
Extensionality in Type Theory
or

How to fix a broken mirror?
In honour of Pierre-Louis Curien’s 60th birthday

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science

University of Nottingham

September 10, 2013

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 1 / 16



The HoTT book

Outcome of the Special
Year on Homotopy Type
Theory at Princeton.

Introduces a very
extensional type theory as
a new foundation of
Mathematics.

Informal use of Type
Theory.

However HoTT as a
programming language
has a serious defect:

We don’t know how to
execute its programs . . .

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 2 / 16



Type Theory at its best

We define the type N by the constructors:

0 : N
S : N→ N

We recursively define the function (+) : N→ N→ N:

0 + n :≡ n

S(m) + n :≡ S(m + n)

We recursively define the function:
assoc : Πi ,j ,k:N(i + j) + k =N i + (j + k)

assoc(0, j , k) :≡ refl(j + k)

assoc(S(i), j , k) :≡ respS(assoc(i , j , k))

Theorem proving becomes functional programming!

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 3 / 16



What is =N ?

We define (=N) : N→ N→ Type by the constructors:

refl0 :0 =N 0

respS :Πm,n:N(m =N n)→ S(m) =N S(n)

We can show that =N is an equivalence relation by deriving
refl,sym,trans using recursion.

We can also show that =N is substitutive by constructing
substN : ΠP:N→TypeΠm,n:Nm =N n→ P(m)→ P(n)

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 4 / 16



The type of computations

Given A : Type, we introduce the type
∞(A) : Type, of computations of type A.

Values are #(t) :∞(A) where t : A is a term of type A.

E.g. #(3 + 4) 6≡ #(7).

Given d :∞(A) we can force the computation [(d) : A.

[(#(t)) is the value associated to t.

E.g. [(#(3 + 4)) ≡ 7.

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 5 / 16



Conatural numbers
Using ∞ we define the type of conatural numbers N∞ by the
constructors:

0 : N∞

S :∞(N∞)→ N∞

We can recursively define ⊥ : N∞:
⊥ :≡ S(#(⊥)).
We recursively define the function (+) : N∞ → N∞ → N∞:

0 + n :≡ n

S(m) + n :≡ S(#([(m) + n))

We recursively define the function:
assoc : Πi ,j ,k:N∞(i + j) + k =N∞ i + (j + k)

assoc(0, j , k) :≡ refl(j + k)

assoc(S(i), j , k) :≡ respS(#(assoc([(i), j , k))
Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 6 / 16



What is =N∞ ?

We define (=N∞) : N∞ → N∞ → Type by the constructors:

refl0 :0 =N∞ 0

respS :Πm,n:∞(N∞)∞([(m) =N∞ [(n))→ S(m) =N∞ S(n)

We can show that =N∞ is an equivalence relation by deriving
refl,sym,trans using recursion.

It is impossible to derive
substN∞ : ΠP:N∞→TypeΠm,n:Nm =N∞ n→ P(m)→ P(n)

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 7 / 16



Underivability of substN∞

We recursively define ⊥′ : N∞:
⊥′ :≡ S(#(S(#(⊥′)))).

Note that ⊥ 6≡ ⊥′.

However, we can prove p : ⊥ =N∞ ⊥′:
p :≡ respS(#(respS(#(p))))

Consider the context Γ ≡ P : N∞ → Type, p : P((⊥).

If there is a proof Γ ` q : P(⊥′) then q ≡ p and ⊥ ≡ ⊥′,

This follows from an analysis of normal forms.

Hence substN∞ is underivable.

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 8 / 16



The broken mirror

Type Theory (as we know it) works well for finitary types like natural
numbers . . .

To define infinitary types (like N∞) we need to use computations to
describe infinite structures.

We would like to consider infinite structures as propositionally equal,
if their infinite unfoldings are equal.

Hence, propositional equality does not reflect definitional equality.

Π-types are another instance of an infinite type where the intended
equality (extensional equality of functions) doesn’t agree with
definitional equality of λ-abstractions.

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 9 / 16



The Universe of Types
A similar issue arises for the universe of types.
An element of the universe A : Type is an intensional description of
the actual type.
We would like to identify types that are semantically equivalent.
We define (=Type) : Type→ Type→ Type:
An element of A =Type B is given by the following components:

f : A→ B

g : B → A

p : Πa:A,b:B∞((f (a) =B b) =Type (a =A g(b)))

We can show that (=Type) is reflexive, symmetric and transitive.
We cannot derive substType (e.g. N× N =Type N).
A =Type B is equivalent to the equivalences defined in the HoTT
book.
Indeed its 2.5 times unfolding is the semiadjoint equivalence defined
there.Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 10 / 16



Fixing the mirror ?

Given f : A→ B we call
resp(f ) : Πa,a′:Aa =A a′ → f (a) =B f (a′)

We can reduce substX (P) to resp(P):
Given p : a =A a′

resp(P, p) : P(a) =Type P(b)
and the first component of resp(P, p) is a function P(a)→ P(b).

Can we add a computationally well behaved generalisation of resp to
Type Theory?

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 11 / 16



What about J?

Paulin-Mohring’s version of the eliminator.

Assume as given x : A

J : ΠP:Πy :Ax=Ay→Type

P(x , refl(x))→
Πy :AΠp:x=AyP(y , p)

with the computation rule:
J(P,m, x , refl(x)) :≡ m

subst arises as the special case if P doesn’t depend of x =A y .

Can we reduce J to subst and hence to resp?

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 12 / 16



Reducing J to subst

We can rewrite J using a Σ-type:

J : ΠP:(Σy :Ax=Ay)→Type

P(x , refl(x))→
Πy :AΠp:x=AyP(y , p)

To reduce J to subst we need to show that:
(x , refl(x)) =Σy :Ax=Ay) (y , p)
given p : x =A y .

a proof of the equality of pairs is a pair of equality proofs, here:

q : x =A y

r : subst(λy .x = y , q, refl(x)) =x=Ay p

We set q :≡ p then the type of r is equivalent to:
r : trans(p, refl(x)) =x=Ay p

This shows that we need the laws of a category to derive J.

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 13 / 16



Equalities of proofs

We assume that equality proofs form a category:

trans(refl, p) ≡ p

trans(p, refl) ≡ p

trans(trans(p, q), r) ≡ trans(p, trans(q, r))

resp is functorial:

resp(f , refl) ≡ refl

resp(f , trans(p, q)) ≡ trans(resp(f , p), resp(f , q))

Given this we can derive J and its computation rule.

Is the resulting definitional equality decidable?

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 14 / 16



Summary

Type Theory as we know it only treats finitary types properly.

To integrate infinite structures (∞, Π-types, Type) we need to define
propositional equality by recursion over the structure of types.

To obtain a computational well behaved theory we need to explain
resp by recursion over the structure of terms.

We define the equality of the universe Type in a way so that the
univalence principle holds automatically.

We are considering a strong definitional equality of equality proofs
such that the laws of an ω-category hold definitionally, while the
symmetry is only weak.

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 15 / 16



Related work

Extensional Equality in Intensional Type Theory, A., LICS 99

Observational Equality, Now!; A., McBride, Swiersta; PLPV 2007

Canonicity for 2-dimensional type theory, Harper, Licata; POPL 2012

A Generalization of the Takeuti-Gandy Interpretation, Barras,
Coquand, Huber; Draft 2013

Thorsten Altenkirch (Nottingham) Curien 13 September 10, 2013 16 / 16


