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This talk

Containers ≈ strictly positive datatypes.
Type Theory as functional programming
with expressive types (Agda).
Category Theory to keep things organized.
Proof Theory and Computation?
Propositions as Types!
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Overview

1 Tutorial on containers
2 The category of containers (Cont) is cartesian closed

(hence higher order containers).
3 Past and future of containers

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Functorial Semantics of Datatypes

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

ListA = µX .1 + A× X

data RTree : Set where
node : List RTree → RTree

RTree = µList = µY .µX .1 + Y × X

data BTree : Set where
leaf : BTree
node : BTree → BTree → BTree

BTree = µX .1 + X × X

Exercise: Show that RTree and BTree are isomorphic.
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Examples of generic constructions on functors

For any Functor F : Set→ Set→ Set there is a natural
isomorphism:

α : µX .µY .F X Y ' µX .F X X

For any functor G : Set→ Set we can construct the free
monad

FMon G : Set→ Set

FMon G A = µX .A + G X
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Strict positivity

Are we permitted to write µF for any functor F : Set→ Set?
Not every functor F : Set→ Set has an initial algebra, e.g.

F1 X = (X → Bool)→ Bool

F2 X = T (TX )

whereT X = µY .1 + X → Y

In general we require a signature functor to be strictly
positive.
E.g. T N = µY .1 + N→ Y .
Containers: capture strict positivity semantically.
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Definition: Container
A container S C P is given by S : Set (shapes)
and P : S→ Set (positions).
The extension of a container is an endofunctor:

JS C PK : Set→ Set

JS C PK X = Σs : S.P s → X

P s

s : S
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Examples

(A+)X = A + X is given by A+ = JS C PK

S = A + 1
P s = (s = inr ())

List A = µX .1 + A× X is given by List = JN C FinK where

Fin n = {0,1, . . . ,n − 1}
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W-types
The initial algebra of a container S C P always exists and is
called the W-type (W S P : Set) in Type Theory.
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Container morphisms
Given containers S C P,T C Q, a morphism
f C r : Cont (S C P) (T C Q) is given by:

f : S → T
r : Πs : S.Q (f s)→ P s

Its extension Jf C rK is a natural transformation given by
Jf C rK A : JS C PK A→ JT C QK A

: (Σs : S.P s → A)→ (Σt : T .Q t → A)

Jf C rK (s,a) = (f s,a ◦ r s)
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Example: tail

tlA : List A→ List A with hdA [a0,a1, . . . ,an] = [a1, . . . ,an].
hd = Jλn.n − 1 C λn, i .i − 1K

a3

a0 a1

a2 a4

a2 a3 a4

a1
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Example: reverse

revA : List A→ List A with revA [a0,a1, . . . ,an] = [an, . . . ,a1,a0].
rev = Jλn.n C λn, i .n − iK

a0

a1 a2 a3 a4

a4 a3 a2 a1

a0
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Theorem
Every natural transformation between containers

αA : JS C PK A→ JT C QK A
: (Σs : S.P s → A)→ (Σt : T .Q t → A)

is given by a container morphism α = Jf C rK.

Given s : S define
hs : Σt : T .Q t → P s
hs = αP s(s, λp.p)

then set
f : S → T
f s = π0 hs

r : Πs : S.Q (f s)→ P s
r s q = π1 hs
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Constructions on containers

Given S C P,T C Q we define
coproduct

(S C P) + (T C Q) = S + T C

[
inl s 7→ P s
inr t 7→ Q t

]
product

(S C P)× (T C Q) = (s, t) : S × T C P s + Q t

composition

(SCP)◦(TCQ) = (s, f ) : Σs : S.P s → TCΣp : P s.Q(fp)

Coproduct and product generalize (easily) to the infinite cases.
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Composition

P s

...

s : S

Q t

t : T
...
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Example: λ-terms

Λ : Set→ Set is the initial solution to the equation

Λ ' I + Λ× Λ + (I → Λ)

We can eliminate the function space by:

Λ ' I + Λ× Λ + Λ ◦ (+1)

where (+1) X = X + 1.
We are going to show that we can always explain→, i.e. that
Cont is also closed under exponentiation.
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Exponentials of functors

Given functors F ,G : Set→ Set what is their exponential
F → G : Set→ Set (if it exists)?
It has to satisfy

ΠX : Set.(H × F ) X → G X ' ΠX : Set.H X → (F → G) X

where (H × F ) X = H X × F X .

Ends
We write ΠX : Set.Φ X X where F : Setop → Set→ Set for the
coend

∫
X :Set .Φ X X .

Hence ΠX : Set.F X → G X is the (large) set of natural
transformations.
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If the exponential F → G exists, we can calculate it using the
Yoneda lemma.

H X ' ΠY : Set.(X → Y )→ H Y Yoneda

(F → G) X
' ΠY : Set.(X → Y )→ (F → G) Y Yoneda
' ΠY : Set.(X → Y )× F Y → G Y →-adjunction
' ΠY : Set.(X → Y )→ F Y → G Y ×-adjunction

In Set the exponential of functors doesn’t always exist
(see paper).
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What is I → F?

(I → F ) X
' ΠY : Set.(X → Y )× Y → F Y
' ΠY : Set.(X → Y )× (1→ Y )→ F Y
' ΠY : Set.(X + 1→ Y )→ F Y
' F (X + 1)

' (F ◦ (+1)) X

Lemma
In general we have for any P : Set

(P →)→ F ' F ◦ (+P)

where (P →) X = P → X .
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Exponentials of a functor by a container

A container is a coproduct of hom-functors:

JS C PK ' Σs : S.((Ps)→)

Given any functor F : Set→ Set

JS C PK→ F
' (Σs : S.((P s)→))→ F
' Πs : S.((P s)→)→ F
' Πs : S.F ◦ (+P s)

Theorem
The exponential of a functor F by a container S C P always
exists and is given by

JS C PK→ F = Πs : S.F ◦ (+P s)
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Exponentials of containers

Corollary
The exponential of a functor T C Q by a container S C P always
exists and is given by

(S C P)→ (T C Q) = Πs : S.(T C Q) ◦ (+P s)

We can expand this:

S C P → T C Q
' Πs ∈ S.(T C Q) ◦ (+P s)

' Πs ∈ S.(T C Q) ◦ (x : 1 + P s C x = inl ())

' Πs ∈ S.(t , f ) : Σt ∈ T .Q t → 1 + P s C Σq ∈ Q s.f q = inl ()

' f ∈ Πs ∈ S.Σt ∈ T .Q t → 1 + P s
C Σs ∈ S.Σq ∈ Q s.(f s).2 q = inl ()
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Local cartesian closure ?

We can interpret the simply typed λ-calculus in Cont
What about dependent types (local cartesian closure)?
This would give us a notion of a containers for higher order
functors
(e.g. F H = I + H × H + I → H).
While Cont has pullbacks, the local exponentials do not
exist in general (i.e. we have Σ-types but not Π).
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A short history of containers

Abbott,A.,Ghani Categories of Containers (FOSSACS 03)
n-ry containers: Setn → Set

Hyland, Gambino Wellfounded trees and dependent
polynomial functors (TYPES 03)
Dependent polynomial functors: SetI → SetI

Abbott Categories of Containers (PhD 03)
Abott,A,Ghani Containers - Constructing Strictly Positive
Types(TCS 05)
Abbott,A.,Ghani, McBride ∂ for Data (FI 05)
Datatypes with a hole = derivatives
A., Morris Indexed containers (LICS 09)
SetI → Set, model inductive families
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Beyond containers . . .

How to model higher order functors as containers?
(e.g. F H = I + H × H + I → H).
How to interpret inductive recursive definitions?
data U : Set where
nat : U
pi : (a : U) → (T a → U) → U

T : U → Set
T nat = N
T (pi a b) = (x : T a) → T (b x)

Relation to Dialectica interpretation?
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