Higher Order Containers J

ik {
ez il Thorsten Altenkirch §
P80 MJ awork with Sam Staton and Paul Levy)

School of Computer Science

University of Nottingham
: July 4, 2010]:)‘Q‘(\)
I _
HE g
| RreeFof
am reetroro.c#m

This talk

@ Containers = strictly positive datatypes.

@ Type Theory as functional programming
with expressive types (Agda).

@ Category Theory to keep things organized.

@ Proof Theory and Computation?

@ Propositions as Types!

Thorsten CIE 10

Overview

@ Tutorial on containers

© The category of containers (Cont) is cartesian closed
(hence higher order containers).

© Past and future of containers

Thorsten CIE 10

Tutorial

Functorial Semantics of Datatypes

data List (A : Set) : Set where
nil : List A
cons : A — List A — List A

List A=puX1+Ax X

data RTree : Set where
node : List RTree — RTree

RTree = puList = puY.uX1+Y x X

data BTree : Set where
leaf : BTree
node : BTree — BTree — BTree

BTree = uX. 1+ X x X

Exercise: Show that RTree and BTree are isomorphic.

Thorsten CIE 10

Tutorial

Examples of generic constructions on functors

@ For any Functor F : Set — Set — Set there is a natural
isomorphism:

a:uX.pY FXY ~uX.FXX

@ For any functor G : Set — Set we can construct the free
monad

FMon G : Set — Set
FMon GA=uX.A+ GX

Thorsten CIE 10

Tutorial

Strict positivity

@ Are we permitted to write uF for any functor F : Set — Set?
@ Not every functor F : Set — Set has an initial algebra, e.g.

F; X = (X — Bool) — Bool
Fo X = T(TX)
whereT X =puY 1+ X —>Y

@ In general we require a signature functor to be strictly
positive.
Eg. TN=puY14+N-=Y.

@ Containers: capture strict positivity semantically.

Thorsten CIE 10

Definition: Container

A container S < P is given by S : Set (shapes)
and P : S — Set (positions).

The extension of a container is an endofunctor:

[S < P] : Set — Set
[S<P]|X=%Xs:SPs— X

T T

Ps

Thorsten CIE 10

Tutorial

Examples

@ (A+)X=A+ Xisgivenby A+ =[S < P]

S=A+1
Ps=(s=inr())

@ ListA= uX.1+ Ax Xis given by List = [N < Fin] where

Finn={0,1,...,n—1}

Thorsten CIE 10

The initial algebra of a container S < P always exists and is
called the W-type (W S P : Set) in Type Theory.

Thorsten CIE 10

Container morphisms

Given containers S < P, T <1 Q, a morphism
f<r:Cont(S<P)(T < Q) is given by:
f:S—T
r:MNs:S.Q(fs)— Ps
Its extension [f < r] is a natural transformation given by
[f<rfA:[S<P]A—-[T<Q]A
(X8:SPs—A) — (Xt: T.Qt— A)
[f<ar](s,a) =(fs,aors)

Thorsten CIE 10

Tutorial

Example: tail

tly : List A — List A with hd [ao,a1,. . .,a,,] = [81,. . .,a,,].
hd = [An.n—1 < An,i.i—1]

a | A ds | a3 | a4
a ay | az | a4

Thorsten CIE 10

Tutorial

Example: reverse

revya @ List A — List A with revg4 [ag, a1, ..., an| = [an, - - ., a1, a0].
rev = [An.n < An,i.n—i]

ap a ds | a3 | a4

ds |as |a |4 ap

Thorsten CIE 10

Every natural transformation between containers

apa: [S<P]|A-[T<Q]A
(X8:SPs—A)— (Xt: T.Qt— A)

is given by a container morphism a = [f < r].

Given s : S define
hs :Xt: T.Qt— Ps

hs = aps(s, \p.p)

then set
f:S—T

fS:']TOhS
r:Ns:S.Q(fs) — Ps
rsq=mi hs

Thorsten CIE 10

Tutorial

Constructions on containers

Given S < P,T < Q we define

coproduct
inls — Ps
(S<1P)+(T<10)—S+T<1[in” . Qt]

product
(S<P)x(T<Q)=(s,t): SxT<aPs+Qt

composition

(S<P)o(T<Q) = (s,f): £s: S.Ps— T<Xp: Ps.Q(fp)

Coproduct and product generalize (easily) to the infinite cases.

Thorsten CIE 10

Composition

Contis a CCC

Example: \-terms

A : Set — Set is the initial solution to the equation
N=l+ANxAN+(I—N)

We can eliminate the function space by:
AN~T+AXAN+No(+1)

where (+1) X = X + 1.

We are going to show that we can always explain —, i.e. that
Cont is also closed under exponentiation.

Thorsten CIE 10

Contis a CCC

Exponentials of functors

Given functors F, G : Set — Set what is their exponential
F — G : Set — Set (if it exists)?
It has to satisfy

MX:Set.(Hx F)X — GX ~NX:Set HX — (F — G) X

where (Hx F) X =HX x F X.

We write MX : Set.® X X where F : Set®? — Set — Set for the

coend [y . - ®XX.
Hence NX : Set.F X — G X is the (large) set of natural
transformations.

Thorsten CIE 10

Contis a CCC

If the exponential F — G exists, we can calculate it using the
Yoneda lemma.

HX~NY:Set.(X—Y)—HY Yoneda

(F-G)X

~NY:Set.(X—->Y)—=(F—-G)Y Yoneda
~NY:Set(X—=Y)xFY—-GY —-adjunction
~MNY:Set(X—=Y)—-FY—-GY x-adjunction

In Set the exponential of functors doesn’t always exist
(see paper).

Thorsten CIE 10

Contis a CCC

Whatis | — F?

(I—-F)X
~MNY:Set(X—=Y)xY—>FY
~MNY:Set(X—=Y)x(1—=Y)—=FY
~MNY:Set.(X+1—=Y)—=FY
~F(X+1)

~ (Fo(+1)X

In general we have for any P : Set

(P—)— F~Fo(+P)
where (P —-) X =P — X.

Contis a CCC

Exponentials of a functor by a container

A container is a coproduct of hom-functors:
[S<P]~Xs:S((Ps)—)
Given any functor F : Set — Set
[S<P]—F
~(Xs:S.((Ps)—))— F
~MNs:S.((Ps)—)—F
~MNs:S.Fo(+Ps)

The exponential of a functor F by a container S < P always
exists and is given by

[S<P]— F=MNs:S.Fo(+Ps)

Contis a CCC

Exponentials of containers

The exponential of a functor T <1 Q by a container S < P always
exists and is given by

(S<P)—=(T<Q)=Ns:S(T<xQ)o(+P5s)

We can expand this:

S<P—-T«Q
~Mse S(T<Q)o(+P5s)
~Mse S(T<xQ)o(x:1+Ps<x=inl())
~MNse S(tf):Xte T.Qt—-1+Ps<xqe Qs.fg=inl()
~felseSXte T.Qt—1+Ps
4¥se Sxqe Qs.(fs)2q=inl()

Thorsten CIE 10

Past and Future

Local cartesian closure ?

@ We can interpret the simply typed A-calculus in Cont
@ What about dependent types (local cartesian closure)?

@ This would give us a notion of a containers for higher order
functors
(eg- FH=1+HxH+1— H).

@ While Cont has pullbacks, the local exponentials do not
exist in general (i.e. we have X-types but not).

Thorsten CIE 10

Past and Future

A short history of containers

@ Abbott,A.,Ghani Categories of Containers (FOSSACS 03)
n-ry containers: Set” — Set

@ Hyland, Gambino Wellfounded trees and dependent
polynomial functors (TYPES 03)
Dependent polynomial functors: Set’ — Set/

@ Abbott Categories of Containers (PhD 03)

@ Abott,A,Ghani Containers - Constructing Strictly Positive
Types(TCS 05)

@ Abbott,A.,Ghani, McBride 0 for Data (FI 05)
Datatypes with a hole = derivatives

@ A., Morris Indexed containers (LICS 09)
Set’ — Set, model inductive families

Thorsten CIE 10

Past and Future

Beyond containers ...

@ How to model higher order functors as containers?
(e.g- FH=I1+HxH+1— H).

@ How to interpret inductive recursive definitions?

data U : Set where
nat : U
pi : (a : U) - (Ta—U) — U

T : U — Set
T nat = N
T (pi ab) = (x : Ta) — T (b x)

@ Relation to Dialectica interpretation?

Thorsten CIE 10

	Tutorial
	Cont is a CCC
	Past and Future

