How **not** to prove Strong Normalisation

based on joint work with James Chapman

Thorsten Altenkirch

School of Computer Science and IT University of Nottingham

April 11, 2007

Long time ago ...

- 1993 A formalization of the strong normalization proof for System F in LEGO
 Typed Lambda Calculi and Applications (TLCA)
- 1993 Constructions, Inductive Types and Strong Normalization PhD thesis, University of Edinburgh
- 1994 Proving Strong Normalization of CC by Modifying Realizability Semantics Types for Proofs and Programs (TYPES), 1994

Strong Normalisation?

- A reduction relation $\triangleright \subseteq \operatorname{Tm} \times \operatorname{Tm}$ is *strongly normalizing*, if all sequences $t_0 \triangleright t_1 \triangleright t_2 \triangleright \dots$ are finite.
- If ▷ is strongly normalizing and confluent, then the associated equivalence relation relation ≃⊆ Tm × Tm is decidable.
- ullet Example: eta-reduction, the congruence closure of

$$(\lambda x.t)u \triangleright t[x=u]$$

is strongly normalizing on terms typable in the simply typed λ calculus. (Tait 1967).

- The same is true for terms typable in System F proven by Girard, 1972 using candidates of reducibility.
- See Proofs and Types, 1989 by Girard, Taylor and Lafont.

Questions

• How to deal with η -expansion?

$$t \triangleright \lambda x.t x$$

- How to deal with stronger theories?
 E.g. strong products or coproducts?
 Dependent types . . .
- How to combine with substitution? E.g. λ^{σ} + β -reduction is not strongly normalizing Mellies, 1995
- Is there a better way to tell the story?
- And who would implement normalisation like this?

```
while redex left do
  replace redex by reduct
```

Normalisation API

$$Nf \sigma \subseteq Tm \sigma$$

$$\frac{t \in Tm \sigma}{\text{nf } t \in Nf \sigma}$$

$$\frac{t \simeq u}{\text{nf } t = \text{nf } u} \qquad \overline{t \simeq \text{nf } t}$$

Implementations

- Strong normalisation.
- Normalisation by evaluation (NbE).
 Berger and Schwichtenberg, 1991
- Big step normalisation (BSN).

The simply typed λ calculus

$$\frac{t \in \operatorname{Tm} \Gamma \sigma}{v_0 \in \operatorname{Tm} \Gamma.\sigma \sigma} \frac{t \in \operatorname{Tm} \Gamma \sigma}{t^{+\tau} \in \operatorname{Tm} \Gamma.\tau \sigma} \frac{t \in \operatorname{Tm} \Gamma.\sigma \tau \quad u \in \operatorname{Tm} \Gamma \sigma}{t[u] \in \operatorname{Tm} \Gamma \tau}$$

$$\frac{t \in \operatorname{Tm} \Gamma.\sigma \tau}{\lambda^{\sigma} t \in \operatorname{Tm} \Gamma \sigma \to \tau} \frac{t \in \operatorname{Tm} \Gamma \sigma \to \tau \quad u \in \operatorname{Tm} \Gamma \sigma}{t u \in \operatorname{Tm} \Gamma \tau}$$

Families of congruences $\simeq_{\rm w}, \simeq_{\beta}, \simeq_{\beta\eta} \subseteq ({\rm Tm}\,\Gamma\,\sigma)^2$:

$$\simeq_{\mathrm{w}}$$
 weak equality, closed under
$$(\lambda^{\sigma}t)u \simeq_{\mathrm{w}} t[u] \quad (\beta) \text{ but not under } \frac{t \simeq u}{\lambda^{\sigma}t \simeq \lambda^{\sigma}u} \quad (\xi).$$

- \simeq_{β} closed under (β) and (ξ) .
- $\simeq_{\beta\eta}$ closed under $(\beta),(\xi)$ and $\lambda^{\sigma}(t^{+\sigma}v_0)\simeq_{\beta\eta}t$ (η)

Big step normalisation

Implement an evaluator:

$$\frac{t \in \operatorname{Tm} \Gamma \sigma \quad \vec{v} \in \operatorname{Env} \Delta \Gamma}{\operatorname{eval} t \, \vec{v} \in \operatorname{Val} \Delta \sigma}$$

using an environment machine.

We define a function

$$\frac{\mathbf{v} \in \operatorname{Val} \Gamma \, \sigma}{\operatorname{quote}^{\mathbf{w}} \, \mathbf{v} \in \operatorname{Nf} \Gamma \, \sigma}$$

- We show (using Tait's method) that for all $t \in \operatorname{Tm} \Gamma \sigma$
 - eval $t \vec{v}$ terminates returning v.
 - 2 and quote^w $v \simeq_w t$

Big step normalisation ...

- To reflect \simeq_{β} and $\simeq_{\beta\eta}$ we define quote^{$\beta\eta$} and quote^{$\beta\eta$}.
- We also show:

$$\frac{t =_{w} u}{\text{eval } t \, \vec{v} = \text{eval } u \, \vec{v}}$$

$$\inf t = \operatorname{quote}^{\operatorname{w}}(\operatorname{eval} t \operatorname{id})$$

where $id \in Env \Gamma \Gamma$ is the identity environment.

$$\frac{t \in \operatorname{Tm} \Gamma \sigma \quad \vec{v} \in \operatorname{Env} \Delta \Gamma}{\operatorname{eval} t \, \vec{v} \in \operatorname{Val} \Delta \sigma} \qquad \frac{f \in \operatorname{Val} \Gamma \left(\sigma \to \tau\right) \quad v \in \operatorname{Val} \Gamma \sigma}{f@v \in \operatorname{Val} \Gamma \tau}$$

$$\begin{array}{rcl} \operatorname{eval} \mathbf{v}_{0} \left(\vec{v}, \mathbf{v} \right) &=& \mathbf{v} \\ \operatorname{eval} t^{+\sigma} \left(\vec{v}, \mathbf{v} \right) &=& \operatorname{eval} t \, \vec{\mathbf{v}} \\ \operatorname{eval} \left(\lambda^{\sigma} t \right) \vec{\mathbf{v}} &=& \left(\lambda^{\sigma} t \right) [\vec{\mathbf{v}}] \\ \operatorname{eval} \left(t \, u \right) \vec{\mathbf{v}} &=& \left(\operatorname{eval} t \, \vec{\mathbf{v}} \right) @ \left(\operatorname{eval} u \, \vec{\mathbf{v}} \right) \end{array}$$

$$(\lambda^{\sigma} t[\vec{v}])@v = \text{eval } t(\vec{v}, v)$$

 $n@v = n v$

Val, Ne

$$\frac{t \in \operatorname{Tm} \Gamma. \sigma \tau \quad \vec{v} \in \operatorname{Env} \Delta \Gamma}{\lambda^{\sigma} t[\vec{v}] \in \operatorname{Val} \Delta (\sigma \to \tau)} \qquad \frac{n \in \operatorname{Ne} \Gamma \sigma}{n \in \operatorname{Val} \Gamma \sigma}$$

$$\frac{x \in \operatorname{Var} \Gamma \sigma}{x \in \operatorname{Ne} \Gamma \sigma} \qquad \frac{n \in \operatorname{Ne} \Gamma (\sigma \to \tau) \quad v \in \operatorname{Val} \Gamma \sigma}{n \, v \in \operatorname{Ne} \Gamma \tau}$$

$$\frac{\vec{v} \in \operatorname{Env} \Gamma \Delta \quad v \in \operatorname{Val} \Gamma \sigma}{(\vec{v}, v) \in \operatorname{Env} \Gamma \Delta . \sigma}$$

where $\operatorname{Var} \Gamma \sigma \subseteq \operatorname{Tm} \Gamma \sigma$ only using v_0 and $t^{+\sigma}$.

Partiality

- It is not clear, that eval and @ are total.
 We use ideas from Bove & Capretta.
- We use inductively defined relations:

$$\frac{t \in \operatorname{Tm} \Gamma \sigma \quad \vec{v} \in \operatorname{Env} \Delta \Gamma \quad w \in \operatorname{Val} \Delta \sigma}{\operatorname{eval} t \, \vec{v} \downarrow w \in \operatorname{Prop}}$$

$$\frac{f \in \operatorname{Val} \Gamma (\sigma \to \tau) \quad v \in \operatorname{Val} \Gamma \sigma \quad w \in \operatorname{Val} \Gamma \tau}{f@v \downarrow w \in \operatorname{Prop}}$$

We write

eval
$$t \vec{v} \downarrow = \exists w.\text{eval } t \vec{v} \downarrow w$$

 $f@v \downarrow = \exists w.f@v \downarrow w$

• We can define total versions of eval and @ by structural induction over eval $t \vec{v} \downarrow$ and $f@v \downarrow$.

quote

$$\frac{\mathbf{v} \in \operatorname{Val} \Gamma \, \sigma}{\operatorname{quote} \, \mathbf{v} \in \operatorname{Nf} \Gamma \, \sigma}$$

quote^w
$$(\lambda^{\sigma} t[\vec{w}]) = \lambda^{\sigma} t[\vec{w}]$$

quote^{\beta} $(\lambda^{\sigma} t[\vec{w}]) = \lambda^{\sigma} \text{quote}^{\beta} (\text{nf } t \vec{v})$
quote^{\beta_{\sigma \to \tau} f = \lambda^{\sigma} \text{quote}^{\beta_{\eta} \eta} (f^{+\sigma} \mathbf{0} \varphi_0)}

Strongly computable

$$\frac{\forall v. SCV^{\sigma} \ v \implies f@v \downarrow w \land \text{quote } w =_{w} (\text{quote } f) (\text{quote } t)}{SCV^{\sigma \to \tau} f}$$

$$\frac{\forall \vec{v}.\text{SCV }\vec{v} \implies \text{eval }t \vec{v} \downarrow w \land t[\text{quote }\vec{v}] = \text{quote }w \land \text{SCV }w}{\text{SCT }t}$$

Theorem
$$\frac{t \in \operatorname{Tm} \Gamma \sigma}{\operatorname{SCT}^{\sigma} t}$$
 by induction over t .

Corollary
$$\frac{t \in \operatorname{Tm} \Gamma \sigma}{\inf t \downarrow v \land \operatorname{quote} v \simeq_{w} t}$$

Conclusions

- Big step normalisation (BSN) is an alternative to using small step reduction and prove strong normalisation and confluence.
- We hope that BSN leads to simpler or new proofs for typed λ calculi.
- The definition of nf is similar to the ones actually used in implementations.
- It seems straightforward to implement a substitution calculus similar to $\lambda^{\sigma} + \beta \eta$.
- Unlike Normalisation by evaluation we don't need higher order functions.
- See Tait in one big step
 (joint with James Chapman, MSFP 06) for an application of
 BSN to combinatory logic.