The Beauty and the Beast: A Happy End?

based on joint work with Wouter Swierstra

Thorsten Altenkirch

School of Computer Science
University of Nottingham

December 15, 2007

Thorsten Altenkirch effTT07

Overcoming the ASCII-greek dichotomy

@ Programs (ASCII) vs. Maths (greek)
@ Programming is constructive Mathematics.

@ No need for mathematical models of (pure) functional
programs.

@ Type Theory: No difference between a mathematical
function and a function in programming.

Thorsten Altenkirch effTT07

Real World?

@ Real Programs are not pure functions.

@ Real programs have effects.

@ Real programs don’t always terminate.

@ How can effects be integrated in Type Theory?

Thorsten Altenkirch effTT07

The Awkward Squad

@ Simon Peyton Jones (2000) in Marktoberdorf:
Tackling the awkward squad
@ Some Squad members:
@ Stream I/O (getChar, putChar)
@ Updatable references (10var)
@ Concurrency (forkIO, MVar)
@ Approach: Translate impure Haskell (ASCII) into a process
calculus (greek).

Thorsten Altenkirch effTT07

Beauty in the Beast

@ Functional specifications of effects.

@ Use pure Haskell to explain impure Haskell.

@ Takes place in a total fragment of Haskell (Ask).
@ Quick check impure programs.

@ Warm up for Effects in Type Theory
Haskell for the lazy Type Theoretician.

@ See our Haskell Workshop (2007) paper.

Thorsten Altenkirch effTT07

Streams

Implementation of Stream 10

data /O a =
GetChar (Char — 10 a)
| PutChar Char (10 a)
| Return a

instance Monad /O where
return = Return
(Returna) >=g=g a
(GetChar f) >=g = GetChar (\¢c — f c>=g)
(PutChar c a) >= g = PutChar c (a>= g)

getChar :: 10 Char
getChar = GetChar Return

putChar :: Char — 10O ()
putChar ¢ = PutChar c (Return ())

Thorsten Altenkirch effTT07

Streams

Semantics

data [a], = a:[alp | []»

run:: 10 a — [Charly — [Char]a

run (Returna) cs =[]a
run (GetChar f) (c:cs)=run(fc)cs
run (PutChar c p) cs =c:runpcs

Thorsten Altenkirch effTT07

Streams

@ We have to differentiate between initial algebra and
terminal coalgebra interpretation of data types.
@ We could interpret [a],, as:
pX.ax X + b permitting structural recursion, e.g.
getTip::[alp — b
getTip (_: bs) = getTip bs
getTip ([lo) =b
vX.ax X+ b permitting guarded corecursion.
repeat :: a — [a]p
repeat a= a: repeat a
@ | will annotate the declaration:
data [a], = a: ([a]»)™ | []b
to indicate that we mean vX.a x X + b.

Thorsten Altenkirch effTT07

Streams

How to annotate 10?

data /O a =
GetChar (Char — 10 a)
| PutChar Char (10 a)
| Return a
data /O a =
GetChar (Char — 10 a)
| PutChar Char (10 a)*
| Return a

@ We interpret this as:
I0a=vX.uY.Char — Y + Char x X + a

@ run and copy are total functions.
@ Indeed, any IO performing function which never gets stuck
is total.

Thorsten Altenkirch effTT07

Streams

Pipes and switches
(with Varmo Vene and Tarmo Uustalu)

data /Oioa=
Get(i— 10ioa)
| Put o (I0ioa)™

| Return a
(>»):l10ira—I0roa—I0ioa
Returna>> q = Return a
Getf >>q = Get (\i — fi>>Qq)

Put hp >> Return a= Return a
Puthp > Getf =p>fh
Puthp >> Putoq= Puto (Puthp>>q)

Thorsten Altenkirch effTT07

Streams

@ Conjecture: This is an arrow and a monad.

@ Without Return: Example of an Arrow in John Hughes’
paper.

@ Wouter: It is not an arrow (even without Return).

@ There seems to be no easy fix.

Thorsten Altenkirch effTT07

type Data = Int
type Loc = Int

data /O a =
NewlORef Data (Loc — IO a)
| ReadlORef Loc (Data — 10 a)
| WritelORef Loc Data (10 a)
| Return a

Thorsten Altenkirch effTT07

Mutable state semantics

type Heap = Loc — Data
data Store = Store{ free :: Loc, heap :: Heap}

emptyStore :: Store

emptyStore = Store{free =0}

run = l0a— a

run io = evalState (runState io) emptyStore
runState :: 10 a — State Store a

Thorsten Altenkirch effTT07

@ Heap is partial, we could access an unallocated memory
location.

@ We want to store different datatypes. . .

@ Memory access should be type-safe.

@ See next talk by Wouter.

@ Other examples: Concurrent Haskell, Quantum IO, ...
@ Do we need 2 levels (/O,run)?

Thorsten Altenkirch effTT07

Partiality

The Partiality Monad
with Venanzio Capretta and Tarmo Uustalu

@ So far all operations were total.
@ Partiality is an effect: abstraction of time in the real world.
@ Give a functional specification of partiality.

@ We first define the delay monad D :: « — x and then
partiality P a= D a/ ~ as a quotient.

Thorsten Altenkirch effTT07

Partiality

The Delay monad

data D a = Now a| Later (D a)*™
instance Monad D where
return = Now

Nowa>=k =ka
Later d >= k = Later (d >= k)
1l=Da
1 = Later L

Thorsten Altenkirch effTT07

Partiality

Fixpoints with Delay

rec:((a—Db)—-(a—Db))—a—Db
rec phi a = aux (A\- — 1)
where aux ::(a— Db)— Db
aux k = race (k a) (Later (aux (phi k)))
race:: (D a) — (D a) — (D a)
race (Now a) _ = Now a
race (Later _) (Now a) = Now a
race (Later d) (Later d') = Later (race d d’)

Thorsten Altenkirch effTT07

Partiality

From Delay to Partial

@ Dis too intensional...
@ We can observe how fast a function terminates.
@ Hence rec f # f (rec f)

@ We define
Pa=Da/~
where ~C D a x D a identifies values with different finite
delay.

Thorsten Altenkirch effTT07

Partiality

Defining ~

@ (|) € D a x ais defined inductively.

d|a

Nowala |aterd| a

C C DaxDa
dCd = Vad|a = d | a

~ C DaxDa
d~d = dCcdaAdCd

Thorsten Altenkirch effTT07

Partiality

@ Constructive Domain Theory!
@ Pa=a,
@ Note that constructively

al;éaJr{L}

because we cannot observe non-termination.
@ P aandhence a— P bare wCPOs.
@ rec f = Ujenatf'L we construct Liina — P b.
@ Need that f is w-continous.

Thorsten Altenkirch effTT07

Conclusions

Modalities vs 10

@ Different kind of effects:

Runtime system

e Stream IO
o References
e Concurrency
@ Quantum IO

Modality

Errors (e.g. Maybe)

Partiality

Nondeterminism (Scheduler — a).
Probability (a — R™)

Thorsten Altenkirch effTT07

Conclusions

Effects, foundationally

@ We give functional specifications of effects.

@ This way effects can be integrated into Type Theory
without extending Type Theory.

@ Can we do this for Hoare Type Theory?

Thorsten Altenkirch effTT07

Greg Morrisett’s TLCA 07 lecture

Conclusions

TLCA June_2007.ppt

Def/’n/ng S7 in Co??

Can try to define:

ST PA Q=
{i:heap|P h} -> {f:heap; x:A |Q x i h}

but then you sacrifice:

- recursive (diverging) computations

- non-deterministic computations

- code that stores computations in the heap
So we will do something different.

27 June 2007

Thorsten Altenkirch effTT07

Conclusions

Loose ends

@ Combine effects using coproducts or monad transformers
e.g. Concurrency + Streams.
see Wouter’s paper Data types a la carte

@ Difference between internal effects (e.g. IORefs) and
proper 1O (e.g. streams)
Exploit dependent types to structure effects, e.g. regions.
@ Obligation: show that the specified semantics agrees with
the actual implementation.
Translate high level effects into low level effects?

@ Interpretation of functions in constructive logic
lawless sequences because we have access to the real
world.

Thorsten Altenkirch effTT07

	Intro
	Streams
	State
	Partiality
	Conclusions

