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Strong Normalisation ?

@ A reduction relation > C Tm x Tm is strongly normalizing,
if all sequences ty > t; > t > ... are finite.

@ If > is strongly normalizing and confluent, then the
associated equivalence relation relation ~C Tm x Tm is
decidable.

@ Example: g-reduction, the congruence closure of
(Ax.tHu o tx = u]

is strongly normalizing on terms typable in the simply typed
A calculus. (Tait 1967).

@ The same is true for terms typable in System F
proven by Girard, 1972 using candidates of reducibility.

@ See Proofs and Types, 1989 by Girard, Taylor and Lafont.
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Questions

@ How to deal with n-expansion?
> Ax.tx

@ How to deal with stronger theories?
E.g. strong products or coproducts?
Dependent types ...

@ How to combine with substitution?
E.g. A? + -reduction is not strongly normalizing
Mellies, 1995

@ Is there a better way to tell the story?
@ And who would implement normalisation like this?

while redex left do
replace redex by reduct
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Normalisation API

Nfo C Tmo

te Tmo
nft € Nfo

t~u
nft =nfu t~nft
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Implementations

@ Strong normalisation.

@ Normalisation by evaluation (NbE).
Berger and Schwichtenberg, 1991

@ Big step normalisation (BSN).
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The simply typed )\ calculus

teTmlo teTmlor ueTmlo

vo € Tml.oo 7 € Tmlro t{u] € TmT 7
te Tml.oT teTmlo—-7 ueTmlo
NteTmlo — 7 tue Tmlr

Families of congruences =~ ~3, ~3,C (TmT 0)2:
~, weak equality, closed under
t~u
(A tu ~y tlu] (B) but not under ————— ().
At~ \u
~; closed under (3) and (&).

~4, closed under (8), (¢) and
A7(t47 Vo) ~gn t (1)
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Big step normalisation

@ Implement an evaluator:

te TmlFo VeEEnwAT

evaltV € Val Ao

using an environment machine.
@ We define a function

veVallo

quote™ v € Nfl o

@ We show (using Tait’s method) that
forallt e Tml o

@ evalt vV terminates returning v.
@ and quote™ v ~ t
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Big step normalisation ...

@ To reflect ~5 and ~, we define quote” and quote””.

@ We also show:
t:W u

eval t V =eval u v

nf f = quote™ (eval tid)

where id € Env I T is the identity environment.
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eval

te TmlFe V eEEnvAT

feVall (c - 7) veVallo

evaltVv € ValA o

eval vg (V, V)
eval tt7 (V, v)
eval (\7t) v

%

eval (tu)

(\7t[V])@v
n@v

fOQv ¢ Vall' 7

v

eval t v

(A7 0)V]

(eval t V)@(eval u V)

= evalt(V,v)
= nv
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te Tml.or VeEEnvAT neNel o
A7t[V] € ValA (o — 7) ne Vvall o

x € Varl o neNel(c —7) veVallo

X€eNelo nveNelr

VEENWIA veVallo
() €Envle (V,v) €Envl Ao

where Varl' o C TmTl o
only using vo and t+7.
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Partiality

@ ltis not clear, that eval and @ are total.
We use ideas from Bove & Capretta.
@ We use inductively defined relations:

teTmlFfoe VeEEnwAl weValAo

evaltv | w € Prop

feVall (c —7) veVallo weVallr

fGv | w € Prop

@ We write

evaltvVv | = 3wevaltv | w
fov]| = 3Iw.fov | w

@ We can define total versions of eval and @ by structural
induction over eval t v | and f@v |.
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veValo

quote v € Nfl o

quote™ (A t[w]) = A7t[w]

quote” (\°t[w]) = A quote’(nft V)
quote’” _f = Aquote”(f+7@vy)
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Strongly computable

Vv.SCV? v = f@v | w A quote w =y, (quote f) (quote t)
SCV7—T f

VV.SCVV = evaltV | w A t[quote V] = quote w A SCV w

SCTt
teTml o . .
Theorem — by induction over t.
SCT t
teTmlo

Corollary

nft | v AquoteV ~ t
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Conclusions

Big step normalisation (BSN) is an alternative to using
small step reduction and prove strong normalisation and
confluence.

We hope that BSN leads to simpler or new proofs for typed
A calculi.

The definition of nf is similar to the ones actually used in
implementations.

It seems straightforward to implement a substitution
calculus similar to A7 + 3.

Unlike Normalisation by evaluation we don’t need higher
order functions.

See Tait in one big step

(joint with James Chapman, MSFP 06) for an application of
BSN to combinatory logic.
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