
Towards higher models and syntax of type theory
jww Paolo Capriotti, Ambrus Kaposi, Nicolai Kraus

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

June 5, 2018

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 1 / 23



Type Theory in Type Theory

Plan: develop the metatheory of type theory.

What language should we use for this?

Type Theory!

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 2 / 23



Extrinsic Syntax

Common presentation of type theory:
I Sets of preterms (t), precontexts (Γ) and pretypes (A),. . .
I Inductively defined typing relations include

F Context validity ` Γ
F Type validity Γ ` A
F Typing Γ ` t : A
F Convertibility of terms Γ ` t ≡ t′ : A
F Convertibility of types Γ ` A ≡ A′

From this we can derive e.g. typable terms

Tm0(Γ,A) = {t | Γ ` t : A}

And quotient them by derivable equality

Tm(Γ,A) = Tm0(Γ,A)/(λt, t ′.Γ ` t ≡ t ′ : A)

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 3 / 23



Intrinsic syntax

Why do we define untyped objects, if we are only interested in typed
ones?

The extrinsic approach is conceptually misleading and justifies many
unnecessary complicated developments.

Instead, we can use intrinsic syntax: we only define the typed terms.

Even better: using equality constructors we can also build in the
conversion relation.

We use Quotient Inductive Inductive Types (QIITs), that is mutually
defined HITs, which are set-truncated.

POPL 2016

Type theory in type theory using quotient inductive types
TA, Ambrus Kaposi

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 4 / 23



Type Theory in Type Theory as a QIIT

Con : Set

Ty : Con→ Set

Tm : ΠΓ : Con.Ty(Γ)→ Set

Tms : Con→ Con→ Set

...

Pi : ΠA : Ty(Γ),B : Ty(Γ.A).Ty(Γ)

...

lam : Tm(Γ.A,B)→ Tm(Γ,Pi(A,B))

app : Tm(Γ,Pi(A,B))→ Tm(Γ.A,B)

...

β : Πt : Tm(Γ.A,B).app(lam(t)) = t

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 5 / 23



Categories with families

A category with families (CwF) is given by:

A category of contexts and substitutions Con.

A presheaf of types Ty : Conop → Set

A presheaf of terms over contexts and types
∫
Tyop → Set

A terminal object in Con.

For any A : Ty(Γ), the presheaf

∆ 7→ Σf : Con(∆, Γ).A[f ]

is representable.

For Π-types: . . .

The QIIT defines the initial CwF. The initiality theorem is trivial.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 6 / 23



Decidability

We can show that all the sets (and families) we define have a
decidable equality.

To do this we employ a semantic normalisation proof: normalisation
by evaluation (nbe).

The main idea is to show that evaluation into the CwF of presheaves
over the category of contexts with projections is invertible.

FSCD 2016

Normalisation by Evaluation for Dependent Types
TA, Ambrus Kaposi

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 7 / 23



The truncation problem

We would like to define the standard semantics of type theory,
interpreting types as sets or types.

However, it is not clear how to do this since we have explicitly
truncated the syntax.

And Set is not a set (in the sense of HoTT)!

In our paper we replace set with an inductive-recursive universe, this
is an intensional universe, it is not univalent.

This is unsatisfying, we would like to interpret the syntax in semantic
(i.e. univalent) models.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 8 / 23



An analogy using Z

We can model the integers as the following QIT:

0 : Z
suc : Z→ Z

pred : Z→ Z
sucpred : Πi : Z.suc (pred i) =Z i

predsuc : Πi : Z.pred (suc i) =Z i

isSet : Πi , j : Z.Πp, q : i =Z j → p =i=Zj q

We can show that this set has a decidable equality by normalising
into signed integers.

However, because we truncated we can only eliminate into sets.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 9 / 23



An analogy using Z
We can overcome this problem by replacing isSet by a coherence.
(suggested by Paolo Capriotti)

0 : Z
suc : Z→ Z

pred : Z→ Z
sucpred : Πi : Z.suc (pred i) =Z i

predsuc : Πi : Z.pred (suc i) =Z i

coh : Πi : Z.sucpred (suc i) = resp suc (predsuc i)

Effectively we are saying that suc is an equivalence.

The eliminator is more flexible because we can eliminate into non-sets
(we do have to verify the coherence condition).

We can still normalize, hence our integers are still a set (and indeed
equivalent to the truncated definition).

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 10 / 23



Can we do something like this for type theory?

1 Define higher CwF with coherence conditions.

2 Construct an initial higher CwF using HIITs.

3 Do the NbE construction for the initial higher CwF (the coherence
conditions should hold in the presheaf model).

4 As a consequence the contexts and types in the initial CwF are still
sets.

5 We have gained a more powerful elimination principle, allowing us to
evaluate into semantic (univalent) models.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 11 / 23



Higher Categories with families

A higher category with families (HCwF) is given by:

A (∞, 1)-category of contexts and substitutions Con.

A higher presheaf of types Ty : Conop → Type, note that Type is an
(∞, 1)-category.

A presheaf of terms over contexts and types
∫
Tyop → Type. We

need to explain
∫

for higher presheaves.

A terminal object in Con.

For any A : Ty(Γ), the higher presheaf

∆ 7→ Σf : Con(∆, Γ).A[f ]

is representable.

For Π-types: . . .

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 12 / 23



1st step

What is an (∞, 1)-category in Type Theory?

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 13 / 23



Semisimplicial types
A semisimplicial type X is an infinite sequence

X0 : Type

X1 : X0 → X0 → Type

X2 : Πx0,x1,x2:X0X1(x0, x1)→ X1(x1, x2)→ X1(x0, x2)→ Type

...
...

We don’t know how to fill in the
... in plain HoTT (open problem).

However, we can define the approximations upto n in a 2-level system.

We can then define the type of semisimplicial types as the limit
(assuming that the strict natural numbers are fibrant).

CSL 2016

Extending Homotopy Type Theory with Strict Equality
TA, Paolo Capriotti and Nicolai Kraus

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 14 / 23



(∞, 1)-semicategories

To define (∞, 1)-semicategories we impose the Segal-condition:
The canonical map from the n-simplex to the n-spine is an equivalence
By the n-spine we mean

Σx0, x1, . . . xn : X0,X1(x0, x1)× X1(x1, x2)× . . .X1(xn−1, xn)

So for example we say that the projection

Σx0,x1,x2:X1 , x01 : X1(x0, x1), x12 : X1(x1, x2), x02 : X1(x0, x2).

X2(x01, x12, x02)

→Σx0,x1,x2:X1 , x01 : X1(x0, x1), x12 : X1(x1, x2)

is an equivalence.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 15 / 23



(∞, 1)-//////semi-categories

How to add the identities (degeneracies) ?

It is not obvious how to define even simplicial types upto n.
We would have to add equalities which trigger higher coherences.

Instead we can add univalence, which says that

Σx1 : X0, f : X1(x0, x1), isEquivalence(f )

is contractible for any x0 : X1.

Univalent (∞, 1)-semicategories have degeneracies (and hence are
(univalent) (∞, 1)-categories).

POPL 18

Univalent Higher Categories via Complete Semi-Segal Types
Paolo Capriotti and Nicolai Kraus

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 16 / 23



Univalence?

Univalent categories can only have sets of objects if they have no
non-trivial equivalences.

This will not be the case for the initial (higher) CwF.

E.g. two contexts that are equivalent are not equal in the syntax.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 17 / 23



Direct replacement

The problem is that ∆ (the simplicial category) is not inverse unlike
∆+ (the semisimplicial category).

A homotopical category has marked equivalences and functors
between them have to preserve them.

Kraus and Sattler present a homotopical category D which is inverse
and whose homotopy category is ∆ (inverting all marked
equivalences).

The replacement of a finite part of ∆ is still finite.

arXiv:1704.04543

Space-Valued Diagrams, Type-Theoretically
Nicolai Kraus, Christian Sattler

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 18 / 23



A sketch of D

(1) (1, 1) (1, 1, 1)

(2) (2, 1)
(1, 2)

(3)

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 19 / 23



Simplicial types (Reedy limit of D)

X1 : Type

X11 : X1 → X1 → Type

X111 : Πx0,x1,x2:X1X11(x0, x1)→ X11(x1, x2)→ X11(x0, x2)→ Type

X2 : Πx0:X1X11(x0, x0)→ Type

c2 : Πx0 : X1.isContr(Σx00 : X11(x0, x0).X2(x00))

X21 : Πx0,x1:X1x00 : X11(x0, x0), x01 : X11(x0, x1).X2(x0)

→ X111(x00, x01, x01)→ Type

c21 : Πx0,x1:X1x01 : X11(x0, x1).isContr(Σx00 : X11(x0, x0),

x2 : X2(x0), x001 : X111(x00, x01, x01.X21(x01, x00, x2, x001))

...
...

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 20 / 23



(non-univalent) (∞, 1)-categories

As for semisimplicial types we can define simplicial types in a 2-level
type theory using D instead of ∆.

We define a (∞, 1)-category to be a simplicial type with the Segal
condition.

Type (Types and functions) is a strict category, hence its nerve is a
strict diagram over ∆ and hence (by fibrant replacement) a simplicial
type.

Morphisms between (∞, 1)-categories are morphisms between the
simplicial types which can be defined level-wise.

Hence we can define higher presheaves over (∞, 1)-categories.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 21 / 23



Next steps

To define the category of elements, we need to define the universe of
simplicial types.

One we have done this we should be able to define higher CwFs.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 22 / 23



Higher Syntax

The idea is to define approximations up to level n as a HIIT.

We can then take the colimit of these approximations and
embeddings as the definition of the syntax.

We need to show that the constructors in the approximations lift to
the colimit.

This forms a HCwF which is the syntax of higher type theory.

It would be interesting but not essential to show that this is initial in
the (2,∞)-category of HCwFs.

Thorsten Altenkirch (Nottingham) Bonn June 2018 June 5, 2018 23 / 23


