How not to prove

Strong Normalisation
based on joint work with James Chapman

Thorsten Altenkirch

School of Computer Science and IT
University of Nottingham

April 11, 2007

Thorsten Altenkirch bctcs07

1993 A formalization of the strong normalization proof
for System F in LEGO
Typed Lambda Calculi and Applications (TLCA)
1993 Constructions, Inductive Types
and Strong Normalization
PhD thesis, University of Edinburgh
1994 Proving Strong Normalization of CC by Modifying
Realizability Semantics
Types for Proofs and Programs (TYPES), 1994

Thorsten Altenkirch bctcs07

Strong Normalisation ?

@ A reduction relation > C Tm x Tm is strongly normalizing,
if all sequences ty > t; > t > ... are finite.

@ If > is strongly normalizing and confluent, then the
associated equivalence relation relation ~C Tm x Tm is
decidable.

@ Example: g-reduction, the congruence closure of
(Ax.tHu o tx = u]

is strongly normalizing on terms typable in the simply typed
A calculus. (Tait 1967).

@ The same is true for terms typable in System F
proven by Girard, 1972 using candidates of reducibility.

@ See Proofs and Types, 1989 by Girard, Taylor and Lafont.

Thorsten Altenkirch bctcs07

Questions

@ How to deal with n-expansion?
> Ax.tx

@ How to deal with stronger theories?
E.g. strong products or coproducts?
Dependent types ...

@ How to combine with substitution?
E.g. A? + -reduction is not strongly normalizing
Mellies, 1995

@ Is there a better way to tell the story?
@ And who would implement normalisation like this?

while redex left do
replace redex by reduct

Thorsten Altenkirch bctcs07

Normalisation API

Nfo C Tmo

te Tmo
nft € Nfo

t~u
nft =nfu t~nft

Thorsten Altenkirch bctes07

Implementations

@ Strong normalisation.

@ Normalisation by evaluation (NbE).
Berger and Schwichtenberg, 1991

@ Big step normalisation (BSN).

Thorsten Altenkirch bctcs07

The simply typed)\ calculus

teTmlo teTmlor ueTmlo

vo € Tml.oo 7 € Tmlro t{u] € TmT 7
te Tml.oT teTmlo—-7 ueTmlo
NteTmlo — 7 tue Tmlr

Families of congruences =~ ~3, ~3,C (TmT 0)2:
~, weak equality, closed under
t~u
(A tu ~y tlu] (B) but not under ————— ().
At~ \u
~; closed under (3) and (&).

~4, closed under (8), (¢) and
A7(t47 Vo) ~gn t (1)

Thorsten Altenkirch bctcs07

Big step normalisation

@ Implement an evaluator:

te TmlFo VeEEnwAT

evaltV € Val Ao

using an environment machine.
@ We define a function

veVallo

quote™ v € Nfl o

@ We show (using Tait’s method) that
forallt e Tml o

@ evalt vV terminates returning v.
@ and quote™ v ~ t

Thorsten Altenkirch bctcs07

Big step normalisation ...

@ To reflect ~5 and ~, we define quote” and quote””.

@ We also show:
t:W u

eval t V =eval u v

nf f = quote™ (eval tid)

where id € Env I T is the identity environment.

Thorsten Altenkirch bctcs07

eval

te TmlFe V eEEnvAT

feVall (c - 7) veVallo

evaltVv € ValA o

eval vg (V, V)
eval tt7 (V, v)
eval (\7t) v

%

eval (tu)

(\7t[V])@v
n@v

fOQv ¢ Vall' 7

v

eval t v

(A7 0)V]

(eval t V)@(eval u V)

= evalt(V,v)
= nv

Thorsten Altenkirch bctes07

te Tml.or VeEEnvAT neNel o
A7t[V] € ValA (o — 7) ne Vvall o

x € Varl o neNel(c —7) veVallo

X€eNelo nveNelr

VEENWIA veVallo
() €Envle (V,v) €Envl Ao

where Varl' o C TmTl o
only using vo and t+7.

Thorsten Altenkirch bctes07

Partiality

@ ltis not clear, that eval and @ are total.
We use ideas from Bove & Capretta.
@ We use inductively defined relations:

teTmlFfoe VeEEnwAl weValAo

evaltv | w € Prop

feVall (c —7) veVallo weVallr

fGv | w € Prop

@ We write

evaltvVv | = 3wevaltv | w
fov]| = 3Iw.fov | w

@ We can define total versions of eval and @ by structural
induction over eval t v | and f@v |.

Thorsten Altenkirch bctcs07

veValo

quote v € Nfl o

quote™ (A t[w]) = A7t[w]

quote” (\°t[w]) = A quote’(nft V)
quote’” _f = Aquote”(f+7@vy)

Thorsten Altenkirch bctes07

Strongly computable

Vv.SCV? v = f@v | w A quote w =y, (quote f) (quote t)
SCV7—T f

VV.SCVV = evaltV | w A t[quote V] = quote w A SCV w

SCTt
teTml o . .
Theorem — by induction over t.
SCT t
teTmlo

Corollary

nft | v AquoteV ~ t

Thorsten Altenkirch bctcs07

Conclusions

Big step normalisation (BSN) is an alternative to using
small step reduction and prove strong normalisation and
confluence.

We hope that BSN leads to simpler or new proofs for typed
A calculi.

The definition of nf is similar to the ones actually used in
implementations.

It seems straightforward to implement a substitution
calculus similar to A7 + 3.

Unlike Normalisation by evaluation we don’t need higher
order functions.

See Tait in one big step

(joint with James Chapman, MSFP 06) for an application of
BSN to combinatory logic.

Thorsten Altenkirch bctcs07

