
Higher Order Containers

Thorsten Altenkirch
(joint work with Sam Staton and Paul Levy)

School of Computer Science
University of Nottingham

July 4, 2010



Tutorial
Cont is a CCC

Past and Future

This talk

Containers ≈ strictly positive datatypes.
Type Theory as functional programming
with expressive types (Agda).
Category Theory to keep things organized.
Proof Theory and Computation?
Propositions as Types!

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Overview

1 Tutorial on containers
2 The category of containers (Cont) is cartesian closed

(hence higher order containers).
3 Past and future of containers

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Functorial Semantics of Datatypes

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

ListA = µX .1 + A× X

data RTree : Set where
node : List RTree → RTree

RTree = µList = µY .µX .1 + Y × X

data BTree : Set where
leaf : BTree
node : BTree → BTree → BTree

BTree = µX .1 + X × X

Exercise: Show that RTree and BTree are isomorphic.
Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Examples of generic constructions on functors

For any Functor F : Set→ Set→ Set there is a natural
isomorphism:

α : µX .µY .F X Y ' µX .F X X

For any functor G : Set→ Set we can construct the free
monad

FMon G : Set→ Set

FMon G A = µX .A + G X

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Strict positivity

Are we permitted to write µF for any functor F : Set→ Set?
Not every functor F : Set→ Set has an initial algebra, e.g.

F1 X = (X → Bool)→ Bool

F2 X = T (TX )

whereT X = µY .1 + X → Y

In general we require a signature functor to be strictly
positive.
E.g. T N = µY .1 + N→ Y .
Containers: capture strict positivity semantically.

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Definition: Container
A container S C P is given by S : Set (shapes)
and P : S→ Set (positions).
The extension of a container is an endofunctor:

JS C PK : Set→ Set

JS C PK X = Σs : S.P s → X

P s

s : S

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Examples

(A+)X = A + X is given by A+ = JS C PK

S = A + 1
P s = (s = inr ())

List A = µX .1 + A× X is given by List = JN C FinK where

Fin n = {0,1, . . . ,n − 1}

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

W-types
The initial algebra of a container S C P always exists and is
called the W-type (W S P : Set) in Type Theory.

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Container morphisms
Given containers S C P,T C Q, a morphism
f C r : Cont (S C P) (T C Q) is given by:

f : S → T
r : Πs : S.Q (f s)→ P s

Its extension Jf C rK is a natural transformation given by
Jf C rK A : JS C PK A→ JT C QK A

: (Σs : S.P s → A)→ (Σt : T .Q t → A)

Jf C rK (s,a) = (f s,a ◦ r s)

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Example: tail

tlA : List A→ List A with hdA [a0,a1, . . . ,an] = [a1, . . . ,an].
hd = Jλn.n − 1 C λn, i .i − 1K

a3

a0 a1

a2 a4

a2 a3 a4

a1

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Example: reverse

revA : List A→ List A with revA [a0,a1, . . . ,an] = [an, . . . ,a1,a0].
rev = Jλn.n C λn, i .n − iK

a0

a1 a2 a3 a4

a4 a3 a2 a1

a0

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Theorem
Every natural transformation between containers

αA : JS C PK A→ JT C QK A
: (Σs : S.P s → A)→ (Σt : T .Q t → A)

is given by a container morphism α = Jf C rK.

Given s : S define
hs : Σt : T .Q t → P s
hs = αP s(s, λp.p)

then set
f : S → T
f s = π0 hs

r : Πs : S.Q (f s)→ P s
r s q = π1 hs

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Constructions on containers

Given S C P,T C Q we define
coproduct

(S C P) + (T C Q) = S + T C

[
inl s 7→ P s
inr t 7→ Q t

]
product

(S C P)× (T C Q) = (s, t) : S × T C P s + Q t

composition

(SCP)◦(TCQ) = (s, f ) : Σs : S.P s → TCΣp : P s.Q(fp)

Coproduct and product generalize (easily) to the infinite cases.

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Composition

P s

...

s : S

Q t

t : T
...

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Example: λ-terms

Λ : Set→ Set is the initial solution to the equation

Λ ' I + Λ× Λ + (I → Λ)

We can eliminate the function space by:

Λ ' I + Λ× Λ + Λ ◦ (+1)

where (+1) X = X + 1.
We are going to show that we can always explain→, i.e. that
Cont is also closed under exponentiation.

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Exponentials of functors

Given functors F ,G : Set→ Set what is their exponential
F → G : Set→ Set (if it exists)?
It has to satisfy

ΠX : Set.(H × F ) X → G X ' ΠX : Set.H X → (F → G) X

where (H × F ) X = H X × F X .

Ends
We write ΠX : Set.Φ X X where F : Setop → Set→ Set for the
coend

∫
X :Set .Φ X X .

Hence ΠX : Set.F X → G X is the (large) set of natural
transformations.

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

If the exponential F → G exists, we can calculate it using the
Yoneda lemma.

H X ' ΠY : Set.(X → Y )→ H Y Yoneda

(F → G) X
' ΠY : Set.(X → Y )→ (F → G) Y Yoneda
' ΠY : Set.(X → Y )× F Y → G Y →-adjunction
' ΠY : Set.(X → Y )→ F Y → G Y ×-adjunction

In Set the exponential of functors doesn’t always exist
(see paper).

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

What is I → F?

(I → F ) X
' ΠY : Set.(X → Y )× Y → F Y
' ΠY : Set.(X → Y )× (1→ Y )→ F Y
' ΠY : Set.(X + 1→ Y )→ F Y
' F (X + 1)

' (F ◦ (+1)) X

Lemma
In general we have for any P : Set

(P →)→ F ' F ◦ (+P)

where (P →) X = P → X .

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Exponentials of a functor by a container

A container is a coproduct of hom-functors:

JS C PK ' Σs : S.((Ps)→)

Given any functor F : Set→ Set

JS C PK→ F
' (Σs : S.((P s)→))→ F
' Πs : S.((P s)→)→ F
' Πs : S.F ◦ (+P s)

Theorem
The exponential of a functor F by a container S C P always
exists and is given by

JS C PK→ F = Πs : S.F ◦ (+P s)

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Exponentials of containers

Corollary
The exponential of a functor T C Q by a container S C P always
exists and is given by

(S C P)→ (T C Q) = Πs : S.(T C Q) ◦ (+P s)

We can expand this:

S C P → T C Q
' Πs ∈ S.(T C Q) ◦ (+P s)

' Πs ∈ S.(T C Q) ◦ (x : 1 + P s C x = inl ())

' Πs ∈ S.(t , f ) : Σt ∈ T .Q t → 1 + P s C Σq ∈ Q s.f q = inl ()

' f ∈ Πs ∈ S.Σt ∈ T .Q t → 1 + P s
C Σs ∈ S.Σq ∈ Q s.(f s).2 q = inl ()

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Local cartesian closure ?

We can interpret the simply typed λ-calculus in Cont
What about dependent types (local cartesian closure)?
This would give us a notion of a containers for higher order
functors
(e.g. F H = I + H × H + I → H).
While Cont has pullbacks, the local exponentials do not
exist in general (i.e. we have Σ-types but not Π).

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

A short history of containers

Abbott,A.,Ghani Categories of Containers (FOSSACS 03)
n-ry containers: Setn → Set

Hyland, Gambino Wellfounded trees and dependent
polynomial functors (TYPES 03)
Dependent polynomial functors: SetI → SetI

Abbott Categories of Containers (PhD 03)
Abott,A,Ghani Containers - Constructing Strictly Positive
Types(TCS 05)
Abbott,A.,Ghani, McBride ∂ for Data (FI 05)
Datatypes with a hole = derivatives
A., Morris Indexed containers (LICS 09)
SetI → Set, model inductive families

Thorsten CIE 10



Tutorial
Cont is a CCC

Past and Future

Beyond containers . . .

How to model higher order functors as containers?
(e.g. F H = I + H × H + I → H).
How to interpret inductive recursive definitions?
data U : Set where
nat : U
pi : (a : U) → (T a → U) → U

T : U → Set
T nat = N
T (pi a b) = (x : T a) → T (b x)

Relation to Dialectica interpretation?

Thorsten CIE 10


	Tutorial 
	Cont is a CCC
	Past and Future

