
Should Extensional Type Theory be
considered harmful?

Thorsten Altenkirch

University of Nottingham

Chiemsee June 06 – p.1/18



Why Type Theory ?

• Accept the BHK explanation of constructive connectives.

• Proofs are programs, e.g.

p ∈ A ∧ (B ∨ C)

d p ∈ A ∧ B ∨ A ∧ C

d (a, inl b) ≡ inl(a, b)

d (a, inr c) ≡ inr(a, c)

• We want to reason about programs/proofs. . .

∀p, q ∈ A ∧ (B ∨ C).d p = d q =⇒ p = q

Chiemsee June 06 – p.2/18



Type Theory

• Propositions = Types, Proofs = Programs

• Connectives:

Σ ∃,∧,×

Π ∀, =⇒ ,→

0, 1, 2 False, True, Bool

a = b Equality types

W Inductive types

Typei Universes

• A ∨ B = A + B = Σx : 2.if x thenA elseB
where 2 = {0, 1}

Chiemsee June 06 – p.3/18



The “axiom” of choice

f ∈ Πa ∈ A.Σb ∈ B.R a b

ac f ∈ Σg ∈ A → B.Πa ∈ A.R a (g a)

ac f = (π1 ◦ f, π2 ◦ f)

where
p ∈ Σa ∈ A.B a

π1 p ∈ A

π2 p ∈ B (π1p)

π1(a, b) ≡ a

π2(a, b) ≡ b

Chiemsee June 06 – p.4/18



Which Type Theory?

• Impredicative (CoC) vs predicative

• Extensional (ETT) vs intensional (ITT)

Chiemsee June 06 – p.5/18



Equality in ITT

Definitional equality a ≡ b

Propositional equality p ∈ a = b

m, n ∈ Nat

m + n ∈ Nat

0 + n ≡ n

(succm) + n ≡ succ(m + n)

n + 0 6≡ n

n ∈ Nat

l n ∈ n + 0 = n
Chiemsee June 06 – p.6/18



Equality in ITT

• Conversion rule:
b ∈ B a a ≡ a′

b ∈ B a′

• Equality introduction:

a ∈ A

refl ∈ a = a

• Equality elimination:

b ∈ B a p ∈ a = a′

substB p b ∈ B a′

p, q ∈ a = b

unique p q ∈ p = q

subst refl b ≡ b

unique refl refl ≡ refl
Chiemsee June 06 – p.7/18



Equality reflection in ETT

p ∈ a = b

a ≡ b

Hence we have:

b ∈ B a p ∈ a = a′

b ∈ B a′

Chiemsee June 06 – p.8/18



The “axiom” of extensionality

f, g ∈ A → B p ∈ Πa ∈ A.f a = g a

ext p ∈ f = g

• ETT ⊢ ext

• ITT 6⊢ ext

• We cannot just add ext to ITT, because this leads to irreducible
constants:

substB (ext . . . ) 3 ∈ Nat

where B f ≡ Nat

Chiemsee June 06 – p.9/18



Setoids in ITT

• A setoid (A,∼A) is a pair of a type A and an equivalence relation
∼A.

• Given (A,∼A), (B,∼B) we define (A → B,∼A→B) where

f ∼A→B g ≡ Πa ∈ A.f a ∼B g a

• We have to show
b ∈ B a p ∈ a ∼A a′

subst∼B p b ∈ B a′
for every B.

• Setoids can also be used to approximate quotient types.

• Using setoids can blow up the theory, e.g. formal category theory.

Chiemsee June 06 – p.10/18



Why not ETT?

1. EAC (extensional axiom of choice) implies EM (excluded middle).

2. We cannot add CT, because AC+EXT+CT is inconsistent.

ct ∈ Πf ∈ Nat → Nat.Σn ∈ Nat.n 
 f

3. Type checking is undecidable.

Chiemsee June 06 – p.11/18



1. EAC implies EM

Given (A,∼A), (B,∼B)

R ∈ A → B → Prop

ExtRR ≡ Πa, a′ ∈ A, b, b′ ∈ B.a ∼A a′ → b ∼B b′ → R a b → R a′ b′

f ∈ A → B

ExtF f ≡ Πa, a′ ∈ A.a ∼A a′ → f a ∼B f a′

f ∈ Πa ∈ A.Σb ∈ B.ExtRR × R a b

eac f ∈ Σg ∈ A → B.(ExtF g) × Πa ∈ A.R a (g a)

• Why is EAC consistent?

• EAC is not derivable in ETT!

• In ETT with quotient types we can apply AC to A/ ∼A and

B/ ∼B but any f ∈ Πa ∈ A/ ∼A .Σb ∈ B/ ∼B .R a b will respect

the equivalences. Chiemsee June 06 – p.12/18



2. AC+EXT+CT is inconsistent.

•

ct ∈ Πf ∈ Nat → Nat.Σn ∈ Nat.n 
 f

says: We know how to compute every function.

• Bracket types (Awodey,Bauer):

p, q ∈ [A]

p ≡ q

i.e. [A] is propositional.

•

wct ∈ Πf ∈ Nat → Nat.[Σn ∈ Nat.n 
 f ]

says: Every function is computable.

• Conjecture: WCT is consistent with ETT and doesn’t imply any
taboos. Chiemsee June 06 – p.13/18



Bracket types

Prop: type with at most one inhabitant.

A ∈ Type Πa, b ∈ A.a = b

A ∈ Prop

[−] is monadic:

a ∈ A

return a ∈ [A]

f ∈ A → [B] a ∈ [A]

bind f a ∈ [B]

[−] is invariant on Prop:

A ∈ Prop a ∈ [A]

unbox a ∈ A
Chiemsee June 06 – p.14/18



3. Type checking is undecidable.

In recent joint work with Conor McBride we have introduced
Observational Type Theory (OTT).

• All computations terminate and definitional equality and type
checking are decidable.

• Propositional equality is extensional, i.e. two objects are equal, if
all observations about them agree.

• Propositional equality is substitutive.

• Canonicity holds: any closed term is definitionally reducible to a
canonical value.

• OTT is currently being implemented as the core of the Epigram 2
system

Chiemsee June 06 – p.15/18



Justification for OTT

I suggest to differentiate between:

data Types which are defined by their constructors:

• Finite types

• Inductive types, e.g. Nat, W-types

• Σ-types

codata Types which are defined by their eliminators:

• Π-types

• Coinductive types, e.g. Streams, M-types

• Σ-types

• Quotient types

Chiemsee June 06 – p.16/18



Contracts

Data comes with a producer contract: the producer promises that the
data has only produced using the constructors.
Codata comes with a consumer contract: the consumer promises only to
inspect the codata using the eliminators.
In Weak Type Theory both contracts can be made explicit:

Typoids for data A type + a predicate which expresses that the data is
inductively generated with the constructors.

Setoids for codata A type + an equivalence relation which expresses
the observational equivalence generated by the eliminators.

ITT is skewed; it is strong for data, but weak for codata.

Chiemsee June 06 – p.17/18



Conclusions

• OTT is a decidable variant of Extensional Type Theory.

• There are no foundational problems with OTT (We hope).

• There are problems with ITT:

• Pragmatically: it is awkward to formalize Mathematics in it.

• Foundationally: it doesn’t deal with codata properly.

Chiemsee June 06 – p.18/18


	Why Type Theory ?
	Type Theory
	The ``axiom'' of choice
	Which Type Theory?
	Equality in ITT
	Equality in ITT
	Equality reflection in ETT
	The ``axiom'' of extensionality
	Setoids in ITT
	Why not ETT?
	1. EAC implies EM
	2. AC+EXT+CT is inconsistent.
	Bracket types
	3. Type checking is undecidable.
	Justification for OTT
	Contracts
	Conclusions

