The Coherence
Problem in Hol T

Thorsten Altenkirch
FP Away Day 2014

Before the revolution...

* [n Intensional Type Theory the equality type

data _=_ {A : Set} (x : A) : A 5 Set where

refl : x = X

* reflects definitional equality
* s proof-irrelevant
* IS not extensional :
* does not validate functional extensionality

e does not validate univalent

..after the revolution

 In HoI T the equality type:
* does not reflect propositional equality
* |S proof relevant
* |S extensional
e validates functional extensionality

e validates univalence

Are we happy now?

FRva -

T /,

Vladimir Voevodsky

Voevodsky's exercise

Semisimplicial Types

(Xe : U)
(X1 : Xe » Xo > U)

(X2 : {Xo X1 X2 : Xeo})
> X1 X0 X1 » X1 X1 X2 » X1 Xe Xz » U

(X3 : {Xo x1 x2 x3 : Xo}
: X1 Xo Xi}t{x1z : X1 X1 Xz2}{Xez : X1 Xe Xz}
: X1 Xxeo x3F{x13 : X1 X1 x3}{xz23 : X1 Xz X3}
X001 X0o2
X001 X003
X002 X003
X12 X13

SSType in old Type Theory

record A (mn : N) : U where
field
f : Fin (suc m) » Fin (suc n)
1sMonotone : monotone f
1sInjective : 1injective f

record SSet : Ui where
field
X : N> U
Xm: v {m}{n} - Amn->Xn->Xm
Xid : vim}i{x : X m} - Xm 1dA x = X
Xo : v {1} {mt{n}{f : Amnt{g : A1 mi{x : X n}
> Xm (f oA g) x = Xmg (Xm f x)

SSType in HolT 7

e This does not work in HoTT.

e Equality is proof-relevant!

 Hence to be equivalent to the context we need
to add coherence laws.

Coherence Laws”?

E.g. There are two ways to prove :

1. Using (YRR and that Xm
preserves equality.

2. Using Xo
and Xid :

and transitivity.

And we need them to be equall

Coherence laws ...

* There are infinitely many such laws at higher
dimensions.

e Defining the type of coherence laws doesn't
seem easier than defining SSType itself!

Genius needed!

But maybe there is another way to define SSet
avoiding the coherence problem!
E.g. can't we define the approximations

SSetN : N » U

using recursion”
Many have tried ...

But nobody has succeeded!

Strict equality”?

 But do we really need to solve a coherence
problem to define SSType?

 \WWe want the equalities in the presheat definition
to be strict!

* SO0 that the approximations are strictly
iIsomorphic to the corresponding contexts.

Strict Equality 7?7

* We would like to have access to a strict equality
that reflects definitional equality.

e |et's write = for the extensional equality from
HoTT and = for the strict equality.

 But we cannot have two ditferent equalities
because we canshowa=b - a=D0b!

Dan Grayson

HTS

Features extensional equality (=)
and strict equality (=)

Strict equality uses equality reflection (as in NuPRL).
Hence type-checking is undecidable.

Distinguishes between pretypes (like a = b) and

types (like a = b).

Extensional equality can only eliminate over types.

Hence a = b does not entall a = b.

An alternative to HTS

Since HTS is based on Extensional Type Theory it
cannot be easily simulated in Agda or Coq.

| propose an alternative which | have implemented
in Agda

It also differs from HTS in that we can define
dependent types from fibrations.

| am not yet sure wether | can already define
semisimplicial types.

A universe ...

data U : Set
El - U » Set

data U where

Fl A - U) - U
U

El A - U) -

u} - E1 A - E1 A - U

(x : E1 A) - E1 (B x)
> (E1 A) (A x - E1 (B x))

.. With extensional equality

refl~ : {A : U}l{x : El A} - EIl (x ~ X)

J~ : {A : U}{a : E1 A}
(P : {a' : E1 A} - EI1
- E1 (P refl~)
- {a' : E1l A} (p : E1

ext : {A : U}{B : E1 A - U}{f £' :
- ({x : E1 A} - E1 ((f x) ~ (f'
-~ E1 (£ ~ £")

ua : {A B : E1 UU}{p : E1 (A ~ B)} — 1isEquiv (coe p)

Here Agda’s = plays the role of strict equality.

~ represents extensional equality.
Agda types correspond to pretypes.

While elements of U correspond to proper
(extensional) types.

We cannot prove a ~ b implies a = b because J~
only eliminates over types.

What Is a fibration”

isFib {A} {B} £ : : E1 B)(p ¢« E1 (£ a ~ b))

]
[b' € E1 B]
(fa ~Db")}

Projections are fibrations

1sFi1ibFst : {A : : E1 A - U} - 1sFib (fst {A} {B})

We need an extra assumption:

p = cong~ fst cong~[p , g |

A new type former

data U where

Fam : {A B : U}(f : E1 A - E1 B) - isFib f - E1 B - U

Conclusions

 We can show that types are closed under strict
pullbacks.

e We can also define strict versions of certain
presheaf categories.

 Can we define SSType?

