
EqJ⇒K F 7→ ∀X :Ty∆ J .EqJ X → EqK (F ·X)

Now, == gets the following type:

K : 2 X : Ty∆ K
(==)K : EqK X

Similarly, we define map’s type Map:

let K : 2 X ,Y : Ty∆ K
MapK X Y : Type

Map? S T 7→ [[S]] → [[T]]
MapJ⇒K F G 7→ ∀X ,Y :Ty∆ J .

MapJ X Y →MapK (F ·X) (G ·Y)

As in Generic Haskell, map’s type is the diagonalisation of Map:

K : 2 X : Ty∆ K
mapK : MapK X X

Generic Programming Within Dependently Typed Programming 13

Eq has one type argument, whereas Map takes two. This can easily be
generalized to n+ 1-ary operators giving rise to the type of fold.

The type of fold is computed from the kind at which it acts by the
function Fold, capturing the general case with n + 1 type arguments
via vectors, as introduced earlier. Fold is also parametrized by a type
family Φ which characterizes the operator’s behaviour at ground type.

S : Ty∆ ? T : (Ty∆?)n

Φ S T : Type

Now we are ready to define Fold by recursion on kinds:

let K : 2 X : Ty∆ K Y : (Ty∆ K)n

FoldK Φ X Y : Type

Fold? Φ S T 7→ [[S]]δ → Φ S T
FoldJ⇒K Φ F G 7→ ∀X :Ty∆ J . ∀Y :(Ty∆ J)n .

FoldJ Φ X Y → FoldK Φ (F ·X) (G ·n Y)

We hope that it is easy to see that Eq and Map can be derived4 from
Fold by setting

Φ== S T 7→ [[S]]δ → Bool
Φmap S T 7→ [[hd T]]δ

The parameters to fold explain how to construct Φ’s at multiple in-
stances of each type constructor, given Φ’s for the relevant arguments.

φ : Φ (δ v [~W]) ((δ v)n [~Z]n)
doCon v φ : Φ (D v @ ~W) ((D v)n @n ~Z)

φ1 : Φ S1 T1

doInl φ1 : Φ (S1+S2) (T1+nT2)

φ2 : Φ S2 T2

doInr φ2 : Φ (S1+S2) (T1+nT2)

doVoid : Φ 1 1n

φ1 : Φ S1 T1 φ2 : Φ S2 T2

doPair φ1 φ2 : Φ (S1×S2) (T1×nT2)

Given the above, we define fold along the diagonal:

X : Ty∆ K
foldX doCon doVoid doInl doInr doPair : FoldK Φ X X n

4Up to trivial isomorphisms.

14

Details of the implementation can be found in the next section, or online
in form of the Oleg sources [AM02].

As an example for using fold let us derive ==:

doCon== v φ (con x) 7→ φ x
doVoid== void 7→ true
doInl== φ (inl x) 7→ φ x
doInl== φ (inr y) 7→ false
doInr== φ (inl x) 7→ false
doInr== φ (inr y) 7→ φ y
doPair== φ1 φ2 (pair x y) 7→ (φ1 x) ∧ (φ2 y)

Note that the rules cover every case which types permit. We now set

let X : Ty∆ K
(==)X : FoldK Φ== X X 0

(==)X 7→ foldX doCon== doVoid== doInl== doInr== doPair==

We may also define map:

doConmap v φ 7→ con φ
doVoidmap 7→ void
doInlmap φ 7→ inl φ
doInrmap φ 7→ inr φ
doPairmap φ1 φ2 7→ pair φ1 φ2

let X : Ty∆ K
mapX : FoldK Φmap X X 1

mapX 7→ foldX doConmap doVoidmap

doInlmap doInrmap doPairmap

3. The Implementation

In this section, we explain in more detail how we implement our universe
of concrete Haskell datatypes and the fold combinator by which we
construct generic operations over them.

3.1. The universe construction

The implementation of the universe construction is exactly as specified
in the previous section. The only details missing are the definitions of
application and substitution.

Generic Programming Within Dependently Typed Programming 15

Recall that we represent an argument stack by a function space. As
with vectors, such functions (nonempty signatures) admit head and tail
operations, by application to 0 and composition with s, respectively.

let
~f : ∀J :2. Var (K ;Σ) J → F J

hd ~f : F K
hd ~f 7→ ~f 0

let
~f : ∀J :2. Var (K ;Σ) J → F J
tl ~f : ∀J :2. Var Σ J → F J

tl ~f 7→ ~f ◦ s

Hence we may now define the application operator.

let X : Ty∆ K ~Y : Args ∆ K
X @K

~Y : Ty∆ ?

T @?
~Y 7→ T

F @J⇒K
~Y 7→ (F ·hd ~Y) @K (tl ~Y)

As usual, we omit the kind subscript when we make use of @, as this
kind can be inferred from the first argument.

We define substitution by recursion over the structure of type expres-
sions. Note that a substitution is also a stack of arguments.

let X : Ty ∆ 〈J 〉K ~Y : Args ∆ J
X [~Y] : Ty∆ K

(V v)[~Y] 7→ ~Y v
(D v)[~Y] 7→ D v
(F ·X)[~Y] 7→ F [~Y]·X [~Y]
0[~Y] 7→ 0

1[~Y] 7→ 1

(S+T)[~Y] 7→ S [~Y]+T [~Y]
(S×T)[~Y] 7→ S [~Y]×T [~Y]

With these in place, our universe construction is ready for use.

3.2. A generic fold operator

Our fold operator explains how to make an iterative operation act on
every datatype in our universe and lift parametrically to higher kinds,
given its definition at each data constructor. In practice, it is much
easier to define fold in an uncurried style, and then curry it for export

16

to the user. We shall first need a counterpart to Fold, computing the
type of an uncurried fold. UFoldK Φ X Y , is defined in terms of tuples
of folds for K ’s argument kinds. These tuples are built with Oleg’s unit
and pair types, 1 and S×T , with constructors () and (s, t), respectively.

let

Φ : Ty∆ ? → (Ty∆ ?)n → Type
X : Ty∆ K Y : (Ty∆ K)n

UFoldK Φ X Y : Type

Φ : Ty∆ ? → (Ty∆ ?)n → Type
~W : Args ∆ K ~Z : (Args ∆ K)n

UFoldsK Φ ~W ~Z : Type

UFoldK Φ X Y 7→
∀ ~W :Args ∆ K . ∀~Z :(Args ∆ K)n .UFoldsK Φ ~W ~Z →

[[X @ ~W]]δ → Φ (X @ ~W) (Y @n ~Z)

UFolds? Φ ~W ~Z 7→ 1
UFoldsJ⇒K Φ ~W ~Z 7→ UFoldJ Φ (hd ~W) (hdn ~Z) ×

UFoldsK Φ (tl ~W) (tln ~Z)

Observe that (Args ∆ K)n expands to a ‘matrix’ type:

(Args ∆ K)n 7→ Fin n → ∀J :2. Var 〈K 〉 J → Ty∆ J

It is useful to introduce the corresponding ‘transpose’ operator:

let
~Z : (Args ∆ K)n

~Z> : ∀J :2. Var 〈K 〉 J → (Ty∆ J)n
~Z> v i 7→ ~Z i v

We may now explain how to project the fold for a particular argument
from a tuple of folds for an argument sequence:

let fs : UFoldsK Φ ~W ~Z v : Var 〈K 〉 J
fs.v : UFoldJ Φ (~W v) (~Z> v)

(f , fs).0 7→ f
(f , fs).(s v) 7→ fs.v

Given arguments doCon . . . doPair as specified in the previous section,
we shall define

let {do’s} X : Ty∆ K
ufold {do’s}X : UFoldK Φ X X n

Generic Programming Within Dependently Typed Programming 17

For a fold at a higher kind expression—necessarily the application of
some (D v)—the tuple of folds passed as arguments explains what to do
for each of that datatype’s parameters. Consequently, we must define
ufold in terms of a more general operator, ufoldBody which takes a
type expression X over arbitrary variables Λ, together with an environ-
ment which explains how to ufold at each of those variables.

let {do’s} es : UFoldsΛ Φ ~W ~Z X : Ty ∆ Λ K
ufoldBody {do’s} es X : UFoldK Φ (X [~W]) (X n [~Z]n)

Note that UFold itself expands to a polymorphic function space. Hence,
this signature may be expressed equivalently in fully applied form, taking
a tuple of folds for X ’s arguments and an inhabitant of the datatype
given by applying X [~W], yielding an appropriate instance of Φ.

let

{do’s}es : UFoldsΛ Φ ~W ~Z X : Ty ∆ Λ K
fs : UFoldsK Φ ~W ′ ~Z ′ t : [[(X [~W])@ ~W ′]]δ

ufoldBody {do’s} es X fs t : Φ ((X [~W])@ ~W ′) ((X n [~Z]n)@n ~Z ′)

The definition is now straightforward. Variables are handled by projec-
tion from the environment; for applications, we extend the arguments
tuple; when we go under a constructor, the old arguments tuple becomes
the new environment tuple.

ufoldBody {do’s} es (V v) fs t 7→ es.v fs t
ufoldBody {do’s} es (F ·A) fs t 7→

ufoldBody {do’s} es F (ufoldBody {do’s} es A, fs) t
ufoldBody {do’s} es (D v) fs (con t) 7→

doCon v (ufoldBody {do’s} fs (δv) () t)
ufoldBody {do’s} es 1 () void 7→ doVoid
ufoldBody {do’s} es (S+T) () (inl s) 7→

doInl (ufoldBody {do’s} fs S () s)
ufoldBody {do’s} es (S+T) () (inr t) 7→

doInr (ufoldBody {do’s} fs T () t)
ufoldBody {do’s} es (S×T) () (pair s t) 7→

doPair (ufoldBody {do’s} fs S () s)
(ufoldBody {do’s} fs T () t)

When we come to define ufold in terms of ufoldBody, we should like
simply to instantiate the latter, taking Λ to be ε and es to be (). Un-
fortunately, this does not quite work for an annoying technical reason:
substitution is defined by recursion over type expressions, so as to com-

18

mute with constructors of Ty. Hence, the typechecker cannot tell that
the trivial substitution on closed expressions,

ι : ∀K :2. Var εK → Ty∆ K

is, in fact, the identity. We may, however, prove this fact.

let X : Ty∆ K
idLemma X : X [ι] = X

The proof goes by induction on X . With this knowledge, we may explain
to the typechecker that a UFold for X [ι] is a UFold for X . This = is
‘propositional equality’, a relation internal to our type system. It has a
congruence property which may be used to ‘rewrite’ types:

q : x = y t : T x
q . t : T y

Hence we may define ufold in terms of ufoldBody as follows:

ufold {do’s}X 7→ idLemma X . ufoldBody {do’s}ι ιn () X

All that remains is to define fold by currying ufold. That is, we must
compute a Fold from a UFold. In fact, given the recursive structure of
folds, we shall need to go both ways:

let u : UFoldK Φ X ~Y
Curry K u : FoldK Φ X ~Y

f : FoldK Φ X ~Y
Uncurry K f : UFoldK Φ X ~Y

Curry? u 7→ u()
CurryJ⇒K u f 7→

CurryK (λ ~W . λ~Z . λus. (UncurryJ f , us))

Uncurry? f () 7→ f
UncurryJ⇒K f (u, us) 7→

UncurryK (f (CurryJ u)) us

Hence we may define

foldX doCon doVoid doInl doInr doPair 7→
Curry (ufold doCon doVoid doInl doInr doPair X)

Generic Programming Within Dependently Typed Programming 19

4. Conclusions and further work

The code we have presented in this paper shows how a programming lan-
guage with dependent types can ‘swallow’ another type system by means
of a universe construction, simply by writing down its typing rules as
the definition of an inductive family. Generic programming within that
universe comes from the same notion of computation on codes for types
that we use for ordinary data—codes for types are ordinary data. To
some extent, our work represents not just an implementation of generic
programming, but a formally checked presentation of its theory.

We chose the concrete datatypes of Haskell as our example, deliver-
ing power comparable to that of Generic Haskell [CHJ+01], but we
could equally have chosen Tullsen’s calculus of polyadic functions [Tul00]
or Pierce and Hosoya’s language of generic operations for valid XML
[HVP00]. With dependently types, generic programming is just pro-
gramming: it is not necessary to write a new compiler each time a useful
universe presents itself. Moreover, any instance of a generic program can
be statically checked and should not introduce any overhead at runtime.

In contrast to Generic Haskell where a specific type checker has to be
implemented, in our approach type checking comes for free because we
exploit the stronger type system of our ambient language. Note that the
often cited undecidability of type checking [Aug98] is not an issue here,
because we do not introduce partial functions as indices of types.

This paper’s treatment of generic programming over concrete Haskell
datatypes delivers a basic functionality, but some additional flexibility
is clearly desirable and remains the subject of further work. At present,
our generic operations, such as map and ==, yield a standard behaviour
derived systematically. Ideally, we should be able to override this be-
haviour on an ad hoc basis. It is straightforward to adapt the existing
code, parametrising each operation by its instances for each datatype
and allowing us to plug in either the standard behaviour or our own.

A further concern is that our generic operations at present apply only to
data which is ‘internal’ to the inductive family [[T]]δ. We should also like
to profit from this genericity when manipulating the ‘external’ datatypes
of which our universe makes copies—our programming language’s native
N, Lam, Bush and so on. We need the means to treat the internal
copy as a view, in Wadler’s sense [Wad87], of the external structure.
The same is true of Generic Haskell, where the isomorphisms between
Haskell datatypes and their standardized sum-of-products presentations
are constructed automatically.

20

Dependent types may make this construction easier, for as McBride and
McKinna have shown, views are already first class citizens of a depen-
dently typed language [MM01]—dependency on terms allows admissi-
ble notions of pattern matching to be specified by types. We plan to
integrate this technology with universe constructions, defining generic
programs abstractly over any type which admits the constructors and
pattern matching behaviour appropriate to a given datatype code.

However, the key advantage of the dependently typed approach is this:
it respects the reality that different generic programs work over different
universes. Here, we implemented the concrete datatypes, which admit
generic == and member operations. We could readily extend this uni-
verse to include positive datatypes by adding function spaces in the ap-
propriate way—losing == and member, but retaining map. We could
also shrink it to just the finite datatypes, allowing the listAllElements
operation. Indeed, we can restrict a universe simply by retraction over
just the required type codes. For example, we can recover the Fin uni-
verse via an embedding in N → Ty∆, and hence restore the structure
missing to the internal Lam in ?⇒?.

We contrast this freedom with the ‘compiler extension’ approach, which
privileges the one universe supported by the implementation. This uni-
verse is necessarily as large as possible, resulting in operations which
are undefined at some of types it contains. Although the correspond-
ing type-level ‘match exceptions’ are trapped at compile-time, the types
given to these operations promise more than can be delivered. Some
mitigation is, perhaps, offered by the type class mechanism, which can
be used to constrain the choice of types to smaller sets. But, as McBride
amply demonstrates in [McB01b], type classes do not deliver the power
of inductive families.

By allowing programmers to construct their own universes, we leave
open the question of which universes provide the genericity which is rel-
evant to a particular problem. Indeed, this paper provides considerable
evidence that genericity over nested types is unlikely to be particularly
useful for dependently typed programming—the datatypes we routinely
exploit are indexed over much smaller sets than ?, and are hence more
precisely structured. Whilst it has been shown that invariants such as
squareness of matrices and balancing of trees can be enforced by nested
types [Oka99], it takes an impressive degree of ingenuity to deliver what
are basically trivial instances of dependent types. We have yet to see
which universes capture the classes of dependent datatypes over which
we may wish to abstract.

Generic Programming Within Dependently Typed Programming 21

This work leads us to believe that dependent types provide a natu-
ral setting within which existing and novel notions of genericity can
be expressed and implemented. The theory of dependent type systems
is mature. Indeed, the proposers of a number of type system exten-
sions have already observed the power of that theory in the explana-
tion of their work, even if they stop short of exploiting its full power
[PM97, Tul00, HJ01, RJ01]. Currently, the greatest obstacle for using
dependent types is the shortage of compilers and programming environ-
ments which support them effectively. Removing that obstacle is what
the authors of this paper are about. You have nothing to lose but your
chains, you have universes to gain.

References

[AM02] Thorsten Altenkirch and Conor McBride. Oleg code for Generic Pro-
gramming Within Dependently Typed Programming. Available from
http://www.dur.ac.uk/c.t.mcbride/generic/, 2002.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of
lambda-terms using generalized inductive types. In Computer Science
Logic 1999, 1999.

[Aug98] Lennart Augustsson. Cayenne—a language with dependent types.
In ACM International Conference on Functional Programming. ACM,
September 1998.

[Ben02] Marcin Benke. Towards generic programming in Type Theory. Talk at
the workshop TYPES 2002, Berg en Dal, Netherlands, April 2002.

[BJJM98] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert
Meertens. Generic Programming—An Introduction. In S. Doaitse Sweier-
stra, Pedro R. Henriques, and José N. Oliveira, editors, Advanced Func-
tional Programming, Third International Summer School (AFP ’98);
Braga, Portugal, volume 1608 of LNCS, pages 28–115. Springer-Verlag,
1998.

[BP99] Richard Bird and Ross Paterson. de Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–92, 1999.

[CHJ+01] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit.
The Generic Haskell user’s guide. Technical Report UU-CS-2001-26,
Utrecht University, 2001.

[Coq92] Thierry Coquand. Pattern Matching with Dependent Types. In Proceed-
ings of the Logical Framework workshop at B̊astad, June 1992.

[Dyb91] Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory.
In G. Huet and G. Plotkin, editors, Logical Frameworks. CUP, 1991.

[Hin00] Ralf Hinze. Generic programs and proofs. Habilitationsschrift, Universitt
Bonn, 2000.

[HJ01] Ralf Hinze and Johan Jeuring. Type-indexed datatypes. In preparation.,
2001.

22

[HP00] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Graham
Hutton, editor, Proceedings of the Haskell Workshop 2000, 2000.

[HVP00] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular ex-
pression types for XML. In International Conference on Functional Pro-
gramming, pages 11–22, 2000.

[JBM98] C. Barry Jay, Gianna Belle, and Eugenio Moggi. Functorial ML. Journal
of Functional Programming, 8(6):573–619, 1998.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming
language extension. In Proceedings of POPL ’97, pages 470–482. ACM,
January 1997.

[LP92] Zhaohui Luo and Randy Pollack. LEGO Proof Development System:
User’s Manual. Technical Report ECS-LFCS-92-211, Laboratory for
Foundations of Computer Science, University of Edinburgh, May 1992.

[McB99] Conor McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[McB01a] Conor McBride. The Derivative of a Regular Type is its Type of One-
Hole Contexts. Electronically available, 2001.

[McB01b] Conor McBride. Faking It: Simulating Dependent Types in Haskell. J.
Functional Programming, 2001. Accepted; to appear.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[MM01] Conor McBride and James McKinna. The view from the left. Submitted
to the Journal of Functional Programming, Special Issue: Dependent
Type Theory Meets Programming Practice, December 2001.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory. An Introduction. Oxford University Press,
1990.

[Oka99] Chris Okasaki. From Fast Exponentiation to Square Matrices: An Ad-
venture in Types. In ACM International Conference on Functional Pro-
gramming ’99, 1999.

[PH+99] Simon Peyton Jones, John Hughes, et al. Haskell 98: A non-strict purely
functional language. Available from: http://www.haskell.org/, 1999.

[PM97] Simon Peyton Jones and Erik Meijer. Henk: a typed intermediate lan-
guage, 1997. ACM Workshop on Types in Compilation.

[PR98] H. Pfeifer and H. Rueß. Polytypic abstraction in type theory. In Roland
Backhouse and Tim Sheard, editors, Workshop on Generic Programming
(WGP’98). Dept. of Computing Science, Chalmers Univ. of Techn. and
Göteborg Univ., June 1998.

[RJ01] Jan-Willem Roorda and Johan Jeuring. Pure type systems for functional
programming. In preparation, 2001.

[Tul00] Mark Tullsen. The Zip Calculus. In Roland Backhouse and José Nuno
Oliviera, editors, Mathematics of Program Construction, volume 1837 of
LNCS, pages 28–44. Springer-Verlag, 2000.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In POPL’87. ACM, 1987.

