
ΠΣ: Dependent Types Without the Sugar
based on joint work with Nils Anders Danielsson, Andres Löh,

Darin Morrison and Nicolas Oury

Thorsten Altenkirch

School of Computer Science
University of Nottingham

November 28, 2009

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 1 / 20

Introduction

Agda is cool!
data Vec (A : Set) : N→ Set where

[] : Vec A zero
:: : {n : N}→ A→ Vec A n→ Vec A (suc n)

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N}→ Fin n→ Fin (suc n)

!! : ∀{A n}→ Vec A n→ Fin n→ A
[] !! ()
(x :: xs) !! zero = x
(x :: xs) !! (suc i) = xs !! i

Thanks to Ulf Norell!
!! is statically safe, no out of range error.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 2 / 20

Introduction

The Witness Pattern

check : (Γ : Ctx)→ (e : Chk)→ (τ : Type)
→ (Γ ` e ↓ τ)] (Γ 6` e ↓ τ)

synth : (Γ : Ctx)→ (e : Syn)
→ Σ Type (λ τ → Γ ` e ↑ τ)] (Γ 6` e↑)

Darin Morrison implemented an evidence carrying type checker
for simply typed λ-calculus.
The uninformative type Bool is replaced by
(Γ ` e ↓ τ)] (Γ 6` e ↓ τ).
Program and correctness proof are one.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 3 / 20

ΠΣ overview

Why ΠΣ ?

Agda implements many high level features such as:
Datatype definitions Inductive and Coinductive families.
Pattern matching with dependent types.
Hidden parameters generalizing Hindley-Milner.
Complicate metatheory
Potential source of bugs in the implementation
Explain high level features via a core language
Intermediate language for compilation
Similar role as FC for Haskell

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 4 / 20

ΠΣ overview

ΠΣ in a nutshell

Dependent function types (Π-types).
Dependent product types (Σ-types).
A (very) impredicative universe of types with Type : Type.
Finite sets (enumerations) using reusable labels.
A general mechanism for mutual recursion.
Lifted types to control recursion.
Structural equality for recursive definitions.
Typechecker available on hackage (pisigma).

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 5 / 20

ΠΣ overview

Partial?

Totality is important for dependently typed programming:
I Non-terminating proofs are not very useful.
I Total terms of propositional types (e.g. equalities) don’t need to be

executed at run time.
However, I believe it is beneficial to separate type checking from
totality:

I Mechanism of type checking is independent of totality.
I Prototypes may fail totality checks.
I Type soundness independent of totality.
I Evidence for termination can be supplied independently.
I Which notion of totality?

Thierry Coquand is working on a similar calculus:
The Calculus of Definitions

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 6 / 20

ΠΣ by example

ΠΣ by example

1 Datatypes
2 Codata
3 Equality
4 Families
5 Universes

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 7 / 20

ΠΣ by example

Datatypes

Nat : Type = (l : {zero suc}) ∗
case l of { zero → {unit }

| suc → [Nat]};

Nat is a recursively defined Σ-type.
[. .] stops unfolding of recursive definitions.
Derive constructors:

zero : Nat = (′zero, ′unit)
suc : Nat → Nat = λi → (′suc, i)

We use ′l to distinguish labels from variables.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 8 / 20

ΠΣ by example

add : Nat → Nat → Nat ;
add = λm n→ split m with (lm,m′)→

!case lm of { zero → [n]
| suc → [suc (add m′ n)]};

Recursive functions are defined using the same mechanism as
recursive types.
If t : A then [t] : ↑A (box: stops unfolding)
If t : ˆ A then !t : A (forcing).
![A] ≡ A
add (suc (suc zero)) (suc zero) ≡
(′suc, (′suc, (′suc, (′zero, ′unit))))

Use some coercions A : Type, if A : ↑Type . . .
(to be made explicit in future.)

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 9 / 20

ΠΣ by example

Codata

omega : Nat = (′suc,omega);

omega will diverge.
To define codata types we use lifting.

Stream : Type→ Type = λA→ A ∗ [↑(Stream A)];

We can now define corecursive programs:

from : Nat → Stream Nat ;
from = λn→ (n, [from (′suc,n)]);

Evaluation of from zero terminates with
(zero, let n : Nat = zero in [from (′suc,n)])

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 10 / 20

ΠΣ by example

Mixed data / codata
Some datatypes are mixed inductive / coinductive.
An example is the type of stream processors:

SP : Type→ Type→ Type;
SP = λa b → (l : {get put })

∗ case l of { get → [a→ SP a b]
| put → [b ∗ ↑(SP a b)]};

We can define the identity stream processor:

idsp : (A : Type)→ SP A A
= λA→ (′get , λa→ (′put , (a, [idsp A])));

We can also define an interpretation function:

eval : (A B : Type)→ SP A B → Stream A→ Stream B;

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 11 / 20

ΠΣ by example

Equality
ΠΣ doesn’t (yet) have an identity type.
However, for 1st order types equality is definable, e.g. for Nat .

eqNat : Nat → Nat → Bool ;
. . .
T : Bool → Type

= λb → case b of { true → {unit }
| false→ {}};

EqNat : Nat → Nat → Type
= λm n→ T (eqNat m n);

We can prove that the equality is reflexive and substitutive:

reflNat : (n : Nat)→ EqNat n n;
substNat : (P : Nat → Type)→ (m n : Nat)→

EqNat m n→ P m→ P n;

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 12 / 20

ΠΣ by example

We use dependent elimination for reflNat and substNat

reflNat : (n : Nat)→ EqNat n n;
reflNat = λn→ split n with (ln,n′)→

!case ln of { zero → [′unit]
| suc → [reflNat n′]};

The type checker exploits the constraint that the scrutinee equals
the constructor when checking branches.
But only if the scrutinee is a variable.
This is less general than in a previous version of ΠΣ.
But simpler and sufficent for top-level pattern matching.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 13 / 20

ΠΣ by example

Families

We can define families by recursion over the indices:

Vec : Type→ Nat → Type;
Vec = λA n→ split n with (nl ,nr)→

case nl of { zero → Unit
| suc → A ∗ [Vec A nr]};

or by exploiting equality:

Vec : Type→ Nat → Type;
Vec = λA n→ (l : {nil cons}) ∗

case l of { nil → EqNat zero n
| cons → [(n′ : Nat) ∗ A ∗ Vec A n′

∗ EqNat (suc n′) n]};

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 14 / 20

ΠΣ by example

Vec : Type→ Nat → Type;
Vec = λA n→ (l : {nil cons}) ∗

case l of { nil → EqNat zero n
| cons → [(n′ : Nat) ∗ A ∗ Vec A n′

∗ EqNat (suc n′) n]};

Using equality is more general (e.g. typed λ-terms);
corresponds to the Agda datatypes;
and we could omit indices at runtime.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 15 / 20

ΠΣ by example

Universes
Define a universe of datatypes with decidable equality:

U : Type;
El : U → Type;

U = (l : {enum sigma box }) ∗
case l of {enum → Nat

| sigma→ [(a : U) ∗ (El a→ U)]
| box → [↑U]};

El = λa→ split a with (al ,ar)→
!case al of
{enum → [Fin ar]
| sigma→ [split ar with (b, c)→

(x : El b) ∗ (El (c x))]
| box → [[El (!ar)]]};

Arbitrary interleaving of declarations and definitions allowed.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 16 / 20

Inside ΠΣ

α-equality
Boxes ([. .]) stop unfolding of definitions:

let x : Bool = ′true in [x] 6≡β [′true].

However, we have:

let x : Bool = ′true in [x] ≡α let y : Bool = ′true in [y]

We have to compare the definitions:

let x : Bool = ′true in [x] 6≡β let y : Bool = ′false in [y]

But only if they are actually used:

let x : Bool = ′true, y : Bool = ′false in [x]
≡α let z : Bool = ′true, y : Bool = ′true in [z]

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 17 / 20

Inside ΠΣ

We specify α-equality using partial bijections on variables.
Let expressions extend partial bijections:

ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` t ≡α t ′

ϕ : ∆∼∆′ ` let Γ in t ≡α let Γ′ in t ′

Declarations may be identified:
ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` A ≡β A′

ϕ : ∆∼∆′ ` (ψ; (x , x ′)) : (Γ; x : A)∼(Γ′; x ′ : A′)

Or not:
ϕ : ∆∼∆′ ` ψ; (x ,−) : Γ∼Γ′

ϕ : ∆∼∆′ ` ψ : (Γ; x : A)∼Γ′

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 18 / 20

Inside ΠΣ

If identified, definitions have to agree:
ϕ ` x∼x ′ ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` t ≡β t ′

ϕ : ∆∼∆′ ` ψ : (Γ; x = t)∼(Γ′; x ′ = t ′)

Otherwise we ignore them:
ϕ ` x∼− ϕ : ∆∼∆′ ` ψ : Γ∼Γ′

ϕ : ∆∼∆′ ` ψ : (Γ; x = t)∼Γ′

In the implementation we construct the partial bijection lazily:
I If we compare two defined variables,
I we replace both by a fresh variable,
I and then check wether the definitions agree.

See our paper
http://www.cs.nott.ac.uk/~txa/publ/pisigma-new.pdf
for all the rules.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 19 / 20

Conclusions

What next?

Implement an Agda-like language on top of ΠΣ.
Add extensional, propositional equality.
Develop the metatheory, e.g. typesoundness.
Implement ΠΣ in Agda , develop the metatheory formally.
ΠΣ in ΠΣ.
Investigate more general constraints.
Certificate based, extensible totality checker.
Optimizing compiler.

Thorsten Altenkirch (Nottingham) fita 09 November 28, 2009 20 / 20

	Introduction
	 overview
	 by example
	Inside
	Conclusions

