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|
An inductive definition

Rose trees:

data R : Set where
leaf : R
node: (n:N) (f: Finn— R)— R

We can represent R as a functor.

F: Set — Set
FX=TWEN(An— Finn— X)

T is the initial algebra of F.
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An inductive recursive definition

A universe closed under N and 1

data U : Set
El: U — Set

data U where

nat: U

m:(a:U)— (Ela—U)—- U
El nat =N

El (m ab)=(x: Ela)— El (b x)

We also have an initial algebra semantics here.
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The category of Families

We define the category of families.
Objects are given as:

record Fam (D : Set;) : Set; where
U: Set
T:-U—D

and morphisms as:
record Fam — (U, T) (U', T') : Fam D) : Set; where
f-Uu—=UuU
A:(x:U)—-Tx=T (fx)

Note that this not equivalent to Set/D because D is large!
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An Endofunctor on Fam Set

Our inductive recursive definition corresponds to an endofunctor on
Fam Set:

Fy : Fam Set — Set
Fu(UT)=TWwXUMAx—Tx—U)
Fr:(UT: Fam Set) — Fy UT — Set
Fr (U, T) (inj; tt) =N
Fr (U,T) (injz (a,b))=(x:Ta)— T (bx)
F : Fam Set — Fam Set
F UT = record {

U= Fy UT;

T=FUT}

(U, El) is the initial algebra of F.
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Representing inductive definitions

Not every functor defines a data type.

We are only interested in strictly positve inductive definitions.
We can codify inductive definitions as follows:

data /D : Set; where
v:ID
o:(S:Set)—(¢p:S—ID)— ID
d:(P:Set)—(¢:ID)— ID
Each code gives rise to an endofunctor:

[]:ID— Set— Set

Me] X=T

[c SO X=2S(As—[¢s]X)
[6Pp]IX=(P—=X)x[o] X

R:ID
R = o Bool (A b—if bthen .
else o N (A n— 0 (Fin n) )
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Representing inductive recursive definitions

Following Dybjer/Setzer:

data /R (D : Set;) : Set; where
t:D—IRD
c:(S:Set)—=(¢p:S—=IRD)—IRD
:(P:Set)—(¢p:(P—-D)—IRD)—IRD

UEI : IR Set
UEl = o Bool (A b—if bthen N
elsed T (ANa—d(att)
Ab—v((x:att)—bx
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Semantics

[1y:¥{D}— IR D— Fam D — Set
[.-1, WUT)=T
[cSol, (UT)=SAs—=[os]y (U, T)

[oP¢ly (U, T)=
r(PoUy(Aus—=lo(Ap—T(usp)ly (U, T))

[Ll;: Vv{D}—=(¢:IRD)(UT:FamD)—[¢], UT - D
[cdlr (UT)- =d

HJS(b]]T(U?T)(SaX) :II¢S]]T(U7T)X

[6P¢lr (UT)(us,x)=[¢(Ap—T (usp)ls (U T)x
[L1:v{D}—IRD— FamD — Fam D

(el (U, T)= ([0 1y (U, 7). (le 17 (U, T))
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So far so good

@ So far we have been able to develop inductive-recursive
definitions in analogy to inductive definitions.

@ Both give rise to an initial algebra semantics.
@ Both can be codified using Dybjer-Setzer codes.
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Container

We can compute a normal form for inductive definitions:

record Cont : Set; where
constructor _ <1_
field
S: Set
P:S— Set

[_]:Cont — Set — Set
[S<P]A=XS(As—Ps—A)

Container can be coerced into ID:

emb : Cont — ID
emb(S<P)=cS(As—=d(Ps))
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Container normal form

Any inductive definition can be normalized to a container:

tc: Cont

lc = T<aA_— L

oc:(S: Set) — (S — Cont) — Cont

oc SF=X S(As— Cont.S (F s))
<A s — Cont.P (F (proj; s')) (projo s')

dc: (P: Set) — Cont — Cont

dcP(S<Q)=S<a(As—Puy(Q)5))

enf: ID — Cont

cenf =1c

enf (o0 S ¢) =0c S(As—cnf (¢ 8))

enf (6 P ¢) = d¢c P (enf ¢)
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Applications of containers

Using containers to represent inductive definitions we can

@ Derive a semantically complete, small representation of
morphisms

© Show that inductive definitions are closed under composition
(giving rise to a 2-category)
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Container morphisms

We can calculate the representation using Yoneda:

record ContM ((S, P) (T, Q) : Cont) : Set where
field
f:S—T
r:(s:S)—=Q(fs)—»Ps
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Horizontal composition

I: Cont
I=T<(A_—=T)
_o_:Cont — Cont — Cont
(S<aP)o(T<Q)=(£ES(As—Ps—T))
< (A sf =X (P (projs sf)) (A p— Q (projz sf p)))
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Containers for IR?

@ We cannot computer a container normal form for IR since o and §
do not commute.

@ Can we still establish the same results as for inductive definitions?

@ a complete notion of morphisms
@ composition of IR definitions
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Recursive definitions of morphisms

@ Neil and Hank showed that IR morphisms can be calculated
recursively.

@ For illustration | show how this works for ID (without calculating the
container normal form).
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_= :ID— ID— Set

L= =T

t=08S¢p =XSA\s—1=¢58)
t=0P¢ =(P=>L)x1=¢
cSop=9p=(5:S)—>ps=1
SPop=1v =0¢= (o P+)

_o +:ID— Set— ID

to P+ =1
cdSpoP+ =S (As—(¢8)oP+)
dQ¢poP+ =0 (Q— Maybe P)
(A f— 3 (X Q ()N q— fq=nothing)) (¢ o P+))
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Recursive composition?

The question remains can we define horizontal composition
recursively?

Again we only look at /D only (but do not exploit container normal
form).

_xID_:ID—ID—ID

t X ID =1
cS¢opxIDyp=0cS(As—¢sxIDy)
SP¢pxIDp=5P (¢ xID)
_o_:D— ID—ID

Loy =1
cSpotp=08(As—(pSo))
dPporp=(P = ) x ID (¢o)

But how to define P= ?
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Summary

@ We don’t have a normal form for IR codes.
@ We can define a complete notion of morphisms by recursion.
@ But it is not clear wether IR codes are closed under composition.
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