
Homotopy Type Theory
For Dummies

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science

University of Nottingham

October 30, 2013

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 1 / 29

Intro

The HoTT book

Outcome of the Special
Year on Homotopy Type
Theory at Princeton.

Proposes an extension of
Martin-Löf Type Theory
as a new foundation of
Mathematics.

Informal use of Type
Theory to appeal to
Mathematicians (but not
only).

Additional principles
inspired by Homotopy
Theory.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 2 / 29

Basic Type Theory

Type Theory 101
Martin-Löf Type Theory: foundational system for
constructive Mathematics
Based on Curry-Howard equivalence

proofs : proposition = programs : type

E.g. as we recursively define the function (+) : N→ N→ N:

0 + n :≡ n

S(m) + n :≡ S(m + n)

we recursively define the proof:
assoc : Πi ,j ,k:N(i + j) + k = i + (j + k)

assoc(0, j , k) :≡ refl(j + k)

assoc(S(i), j , k) :≡ ap(S , assoc(i , j , k))

Theorem proving becomes functional programming!
Basis of a number of proofs assistants / programming languages :
NuPRL, LEGO, Coq, Agda, Idris, . . .

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 3 / 29

Basic Type Theory

Proof-relevant mathematics

The axiom of choice (AC∞) in Type Theory
(given A,B : Type,R : A→ B → Type):

(Πa : A.Σb : B.R(a, b))→ (Σf : A→ B.Πa : A.R(a, f (a)))

AC∞ is provable, the proof is given by

ac f = (λa.fst(f (a)), λa.snd(f (a))

where fst,snd are the projections associated with Σ.

Proofs in Type Theory can contain information.

We call a type A propositional (A : Prop), if it contains no
information.

A propositional version of the axiom AC−1 is not provable and
implies excluded middle.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 4 / 29

Identity types

Identity types

Given A : Type and a, b : A we can form

a =A b : Type

the type of proofs that a is equal to b.

The canonical inhabitant is

refl(a) : a =A a

given a : A.

The eliminator for equality types is

J(a) : ΠP:Πb:A.a=b→TypeP(a, refl(a))→ Πx :A,α:a=xP(x , α)

for a : A, with the definitional equality J(P, p, refl(a)) ≡ p.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 5 / 29

Identity types

Groupoid structure

Using the non-dependent version of J

transport : Πa,b:AΠP:A→Typea = b → P(a)→ P(b)

we can show that = is an equivalence relation:

α−1 : b = a for α : a = b

α;β : a = c for α : a = b, β : b = c

Using J we can also show:

α, refl = α

refl;α = α

(α;β); γ = α; (β; γ)

α;α−1 = refl

α−1;α = refl

That is = forms a groupoid.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 6 / 29

Identity types

Should equality be propositional?

Should equality be propositional ? I.e. can we prove Uniqueness of
equality proofs (UIP):

Πa,b:AΠp,q:a=bq = p

Using J this is can be reduced to:

Πa:AΠp:a=ap = refl

Hofmann and Streicher showed that UIP cannot be derrived from J
using a groupoid model of Type Theory.

More recently, Voevodsky observed that UIP is also refuted by a
homotopy model of Type Theory.

Basic idea:

Types topological spaces

a : A points in the space

a =A b paths between the points

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 7 / 29

Homotopic interpretation

Homotopic Model

A : Type

a, b : A

p, q : a = b

H : p = q

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 8 / 29

Homotopic interpretation

Uniqueness of Identity proofs ?

Πp:a=ap = refl ?

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 9 / 29

Homotopic interpretation

Uniqueness of Identity proofs ?

Okay, but what now?

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 10 / 29

Homotopic interpretation

While we cannot show UIP

Πp:a=ap = refl(a)

We can show:

Πp:a=a(a, p) =Σx :Ax=a (a, refl(a))

This follows from SCTR (singletons are contractible):

Π(b,p):Σb:A,a=b(a, refl(a)) = (b, p)

assuming a : A.

On the other hand

J(a) : ΠP:Πb:A.a=b→TypeP(a, refl(a))→ Πx :A,α:a=xP(x , α)

can be derived from transport

transport : Πa,b:AΠP:A→Typea = b → P(a)→ P(b)

and SCTR.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 11 / 29

Homotopic interpretation

J in the Homotopy interpretation

To show

Πp:a=a(a, p) =Σx :Ax=a (a, refl(a))

we use

Π(b,p):Σb:A,a=b(a, refl(a)) = (b, p)

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 12 / 29

The univalence axiom

Univalence

Rejection of UIP is not the only thing the Homotopy interpretation is
good for.

It also suggests an additional principle: the univalence axiom.

This axiom can also be justified from a purely logical perspective.

And it is inconsistent with UIP!

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 13 / 29

The univalence axiom

What is equality of functions ?

Given f , g : A→ B we define extensional equality :

f ∼ g :≡ Πa:Af (a) = g(a)

We can show
app : f = g → f ∼ g

Extensionality corresponds to requiring app to be an isomorphism.

It’s inverse is functional extensionality.

This can be justified by the black box view of functions.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 14 / 29

The univalence axiom

What is the equality of types?

Given A,B : Type we define isomorphism A ∼ B as

f : A→ B

g : B → A

η : Πa:Aa = g(f (a))

ε : Πb:Bb = f (g(b))

In the absence of UIP we can require coherence properties which
correspond to the triangle equalities of an adjunction:

δ : Πa:Aap(f , η(a)) = ε(f (b))

δ′ : Πb:Bη(g(b)) = ap(g , ε(n))

where ap(f) : Πa,a′:Aa = a′ → f (a) = f (a′)

We can derive δ from δ′ and vice versa, because equality is a groupoid.

We define equivalence A ≈ B as given by isomorphism and δ.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 15 / 29

The univalence axiom

What is the equality of types?

We can show:
coe : A = B → A ≈ B

The univalence axiom sates that coe is an equivalence.

This is justified by a black box view of types.

Note that the univalence axiom implies functional extensionality.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 16 / 29

Truncation levels

Truncation levels

In the absence of UIP we classify types according to the complexity of
their equality types.

We say a type A : Type is contractible or a -2-type, if

Σa:AΠx :Ax = a

is inhabited.

A type A : Type is a n + 1-type, if all its equality types a =A a′ for
a, a′ : A an n-types.

To show that any n-Type is also a n + 1-type we need to show that if
a type is contractible, then its equalities are contractible too.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 17 / 29

Truncation levels

A contractible → a =A a′ contractible

Assume that A is contractible, that means we have

a0 : A

h : Πx :Ax = a0

Now for any a, a′ : A we have

α0(a, a′) : a = a′

α0(a, a′) :≡ h(a); h(a′)−1

We need to show that

Πa,a′:AΠp:a=a′p = α0(a, a′)

Using J it is sufficient to show

Πa:Arefl(a) = α(a, a) ≡ h(a); h(a)−1

Which is just one of the groupoid laws.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 18 / 29

Truncation levels

The Truncation Hierarchy

level

-2 contractible types

-1 propositions The theorem we just proved
implies that it is enough that
Πa,a′:Aa = a′.

0 sets UIP corresponds to the as-
sumption that every type is a
set.

1 groupoids
...

...

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 19 / 29

Truncation levels

Higher types

How do we get types at higher levels?

The 1st universe Type0 cannot be a set.

Consider Bool = Bool, using univalence there are two equivalences:
id, and negation.

However, id and negation cannot be equal.

My student Nicolai Kraus proved that the nth universe is an cannot
be an n-type.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 20 / 29

HITs

Higher inductive types

There are other ways to obtain higher types in HoTT.

A higher inductive type has not only constructors for elements but
also for equalities.

A simple example is S1 : Type

base : S1

loop : base = base

S1 homotopically behaves like the circle.

Indeed we can embedd i : Z into φ(i) : base = base:

i 7→loopn

0 7→refl

− n 7→(loop−1)n

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 21 / 29

HITs

Higher inductive types

S1 also comes with eliminators: just consider the non-dependent
eliminator:

ElimS1
: ΠM:TypeΠb:M(b = b)→ S1 → M

satisfying the equalities

ElimS1
(M, b, q,base) ≡ b

ap(ElimS1
(M, b, q), loop) ≡ q

Using univalence we can prove α : Z = Z using the equivalence
(λn.n + 1, λn.n − 1, . . .).

We define a family:

F : S1 → Type

F = ElimS1
(Type,Z, α)

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 22 / 29

HITs

Higher inductive types

This allows us to define an inverse to φ: Given p : base = base we
can construct

transport(F , p) : F (base)→ F (base)

Note that F (base) ≡ Z. Hence we define:

φ−1(p) :≡ transport(F , p, 0) : Z

Dan Licata showed how we can use the dependent eliminator to
derive that φ, φ−1 are inverse and hence:

(base = base) = Z

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 23 / 29

HITs

The sphere

The circle S1 is 1-type (groupoid), all higher equalities are
propositional.

However, the situation is different for the sphere S2 : Type which can
be defined as a HIT:

base : S2

loop : refl(base) = refl(base)

None of the higher equalities of S2 are propositional.

Hence S2 has no finite truncation level.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 24 / 29

HITs

Truncations
We can use HITs to define truncations, which is the adjoint to the
embedding.
E.g. given A : Type the -1-truncation ||A||−1 : Type (also called
bracket types, squash types) is given by

η : A→ ||A||−1

uip : Πa,a′:||A||−1
a = a′

Clearly, ||A||−1 : Prop and

A→ P = ||A||−1 → P

for P : Prop.
We can use this to define AC−1:

(Πa : A.||Σb : B.R(a, b)||−1)→ (||Σf : A→ B.Πa : A.R(a, f (a))||−1)

AC−1 implies excluded middle for Prop, i.e. P + ¬P for P : Prop
(Diaconescu’s construction).
We can generalize this to arbitrary levels ||A||n is an n-type.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 25 / 29

Metatheory

Canonicity

We have introduced additional constants proving equalities:
I functional extensionality
I univalence
I equality constructors for HITs

While we have introduced some definitional equality, they are
insufficient to guarantuee canonicity:
All closed terms of type N are definitionally equal (indeed reducible)
to a numeral.

While we (with Conor McBride and Wouter Swierstra) have developed
an approach to solve the problem for functional extensionality
(Observational Type Theory), this relies on a strong form of UIP.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 26 / 29

Metatheory

Constructive models

The homotopy interpretation of type theory uses Kan Fibrations in
simplicial sets (the simplicial set model).

This construction relies essentially on classical principles.

Thierry Coquand has suggested a modification of this construction
using semi-simplicial sets.

This models only weak Type Theory (i.e. no conversion under λ).

An alternative would be to directly use weak ω-groupoids.

It seems likely that an answer to this question would also provide a
solution to the canonicity problem.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 27 / 29

Computer Science ?

Why should we care?

Structures can be 1st class citizens.
(equality is isomorphism)

HITs provide better ways to define the Cauchy Reals and the
constructible hierarchy (avoiding choice).

Quotient containers (like multisets) become ordinary containers.

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 28 / 29

Computer Science ?

The HoTT people

Thorsten Altenkirch (Nottingham) Edinburgh 13 October 30, 2013 29 / 29

	Intro
	Basic Type Theory
	Identity types
	Homotopic interpretation
	The univalence axiom
	Truncation levels
	HITs
	Metatheory
	Computer Science ?

