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Introduction

Agda is cool!
data Vec (A : Set) : N→ Set where

[ ] : Vec A zero
:: : {n : N}→ A→ Vec A n→ Vec A (suc n)

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N}→ Fin n→ Fin (suc n)

!! : ∀{A n}→ Vec A n→ Fin n→ A
[ ] !! ()
(x :: xs) !! zero = x
(x :: xs) !! (suc i) = xs !! i

Thanks to Ulf Norell!
!! is statically safe, no out of range error.
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Introduction

The Witness Pattern

check : (Γ : Ctx)→ (e : Chk)→ (τ : Type )
→ (Γ ` e ↓ τ) ] (Γ 6` e ↓ τ)

synth : (Γ : Ctx)→ (e : Syn)
→ Σ Type (λ τ → Γ ` e ↑ τ) ] (Γ 6` e↑)

Darin Morrison implemented an evidence carrying type checker
for simply typed λ-calculus.
The uninformative type Bool is replaced by
(Γ ` e ↓ τ) ] (Γ 6` e ↓ τ).
Program and correctness proof are one.
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ΠΣ overview

Why ΠΣ ?

Agda implements many high level features such as:
Datatype definitions Inductive and Coinductive families.
Pattern matching with dependent types.
Hidden parameters generalizing Hindley-Milner.
Complicate metatheory
Potential source of bugs in the implementation
Explain high level features via a core language
Intermediate language for compilation
Similar role as FC for Haskell
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ΠΣ overview

ΠΣ in a nutshell

Dependent function types (Π-types).
Dependent product types (Σ-types).
A (very) impredicative universe of types with Type : Type.
Finite sets (enumerations) using reusable labels.
A general mechanism for mutual recursion.
Lifted types to control recursion.
Structural equality for recursive definitions.
Typechecker available on hackage (pisigma).
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ΠΣ overview

Partial?

Totality is important for dependently typed programming:
I Non-terminating proofs are not very useful.
I Total terms of propositional types (e.g. equalities) don’t need to be

executed at run time.
However, I believe it is beneficial to separate type checking from
totality:

I Mechanism of type checking is independent of totality.
I Prototypes may fail totality checks.
I Type soundness independent of totality.
I Evidence for termination can be supplied independently.
I Which notion of totality?

Thierry Coquand is working on a similar calculus:
The Calculus of Definitions
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ΠΣ by example

ΠΣ by example

1 Datatypes
2 Codata
3 Equality
4 Families
5 Universes
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ΠΣ by example

Datatypes

Nat : Type = (l : {zero suc}) ∗
case l of { zero → {unit }

| suc → [Nat ]};

Nat is a recursively defined Σ-type.
[ . .] stops unfolding of recursive definitions.
Derive constructors:

zero : Nat = (′zero, ′unit)
suc : Nat → Nat = λi → (′suc, i)

We use ′l to distinguish labels from variables.
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ΠΣ by example

add : Nat → Nat → Nat ;
add = λm n→ split m with (lm,m′)→

!case lm of { zero → [n ]
| suc → [suc (add m′ n)]};

Recursive functions are defined using the same mechanism as
recursive types.
If t : A then [t ] : ↑A (box: stops unfolding)
If t : ˆ A then !t : A (forcing).
![A] ≡ A
add (suc (suc zero)) (suc zero) ≡
(′suc, (′suc, (′suc, (′zero, ′unit))))

Use some coercions A : Type, if A : ↑Type . . .
(to be made explicit in future.)
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ΠΣ by example

Codata

omega : Nat = (′suc,omega);

omega will diverge.
To define codata types we use lifting.

Stream : Type→ Type = λA→ A ∗ [↑(Stream A)];

We can now define corecursive programs:

from : Nat → Stream Nat ;
from = λn→ (n, [from (′suc,n)]);

Evaluation of from zero terminates with
(zero, let n : Nat = zero in [from (′suc,n)])
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ΠΣ by example

Mixed data / codata
Some datatypes are mixed inductive / coinductive.
An example is the type of stream processors:

SP : Type→ Type→ Type;
SP = λa b → (l : {get put })

∗ case l of { get → [a→ SP a b ]
| put → [b ∗ ↑(SP a b)]};

We can define the identity stream processor:

idsp : (A : Type)→ SP A A
= λA→ (′get , λa→ (′put , (a, [ idsp A])));

We can also define an interpretation function:

eval : (A B : Type)→ SP A B → Stream A→ Stream B;
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ΠΣ by example

Equality
ΠΣ doesn’t (yet) have an identity type.
However, for 1st order types equality is definable, e.g. for Nat .

eqNat : Nat → Nat → Bool ;
. . .
T : Bool → Type

= λb → case b of { true → {unit }
| false→ {}};

EqNat : Nat → Nat → Type
= λm n→ T (eqNat m n);

We can prove that the equality is reflexive and substitutive:

reflNat : (n : Nat)→ EqNat n n;
substNat : (P : Nat → Type)→ (m n : Nat)→

EqNat m n→ P m→ P n;
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ΠΣ by example

We use dependent elimination for reflNat and substNat

reflNat : (n : Nat)→ EqNat n n;
reflNat = λn→ split n with (ln,n′)→

!case ln of { zero → [ ′unit ]
| suc → [reflNat n′ ]};

The type checker exploits the constraint that the scrutinee equals
the constructor when checking branches.
But only if the scrutinee is a variable.
This is less general than in a previous version of ΠΣ.
But simpler and sufficent for top-level pattern matching.
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ΠΣ by example

Families

We can define families by recursion over the indices:

Vec : Type→ Nat → Type;
Vec = λA n→ split n with (nl ,nr )→

case nl of { zero → Unit
| suc → A ∗ [Vec A nr ]};

or by exploiting equality:

Vec : Type→ Nat → Type;
Vec = λA n→ (l : {nil cons}) ∗

case l of { nil → EqNat zero n
| cons → [(n′ : Nat) ∗ A ∗ Vec A n′

∗ EqNat (suc n′) n ]};
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ΠΣ by example

Vec : Type→ Nat → Type;
Vec = λA n→ (l : {nil cons}) ∗

case l of { nil → EqNat zero n
| cons → [(n′ : Nat) ∗ A ∗ Vec A n′

∗ EqNat (suc n′) n ]};

Using equality is more general (e.g. typed λ-terms);
corresponds to the Agda datatypes;
and we could omit indices at runtime.
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ΠΣ by example

Universes
Define a universe of datatypes with decidable equality:

U : Type;
El : U → Type;

U = (l : {enum sigma box }) ∗
case l of {enum → Nat

| sigma→ [(a : U) ∗ (El a→ U)]
| box → [↑U ]};

El = λa→ split a with (al ,ar )→
!case al of
{enum → [Fin ar ]
| sigma→ [split ar with (b, c)→

(x : El b) ∗ (El (c x))]
| box → [[El (!ar )]]};

Arbitrary interleaving of declarations and definitions allowed.
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Inside ΠΣ

α-equality
Boxes ([ . .]) stop unfolding of definitions:

let x : Bool = ′true in [x ] 6≡β [ ′true ].

However, we have:

let x : Bool = ′true in [x ] ≡α let y : Bool = ′true in [y ]

We have to compare the definitions:

let x : Bool = ′true in [x ] 6≡β let y : Bool = ′false in [y ]

But only if they are actually used:

let x : Bool = ′true, y : Bool = ′false in [x ]
≡α let z : Bool = ′true, y : Bool = ′true in [z ]
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Inside ΠΣ

We specify α-equality using partial bijections on variables.
Let expressions extend partial bijections:

ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` t ≡α t ′

ϕ : ∆∼∆′ ` let Γ in t ≡α let Γ′ in t ′

Declarations may be identified:
ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` A ≡β A′

ϕ : ∆∼∆′ ` (ψ; (x , x ′)) : (Γ; x : A)∼(Γ′; x ′ : A′)

Or not:
ϕ : ∆∼∆′ ` ψ; (x ,−) : Γ∼Γ′

ϕ : ∆∼∆′ ` ψ : (Γ; x : A)∼Γ′
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Inside ΠΣ

If identified, definitions have to agree:
ϕ ` x∼x ′ ϕ : ∆∼∆′ ` ψ : Γ∼Γ′ ϕ;ψ : (∆; Γ)∼(∆′; Γ′) ` t ≡β t ′

ϕ : ∆∼∆′ ` ψ : (Γ; x = t)∼(Γ′; x ′ = t ′)

Otherwise we ignore them:
ϕ ` x∼− ϕ : ∆∼∆′ ` ψ : Γ∼Γ′

ϕ : ∆∼∆′ ` ψ : (Γ; x = t)∼Γ′

In the implementation we construct the partial bijection lazily:
I If we compare two defined variables,
I we replace both by a fresh variable,
I and then check wether the definitions agree.

See our paper
http://www.cs.nott.ac.uk/~txa/publ/pisigma-new.pdf
for all the rules.
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Conclusions

What next?

Implement an Agda-like language on top of ΠΣ.
Add extensional, propositional equality.
Develop the metatheory, e.g. typesoundness.
Implement ΠΣ in Agda , develop the metatheory formally.
ΠΣ in ΠΣ.
Investigate more general constraints.
Certificate based, extensible totality checker.
Optimizing compiler.
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